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Abstract 

An estimator of the mean function of a compound cyclic Poisson 
process is constructed and investigated. We do not assume any 
particular parametric form for the intensity function except that it is 
periodic. Moreover, we consider the case when there is only a single 
realization of the Poisson process is observed in a bounded interval. 
The proposed estimator is proved to be consistent when the size of the 
interval indefinitely expands. 

1. Introduction 

Let ( ){ }0, ≥ttN  be a Poisson process with (unknown) locally 
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integrable intensity function λ. We consider the case when the intensity 
function λ is a periodic function with (known) period .0>τ  We do not 
assume any (parametric) form of λ except that it is periodic, that is, the 
equality 

( ) ( )sks λ=τ+λ  (1.1) 

holds for all 0≥s  and ,N∈k  where N  denotes the set of natural numbers. 
This condition of intensity function is also considered in [5]. 

Let ( ){ }0, ≥ttY  be a process with 

( )
( )

∑
=

=
tN

i
iXtY

1
,  (1.2) 

where { }1, ≥iXi  is a sequence of independent and identically distributed 

random variables with mean µ and variance ,2σ  which is also independent 

of the process ( ){ }.0, ≥ttN  The process ( ){ }0, ≥ttY  is said to be a 

compound cyclic Poisson process. The model presented in (1.2) is a 
generalization of the (well known) compound Poisson process, which assume 
that ( ){ }0, ≥ttN  is a homogeneous Poisson process. 

There are many applications of the compound Poisson model. Some 
examples are as follows. Applications of the compound Poisson model in 
insurance and financial problems can be found in [1], while its applications 
in physics can be seen in [2]. We refer to [6], [9] and [10] for some 
applications of the compound Poisson model in other areas. 

Suppose that, for some ,Ω∈ω  a single realization ( )ωN  of the cyclic 

Poisson process ( ){ }0, ≥ttN  defined on a probability space ( )P,, FΩ  

with intensity function λ is observed, though only within a bounded interval 
[ ].,0 n  Furthermore, suppose that for each data point in the observed 

realization ( ) [ ],,0 nN ∩ω  say ith data point, [ ]( ),,0...,,2,1 nNi =  its 

corresponding random variable iX  is also observed. Our goals in this paper 
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are to construct an estimator for the mean function of the process 
( ){ }0, ≥ttY  using the observed realization and to prove its consistency. 

The mean function (expected value) of ( ),tY  denoted by ( ),tψ  is given 

by 

( ) ( )[ ] [ ] ( )µΛ==ψ tXEtNEt 1  

with ( ) ( )∫ λ=Λ
t

dsst
0

.  Let ,τ




τ

−= tttr  where for any real number x,  x  

denotes the largest integer less than or equal to x, and let also ., 




τ

=τ
tkt  

Then, for any given real number ,0≥t  we can write ,, rt tkt +τ= τ  with 

.0 τ<≤ rt  Let ( )∫
τ
λ

τ
=θ

0
,1 dss  that is, the global intensity of the cyclic 

Poisson process ( ){ }.0, ≥ttN  We assume that 

.0>θ  (1.3) 

Then, for any given ,0≥t  we have 

( ) ( )rt tkt Λ+τθ=Λ τ,  

which implies 

( ) ( ( )) ., µΛ+τθ=ψ τ rt tkt  

2. The Estimator and Main Results 

The estimator of the mean function ( )tψ  using the available data set at 

hand is given by 

( ) ( ( )) ,ˆˆˆˆ , nrnntn tkt µΛ+θτ=ψ τ  (2.1) 

where 

[ ]( ) ,,0ˆ
n

nN
n =θ  
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( ) [ ] [ ]( )∑
∞

=

+τττ=Λ
0

,0,ˆ
k

rrn ntkkNnt ∩  

and 

[ ]( )

[ ]( )

∑
=

=µ
nN

i
in XnN

,0

1
,,0

1ˆ  

with the understanding that 0ˆ =µn  when [ ]( ) .0,0 =nN  Thus, ( ) 0ˆ =ψ tn  

when [ ]( ) .0,0 =nN  We refer to [4] and [7] for some related work in 

estimation of θ and ( )rtΛ  for different purposes. 

Our main results are presented in the following two theorems. 

Theorem 1 (Weak consistency). Suppose that the intensity function λ 

satisfies (1.1) and is locally integrable. If, in addition, ( )tY  satisfies 

condition of (1.2), then 

( ) ( )tt
P

n ψ→ψ̂  

as .∞→n  Hence ( )tnψ̂  is a weak consistent estimator of ( ).tψ  

Theorem 2 (Strong consistency). Suppose that the intensity function λ 

satisfies (1.1) and is locally integrable. If, in addition, ( )tY  satisfies 

condition of (1.2), then 

( ) ( )tt
sa

n ψ→ψ
..

ˆ  

as .∞→n  Hence ( )tnψ̂  is a strong consistent estimator of ( ).tψ  

3. Some Technical Lemmas 

In this section, we present some results which are needed in the proofs of 
our theorems. Proofs of Lemmas 2 and 3 can also be seen in [8]. 
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Lemma 1. Let N be a Poisson random variable with [ ] .0>NE  Then for 

any ,0>ε  we have 

[ ]

[ ]( ) [ ]( )
.

2
exp2

2
1

2

2
1













ε+

ε−≤













ε>

−

−NENE

NENP  

Proof. We refer to [11, p. 222]. 

Lemma 2. Suppose that the intensity function λ satisfies (1.1) and is 
locally integrable. Then 

[ ] [ ]( ) ( )∫ 




+θ=λ=



=θ

n
n ndssnn

nNEE
0

11,0ˆ O  

as .∞→n  

Proof. Let ., 




τ

=τ
nkn  Then we can write 

[ ] ( ) ( )∫ ∫
τ

ττ

τ τ

τ
λ+λ

τ

τ
=θ

,

,0,

, .11ˆ n

n

k n

kn

n
n dss

n
dss

kn
k

E  (3.1) 

First note that 

( )∫
τ

τ

τ
θ=λ

τ
,

0,

1 nk

n
dssk  

because λ is periodic with period τ. Since ( ) τ<τ− τ,nkn  for all n, we have 

that 

( )





+=

τ−−
=

τ ττ
nn

knn
n

k nn 11,, O  

as .∞→n  Because λ is locally integrable and ( )1, O=τ− τnkn  as ,∞→n  

we also know that 

( ) ( )∫ ττ
=λ

n

kn
dss

,
1O   as .∞→n  
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Hence, the first term on the r.h.s. of (3.1) is ( ),1−+θ nO  while its second 

term is of order ( )1−nO  as .∞→n  This completes the proof of Lemma 2. 

Throughout this paper, for any random variables nX  and X on a 

probability space ( ),,, PFΩ  we write XX
c

n →  to denote that nX  

converges completely to X as .∞→n  We say that nX  converges 

completely to X if ( )∑∞
= ∞<ε>−1 ,n n XXP  for every .0>ε  

Lemma 3. Suppose that the intensity function λ satisfies (1.1) and is 
locally integrable. Then 

θ→θ
P

n
ˆ  (3.2) 

and 

θ→θ
c

n
ˆ   (3.3) 

as .∞→n  

Proof. Since (3.3) implies (3.2), we only need to prove (3.3). To verify 
(3.3), we must show that, for each ,0>ε  

( )∑
∞

=

∞<ε>θ−θ
1

.ˆ
n

nP  (3.4) 

Now we see that 

( ) ( [ ] [ ] ).ˆˆˆˆ ε>θ−θ+θ−θ≤ε>θ−θ nnnn EEPP  

By Lemma 2, for sufficiently large n, we have [ ] .2
ˆ ε<θ−θnE  Then, for 

sufficiently large n, we have 

( ) [ ] .2
ˆˆˆ 





 ε>θ−θ≤ε>θ−θ nnn EPP  (3.5) 
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Then, to prove (3.4), it suffices to check that the probability on the r.h.s. of 
(3.5) is summable. By an application of Lemma 1, the probability on the 
r.h.s. of (3.5) can be bounded above as follows: 

[ ] 





 ε

>θ−θ
2

ˆˆ nn EP  

[ ]( ) [ ]( )[ ]






 ε

>
−

=
2

,0,0
n

nNEnNP  

[ ]( ) [ ]( )[ ]

[ ]( )[ ]( ) [ ]( )[ ]( ) 












ε>

−
=

2
1

2
1

,02,0

,0,0

nNE

n

nNE

nNEnNP  

[ ]( )[ ]( [ ]( )[ ]( ) )







ε+
ε−≤ −− 11

22

,022,04
exp2

nNEnnNE
n  

[ ]
.

2ˆ8
exp2

2









ε+θ
ε−=
nE

n  (3.6) 

By Lemma 2, we have [ ] ( )1ˆ oE n +θ=θ  as .∞→n  Then, for sufficiently 

large n, the r.h.s. of (3.6) does not exceed { ( ) }12 216exp2 −ε+θε− n  which is 

summable. This completes the proof of Lemma 3. 

Lemma 4. Suppose that the intensity function λ satisfies (1.1) and is 
locally integrable. Then 

[ ( )] ( ) 




+Λ=Λ nttE rrn

1ˆ O  (3.7) 

as .∞→n  

Proof. The mean of ( )rn tΛ̂  can be computed as follows: 

[ ( )] [ ] [ ]( )[ ]∑
∞

=

+τττ=Λ
0

,0,ˆ
k

rrn ntkkNEntE ∩  
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( ) [ ]( )∑ ∫
∞

=

+τ

τ
∈λτ=

0
,0

k

tk

k

r dsnsIsn  

( ) [ ]( )∑ ∫
∞

=

∈τ+τ+λτ=
0

0
,0

k

tr dsnksIksn  

( ) [ ]( )∑ ∫
∞

=

∈τ+λτ=
0

0
,0

k

tr dsnksIsn  

( ) [ ]( )∫ ∑
∞

=

∈τ+λτ=
rt

k
dsnksIsn 0

0
,0  

( ) ( )∫ 




 +
τ

λτ=
rt dsnsn 0

1O  

( )∫ 




+λ=

rt

ndss
0

1O  

( ) .1





+Λ= ntr O  

Then we have (3.7). This completes the proof of Lemma 4. 

Lemma 5. Suppose that the intensity function λ satisfies (1.1) and is 
locally integrable. Then 

( ) ( )r
P

rn tt Λ→Λ̂  (3.8) 

and 

( ) ( )r
c

rn tt Λ→Λ̂  (3.9) 

as .∞→n  

Proof. Since (3.9) implies (3.8), we only need to check (3.9). To prove 
(3.9), we must verify that, for each ,0>ε  
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( ( ) ( ) )∑
∞

=

∞<ε>Λ−Λ
1

.ˆ
n

rrn ttP  (3.10) 

We observe that 

( ( ) ( ) )ε>Λ−Λ rrn ttˆP  

( ( ) [ ( )] [ ( )] ( ) ).ˆˆˆ ε>Λ−Λ+Λ−Λ≤ rrnrnrn ttEtEtP  

By Lemma 4, for sufficiently large n, we have [ ( )] ( ) .2
ˆ ε<Λ−Λ rrn ttE  

Then, for sufficiently large n, we have 

( ( ) ( ) ) ( ) [ ( )] .
2

ˆˆˆ 





 ε

>Λ−Λ≤ε>Λ−Λ rnrnrrn tEttt PP  (3.11) 

Then, to show (3.10), it suffices to check that the probability on the r.h.s. of 

(3.11) is summable. Let [ ] [ ]( )∑∞
= +ττ= 0 .,0,k r ntkkNM ∩  Applying Lemma 

1, the probability on the r.h.s. of (3.11) can be bounded above as follows: 

( ) [ ( )] 





 ε

>Λ−Λ
2

ˆˆ rnrn tEtP  

[ ]






 ε

>
τ

−
= − 21n

MEMP  

[ ]

[ ]( ) [ ]( ) 












τε>

−
=

−

2
1

1

2
1

2 ME

n

ME

MEMP  

[ ]( [ ]( ) )







τε+
τε−≤ −−−

−

111

222

224
exp2

MEnME
n  

[ ( )]
.

2ˆ8
exp2

12









ε+Λ
τε−=
−

rn tE
n  (3.12) 
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By Lemma 4, we have [ ( )] ( ) ( )1ˆ ottE rrn +Λ=Λ  as .∞→n  Then, for 

sufficiently large n, the r.h.s. of (3.12) does not exceed 

{ ( )( ) }112 216exp2 −− ε+Λτε− rtn  which is summable. This completes the 

proof of Lemma 5. 

Lemma 6. Suppose that the intensity function λ satisfies (1.1) and is 
locally integrable. If, in addition, (1.3) holds, then with probability 1, 

[ ]( ) ∞→nN ,0  (3.13) 

as .∞→n  

Proof. First note that, Lemma 2 and condition (1.3) lead to 

[ ]( )[ ] ( ) ( )∫ ∞→+θ=λ=
n

ndssnNE
0

1,0 O  

as .∞→n  Then, by the Borel-Cantelli Lemma, we have (3.13). This 
completes the proof of Lemma 6. 

4. Proofs of Theorems 1 and 2 

Proof of Theorem 1. By (2.1), to prove Theorem 1, it suffices to check 

 ,ˆ θ→θ
P

n  (4.1) 

 ( ) ( )r
P

rn tt Λ→Λ̂  (4.2) 

and 

 µ→µ
P

nˆ  (4.3) 

as .∞→n  By Lemma 3, we have (4.1), by Lemma 5, we have (4.2), and by 
Lemma 6 and the weak law of large numbers, we have (4.3). This completes 
the proof of Theorem 1. 
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Proof of Theorem 2. By (2.1), to prove Theorem 2, it suffices to check 

 ,ˆ
..
θ→θ

sa
n  (4.4) 

( ) ( )r
sa

rn tt Λ→Λ
..

ˆ  (4.5) 

and 

µ→µ
..

ˆ
sa

n  (4.6) 

as ∞→n  (cf. [3]). By Lemma 3 and the Borel-Cantelli Lemma, we have 
(4.4). Similarly, Lemma 5 and the Borel-Cantelli Lemma also lead to (4.5). 
Finally, by Lemma 6 and the strong law of large numbers, we obtain (4.6). 
This completes the proof of Theorem 2. 
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