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Abstract 

This article presents a comparison of upwinding and symmetry 
convection schemes for the solution of the Navier-Stokes equations. 
The driven cavity flow problem at Reynolds number of 5000, 75000 
and 10000 are solved by three different convection schemes, CD, 
QUICK and third order symmetry (TS), respectively. All the 
convection schemes are implemented on a uniform gird system with 
the grid density as high as .256256 ×  The computed results with the 
TS scheme are compared with the benchmark solutions and those of 
CD and QUICK schemes in the averaged relative error and local 
relative error sense. It is found the TS scheme can provide more 
accurate results than the QUICK scheme at the same computation cost. 
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1. Introduction 

In the context of finite volume method, the discretization of the 
convection term in the Navier-Stokes equation or the convection-diffusion 
equation has been the focus of the study for more than three decades. In the 
early days, the central difference was used for the discretization of 
convection term, very accurate and stable results can be obtained only for the 
low Reynolds number flow, however, non-physical results will present when 
the cell Peclet number exceeds a certain value [1-5]. As such, various other 
convection schemes have been designed to obtain realistic results at high 
Reynolds numbers. Among the schemes used are the first order upwind 
(FUD), the exponential, the power-law [1] and the hybrid schemes [6]. 

The introduction of the “upwinding” made a major step forward in the 
CFD/HNT area. It was first put forward by Courant et al. [7] and 
subsequently by Gentry et al. [8], Barakat and Clark [9] and Runchal and 
Wolfshtein [10]. The upwinding scheme approximates the value of 
dependent variable at the control volume face more physically, the value of 
dependent variable at the control volume face receives more information 
from the upwind direction rather than an average of the two neighboring 
points used in the CD scheme. The first order upwind (FUD) scheme is the 
first used upwinding scheme in the simulation of the high Reynolds flow, it 
is absolute stable and bounded. 

The exponential scheme [1] uses the exact solution of one-dimensional 
convection-diffusion problem with a Dirichlet boundary condition as the 
profile between two grid points. The exponential scheme achieves the 
stability of the upwind method and also has better accuracy. The temperature 
profile between grid points is linear for small Re and is nearly constant for 
large Re. In this limit, the exponential method approaches the interpolation 
rules used for central difference scheme at small Reynolds number, and first 
upwind scheme at large Reynolds number. The scheme is not widely used 
because it is expensive to compute and the schemes are not exact for two- or 
three-dimensional problems, nonzero source terms, etc. 
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The hybrid schemes are first proposed by Spalding [6], the name hybrid 
indicates that it is a combination of the FUD and CD schemes. It is identical 
with the CD scheme for Reynolds number range ,2Re2 ≤≤−  it switches 

from CD to FUD when Reynolds number outsides this range. 

The power-law scheme [1] is a computationally efficient approximation 
of the exponential scheme. The power-law scheme uses a power-law 
variation profile Reynolds number range ,10Re10 ≤≤−  and it becomes 

identical with FUD when the Re outsides this range. For further detail about 
these schemes see Patankar and Spalding [11] and Raithby and Torrance 
[12]. 

Leonard and Drummond [13] pointed out that the preceding convection 
schemes including the exponential, the power-law and the hybrid schemes 
are essentially the same with the FUD scheme when the Reynolds number. 
So these schemes are all be regarded as low order schemes. These low order 
convection schemes have been wildly used for the simulation of convection 
heat transfer problems because there robustness and resulting physically 
realistic solutions. 

However, it was shown that the FUD scheme is only first-order accurate 
in the sense of Taylor series truncation error sense, the leading terms of FUD 
behave as another diffusion term in the governing equations, which cause the 
distribution of the physical variables to smeared. This phenomenon has been 
reported by many works [14-25] and is referred as false diffusion. The false 
diffusion can be large enough to give physically incorrect results at high 
Reynolds number flows. 

As discussed by Patankar [1], Davis and Mallinson [20], false diffusion 
is a multi-dimensional phenomenon, when the velocity vector is more than 
marginally skewed to the grid line, the false diffusion may become so large 
as to obscure the effects of physical diffusivity on the flow. In addition, 
Raithby [17] and Leonard [18] have shown that the presence of source term 
may also cause large errors when the FUD was used for the convection term. 
These conditions may prevail in the case of recirculating flows. 
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For example, in the pioneer work of Allen and Southwell [23], the 
problem of flow around a cylinder was solved with the FUD scheme, it was 
found that the downstream eddies are too short and vary little when Re 
changed from 100 to 1000. In the classical work of Leonard and Drummond 
[13], the Smith-Hutton problem which solves a two-dimensional steady state 
convection-diffusion of a scalar field in a specified velocity field. The results 
shown that the predicted variable profile at the outlet was serious diffused 
with the power-law scheme. Another more complex problem of natural 
convection in a rectangular cavity was solved with FUD, hybrid and the 
power-law convection schemes, at Grashof number 9500, both three low-
order convection schemes cannot identify the 9 eddies in the center of the 
cavity. 

The remedy methods to overcome the ‘false diffusion’ can be classified 
into three directions, one is to use a very fine grid system which is not 
practical especially for the three-dimensional problem. The second way is to 
take the velocity vector into account since the false diffusion is a multi-
dimension phenomenon, one such scheme is the skew upwind differencing 
scheme of Raithby [26] which was named as skew upwind differencing. The 
skew upwind differencing scheme although is only first-order in, results in an 
impressive reduction in the false diffusion. 

The third direction is to construct higher order upwinding schemes. In 
the sense of the third way, many convection schemes using the ‘upwinding’ 
idea have been developed. For example, the quadratic upstream interpolation 
for convective kinetics (QUICK) scheme of Leonard [27], the QUICK 
scheme employs a three points upstream weighted quadratic interpolation 
technique to approximate the variation of the physical variable between grid 
points. The studies from Shyy [14], Raithby [17], Leonard [18], Arampatzis 
and Assimacopulos [21] and Patel et al. [22] have shown that the QUICK 
scheme has greater formal accuracy than the conventional CD scheme and 
other low order scheme and retains the basic stable convective sensitivity 
property. 

Other high order schemes include the cubic upwind interpolation (CUI) 
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of Agarwal [28], the SMART of Gaskell and Lau [29], the SHARP of 
Leonard [30] and the HLPA of Zhu [31]. 

All these high order convection schemes use two nodes in the upwinding 
direction and one node in the downstream direction. In the work of Jin and 
Tao [32, 33], a third order symmetry scheme was proposed. The TS scheme 
has the same number and sort grids as the existing second-order difference 
scheme in the matrix created by discretization equation, but its grids 
constituting the scheme are symmetrical from two sides of the interface. In 
this paper, the performance of the TS scheme, CD scheme, and QUICK 
scheme was assessed by solving the driven cavity problem at high Re 
number. 

2. Mathematical Formulations 

2.1. Governing equations 

Fluid flow and heat transfer are the predominant processes in many 
industry problems which are governed by a series of partial differential 
equations, e.g., Navier-Stokes equation for the flow field, energy equation 
for the temperature field and convection-diffusion equations for other scalar 
variable fields. In this paper, we only consider steady problems, in the finite 
volume method, all these governing equations can be expressed in a general 
convection-diffusion form [1], 

 ( ) ( ) ,φ+φΓ=φρ Sgraddivdiv u  (1) 

where u is the velocity vector, φ represents different dependent variables and 
Γ is the diffusion coefficient, it has different meaning for different dependent 
variables. In equation (1), the first term is called the convection term, the 
second term is called the diffusion term and the third term φS  is called the 

source term. 

With the finite volume approach, the computation domain is first 
discretized into a set of control volumes. A control volume in a two-
dimensional discretized domain is shown in Figure 1. Integration of equation 
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(1) over the control volume shown gives 

 ( ) ( )∫ ∫ ∫Δ Δ Δ
φΔ+φΓ=φρ

V V V
VSdVgraddivdAdiv .u  (2) 

We focused on the main grid point P as shown in Figure 1, its 
neighboring nodes are W, E, S and N. The control volume faces are denoted 
by w, e, s and n, respectively. 

 

Figure 1. Control volume used for the discretization of governing equation. 

Using the Gaussian divergence theorem, we obtain 

 ( ) ( )∫ ∫ ∫Δ φΔ+φΓ⋅=φρ⋅
A A V

VSdAgradndAn .u  (3) 

Reformulating equation (3) in a two-dimensional Cartesian coordinate, we 
obtain 

 ( ) ( ) ( ) ( )snwe vAvAuAuA φρ−φρ+φρ−φρ  

 .VSyAyAxAxA
snwe

Δ+⎟
⎠
⎞⎜

⎝
⎛

∂
φ∂Γ−⎟

⎠
⎞⎜

⎝
⎛

∂
φ∂Γ+⎟

⎠
⎞⎜

⎝
⎛

∂
φ∂Γ−⎟

⎠
⎞⎜

⎝
⎛

∂
φ∂Γ= φ  (4) 



A Comparison of Upwinding and Symmetry Convection Schemes … 75 

This discretized equation represents the flux balance in a control volume, 
the value of the dependent variable φ at the control volume faces is 
approximated by different interpolation schemes. For the diffusion terms, 
central difference was used to approximate the value of the dependent 
variable φ at the control volume faces 

 ( ) ( )., SN
n

PE
e y

A
yAx

A
xA φ−φ

Δ
Γ=⎟

⎠
⎞⎜

⎝
⎛

∂
φ∂Γφ−φ

Δ
Γ=⎟

⎠
⎞⎜

⎝
⎛

∂
φ∂Γ  (5) 

It is unnecessary to use high order scheme higher than second order for 
the diffusion term, because under high convection, the diffusion term is not 
very important, it is the convection term playing a key role. For the 
convection term, it seems logical to use the central difference scheme again. 
In the central difference scheme, the value of dependent variable φ at the 
control face is approximated by the average of its two neighboring nodes 

( ) ,2PEe φ+φ=φ  (6) 

( ) .2PWw φ+φ=φ  (7) 

We define two variables F and D to represent the convection mass flux 
and the diffusion conductance at the control volume face. Now, equation (4) 
can be written as 

( ) ( ) ( ) ( )SP
s

NP
n

WP
w

EP
e FFFF

φ+φ−φ+φ+φ+φ−φ+φ 2222  

( ) ( ) ( ) ( ) .φ+φ−φ−φ−φ+φ−φ−φ−φ= SDDDD SPsPNnWPwPEe  (8) 

With the symbols of Patankar, we write equation (8) in the following general 
form: 

 ,VSaaaaa SSNNWWEEPP Δ+φ+φ+φ+φ=φ φ  (9) 

where 

,2
e

eE
FDa −=  (10) 

,2
n

nN
FDa −=  (11) 
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,2
w

wW
FDa −=  (12) 

,2
s

sS
FDa −=  (13) 

.SNWEP aaaaa +++=  (14) 

The Taylor series truncation of the CD scheme is second order. With the 
CD scheme, very accurate results can be obtained when the convection of 
fluid is not very strong. But when the convection dominated, the coefficients 

SNWE aaaa ,,,  may take a negative value, and the rule 2 of Patankar will 

be violated, serious oscillation will present in the results. A stability analysis 
shows that the critical cell Pe number of the CD is only 2, due to this 
drawback, CD scheme is not a suitable discretization scheme for the general 
use, more stable convection scheme should be developed. 

2.2. Different upwinding convection schemes 

2.2.1. FUD scheme 

In the CD scheme, the value of dependent variable φ at the control 
volume face is approximated by the average of its two neighboring nodes no 
matter its flow direction, the upwind convection scheme takes the flow 
direction into account: the value of φ should receive more information from 
its upwinding direction when the convection dominated. 

The first order upwind (FUD) scheme was the most earliest convection 
scheme using the idea of upwind. In the FUD, the value of φ at the control 
volume face is written as 

,,0 Peeu φ=φ>  (15) 

,,0 Eeeu φ=φ<  (16) 

,,0 Wewu φ=φ>  (17) 

.,0 Pewu φ=φ<  (18) 

The coefficients of the discretized equation for the FUD are 

( ),,0max eeE FDa −+=  (19) 
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( ),,0max nnN FDa −+=  (20) 

( ),0,max wwW FDa +=  (21) 

( ),0,max ssS FDa +=  (22) 

.SNWEP aaaaa +++=  (23) 

With the FUD scheme, all the coefficients of the discretized equations 
are positive and the matrix is diagonally dominated, no any ‘wiggles’ occur 
in the numerical simulation results. But the scheme is only first order, the 
accuracy of the results could be seriously affected by the ‘false diffusion’ 
especially when the flow direction is not aligned with the grid line or there 
are large gradient exist in the flow. 

2.2.2. QUICK scheme 

The quadratic upstream interpolation for convective kinetics (QUICK) 
scheme of Leonard [27] has been successfully used in the calculations. The 
face value of φ is obtained from a quadratic function passing through two 
upstream points and one downstream point, 
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The coefficients of the discretized equation for the QUICK is 

( ) ( ) ,18
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6
8
3

wweeeeeE FFFDa α−−α−−α−=  (28) 

( ) ,18
1

eeEE Fa α−=  (29) 
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( ) ( ) ,18
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nnNN Fa α−=  (31) 
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,SSSNNNWwWEEEP aaaaaaaaa +++++++=  (36) 

where 1=αw  for ;0>WF  and 0=αw  for ;0<WF  1=αe  for ;0>eF  

and 0=αe  for .0<eF  

The QUICK scheme takes more upwinding nodes into the calculation of 
φ and is more accurate than FUD and CD scheme. Just like the CD scheme, 
the main coefficients of the QUICK scheme are not guaranteed to be 
positive, so the QUICK is therefore conditional stable. The critical cell Pe 

number of the QUICK is .3
8  

2.2.3. The third order symmetry scheme (TS) 

Jin and Tao [32, 33] take the values of two nodes both at the upwind and 
downwind directions, the value of φ at the control volume face is evaluated 
as follows: 

,72
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,72
7

24
1

8
9

72
19,0 WPEEEeeu φ+φ+φ+φ−=φ<  (38) 
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,72
7

24
1

8
9

72
19,0 EPWWWwwu φ+φ+φ+φ−=φ>  (39) 

.72
7

24
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8
9

72
19,0 WWWPEwwu φ+φ+φ+φ−=φ<  (40) 

According to the analysis of Jin and Tao [32, 33], the TS scheme has a 
third order accuracy and absolutely stable but uses the same memory with 
that of the QUICK scheme. 

2.3. Implementation method 

The deferred correction technique of [17, 34, 35] was used to implement 
these high order convection schemes. In the deferred correction technique, all 
the high order convection schemes were expressed as the sum of the FUD 
and the difference between the high order scheme and FUD as follows: 

 ( ) .∗φ−φ+φ=φ FUD
ee

FUD
ee  (41) 

The second part of the LHS of equation (41) is the correction term, it was 
calculated from the value of previous iteration and was implicitly added into 
the source term φS  of equation (9). The coefficients SNWE aaaa ,,,  are the 

same with that of FUD scheme, through this way, both the positivity of the 
coefficient and diagonally domination can be assured which will enhance the 
stability of the solving process greatly. When the iteration converged, we 
will get the numerical solution with high order convection scheme. The 
general discretized equation with high order convection scheme can be 
formulated as 

 ,dcSSNNWWEEPP SVSaaaaa +Δ+φ+φ+φ+φ=φ φ  (42) 

where 

( ) ( ) ( )n
FUD
nnw

FUD
wwe

FUD
eedc FFFS φ−φ+φ−φ−φ−φ=  

( ),s
FUD
ssF φ−φ−  (43) 

( ),,0max eeE FDa −+=  (44) 

( ),,0max nnN FDa −+=  (45) 
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( ),0,max wwW FDa +=  (46) 

( ),0,max ssS FDa +=  (47) 

.SNWEP aaaaa +++=  (48) 

3. Results and Discussions 

3.1. Lid-driven cavity problem 

In this section, the five convection schemes, CD, QUICK, TS were 
applied to the lid-driven cavity problem. The lid-driven cavity problem is 
often used as a test case for code verification and validation due to the 
simplicity of the cavity geometry and reliable benchmark solutions are 
readily available [36, 37]. 

 

Figure 2. Control volume used for the discretization of governing equation. 

Figure 2 shows a schematic view of the cavity flow and its boundary 
conditions. The governing equations can be written in a dimensionless form 
as follows: 

,0=
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X
U  (49) 
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where the characteristic length and characteristic velocity are the width of the 
cavity and the velocity of the lid, respectively. 

The boundary conditions are: 

0,1 == VU  on the lid, (52) 

0,0 == VU  on the wall. (53) 

The computational domain was discretized by three different uniform 
grids system, ,6464 ×  128128 ×  and .256256 ×  Computations were 
conducted at three different Re numbers, 5000, 7500 and 10000. According 
to authors’ knowledge, under such great Re numbers and fine grid systems, 
the pressure correction methods such as SIMPLE [38], SIMPLEC [39] 
algorithms cannot give a convergent solution. In this paper, the inner doubly 
iterative efficient algorithm for linked equations (IDEAL) algorithm [40] was 
used to solve the governing equations. The convergence was declared when 
the normalized residual decreased to 1E-9. 

Figure 3 presents the numerical simulation results for Re number of 5000 
on a grid system of .6464 ×  Figure 3(a) gives the U velocity profile along 
the vertical center line of the cavity, and Figure 3(b) gives the V velocity 
profile along the horizontal center line of the cavity. The numerical 
simulation results of Erturk et al. [36] is also shown in the figure for 
comparison. In the Erturk’s work, the Navier-Stokes equations in stream 
function and vorticity formulation were solved using a fine grid of 

,601601 ×  so the results can be treated as the benchmark solution. An 
overview of Figure 3 says that both the three convection schemes, CD, 
QUICK and TS can give physically reasonable results, but the difference 
between them is still very evident. The CD scheme gives the most diffusive 
velocity profile compared with the other two schemes, the profile departs 
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from the benchmark solutions greatly especially at the peak values near the 
cavity boundary. The QUICK scheme results in more accurate results than 
the CD scheme, while the TS convection scheme gives the most accurate 
results in all these three convection schemes. 

Figure 4 presents the numerical simulation results for Re number of 5000 
on a more fine grid system of .128128 ×  Both the three convection schemes 
give more accurate results compared to those on a gird system of .6464 ×  
But a detail examination of Figure 4 can still give the difference between the 
three convection scheme. Again, CD scheme give the most diffusive results, 
and the QUICK scheme are more accurate. The velocity profile from the TS 
scheme seems have collapsed onto the benchmark solution. 

We further refine the grid system to 256256 ×  and the results were 
shown in Figure 5. The three schemes give the same results with the 
benchmark solution, little difference could be observed visually in the figure. 

Figure 6 shows the comparison of the V velocity profile along the 
horizontal line passing through the center of the cavity for Re of 7500 at two 
different grid systems. Figure 6(a) gives the results on a gird system of 

,6464 ×  Figure 6(b) gives the results on a gird system of ,128128 ×  all the 
results depart more from the benchmark solutions, but the overall trend is 
still maintained, the TS scheme gives the most accurate results, and the CD 
scheme gives the most diffusive results. 

 
 (a) (b) 
Figure 3. Computed velocity along the line passing through the geometric 
center of the cavity at ,5000=Re  6464 ×  grid system. 
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 (a) (b) 
Figure 4. Computed velocity along the line passing through the geometric 
center of the cavity at ,5000=Re  128128 ×  grid system. 

 
 (a) (b) 
Figure 5. Computed velocity along the line passing through the geometric 
center of the cavity at ,5000=Re  256256 ×  grid system. 

 
 (a) (b) 
Figure 6. Computed V velocity along the line passing through the geometric 
center of the cavity at .7500=Re  
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We further increase the Re number to 10000, we compare the solutions 
in a quantitative difference sense. In this investigation, we only compare the 
difference for the V velocity since the difference between different schemes 
is more evident than that of U velocity. 

We define the relative error and the averaged relative error as follows: 

Relative error ,100×
−

=
b

b
V

VV  (54) 

Averaged relative error ∑
=

×
−

=
N

n b
b NV

VV

1
,100  (55) 

where the subscript b means the benchmark solutions, the variable N means 
the total number of positions where the benchmark solutions are given, it 
takes a value of 22. The computed results for CD, QUICK and TS schemes at 
three different grid systems are shown in Table 1, Table 2 and Table 3, 
respectively. 

From the average relative error point of view, on a gird system of 
,6464 ×  the QUICK scheme is 32% more accurate than the CD scheme, 

while the TS scheme is 22% more accurate than the QUICK scheme. On a 
gird system of ,128128 ×  the QUICK scheme is 33% more accurate than the 
CD scheme, while the TS scheme is 28% more accurate than the QUICK 
scheme. On a gird system of ,256256 ×  the QUICK scheme is 38% more 
accurate than the CD scheme, while the TS scheme is 33% more accurate 
than the QUICK scheme. At ,10000=Re  if a gird system of 6464 ×  was 
used with a TS scheme, the average relative error is 14.86%, to expect the 
same results with the CD, the mesh has to be refined to 128128 ×  which will 
be impractical in the industry. 

Now we turn our attention to the relative error at certain locations as 
shown in the first column of tables. The maximum of the relative error 
occurred at the center of the cavity, it has a value of 96.93% for the TS 
scheme on a gird system of ,6464 ×  as the grid was refined to ,256256 ×  
the value decreases to 13.86%. The same phenomenon does exist if we 
compare the benchmark solutions of Erturk and Ghia at the same place. At 
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,5000=Re  Ghia gave a value of 0.00945 and Erturk gave a value of 0.0117, 
there exits nearly 20% difference between them. At ,7500=Re  Ghia gave a 
value of 0.00824 and Erturk gave a value of 0.0099, again there exists more 
than 16% difference between the two results. 

The locations near the boundary also present a relative large relative 
error, since we use a uniform grid system and the FUD scheme was used for 
the first inner grid points. The solutions with the CD scheme take the largest 
error, while the results of QUICK and TS schemes are comparable. While in 
the other locations, the difference between these three schemes is evident, the 
TS scheme is at least 60% more accurate than the QUICK scheme. 

Table 1. The relative error between numerical solutions and benchmark 
solutions at 10000=Re  with a 6464 ×  grid system (%) 

X CD QUICK TS 
0.015 37.33 30.83 31.20 
0.030 35.78 29.11 29.58 
0.045 34.55 26.88 26.80 
0.060 31.20 22.20 20.91 
0.075 27.38 16.83 13.38 
0.090 25.25 13.20 6.98 
0.105 24.93 12.01 3.22 
0.120 25.04 12.20 1.80 
0.135 25.00 12.49 1.45 
0.150 24.94 12.52 1.39 
0.500 45.45 62.84 96.93 
0.850 27.34 14.58 3.71 
0.865 27.37 14.41 3.47 
0.880 27.47 14.25 3.48 
0.895 27.70 14.28 4.21 
0.910 27.97 14.75 6.19 
0.925 27.75 15.37 8.53 
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0.940 26.62 15.53 9.26 
0.955 27.68 17.99 11.78 
0.970 28.81 21.43 17.52 
0.985 3.61 8.86 10.31 

Averaged relative error 28.06 19.17 14.86 

Table 2. The relative error between numerical solutions and benchmark 
solutions at 10000=Re  with a 128128 ×  grid system (%) 

X CD QUICK TS 
0.015 13.23 8.11 7.04 
0.030 12.09 6.57 5.49 
0.045 11.81 6.18 4.55 
0.060 10.57 4.74 1.79 
0.075 9.53 3.57 0.75 
0.090 9.16 3.30 1.69 
0.105 9.26 3.56 1.39 
0.120 9.44 3.78 0.93 
0.135 9.52 3.84 0.81 
0.150 9.56 3.89 0.83 
0.500 23.98 40.62 36.65 
0.850 9.44 3.36 1.36 
0.865 9.47 3.41 1.37 
0.880 9.50 3.45 1.41 
0.895 9.65 3.59 1.28 
0.910 9.91 3.97 0.61 
0.925 9.78 4.26 0.41 
0.940 8.00 2.66 1.04 
0.955 7.34 1.35 2.59 
0.970 13.97 12.51 11.84 
0.985 23.23 32.47 31.27 

Averaged relative error 11.35 7.58 5.48 
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Table 3. The relative error between numerical solutions and benchmark 
solutions at 10000=Re  with a 256256 ×  grid system (%) 

X CD QUICK TS 
0.015 2.66 0.90 0.26 
0.030 2.39 0.57 0.05 
0.045 2.44 0.63 0.13 
0.060 2.36 0.65 0.36 
0.075 2.30 0.69 0.46 
0.090 2.40 0.86 0.27 
0.105 2.64 1.11 0.03 
0.120 2.87 1.34 0.26 
0.135 3.08 1.54 0.45 
0.150 3.30 1.77 0.68 
0.500 11.65 14.49 13.86 
0.850 3.45 1.83 0.73 
0.865 3.27 1.66 0.55 
0.880 3.09 1.48 0.36 
0.895 2.94 1.32 0.18 
0.910 2.86 1.22 0.08 
0.925 2.71 1.11 0.02 
0.940 2.08 0.66 0.24 
0.955 1.55 0.07 0.91 
0.970 3.01 1.75 1.04 
0.985 5.92 7.16 7.02 

Averaged relative error 3.28 2.04 1.33 
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(a) 

 
(b) 

 
(c) 

Figure 7. Streamline pattern for Re number of 5000, 7500 and 10000. 
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The streamline pattern computed with the TS scheme on a grid system of 
256256 ×  at Re of 5000, 7500 and 10000 are shown in Figure 7. It is 

evident the second vortices at the corner of cavity increase its size as the 
increase of Re number, and the extent of vortices is in excellent agreement 
with the results report by Erturk et al. [36] and Ghia et al. [37]. 

3.2. Natural convection in a cavity 

In this section, we consider the problem of natural convection of fluid in 
a two-dimensional cavity. Natural convection is a challenging and complex 
problem due to the inherent coupling of the fluid flow and the energy 
transport. The height h of the cavity is the same with the width w of the 
cavity. The fluid in the cavity is air with a constant Pr number of 0.71. The 
left wall of the cavity is kept at a constant temperature ,hT  the right wall at a 

constant lower temperature cT  and the other two surfaces are treated as 

adiabatic wall. 

The equations governing the flow and temperature fields are those that 
express the conservation of mass, momentum and energy. The flow, driven 
by buoyant forces, is assumed to be steady, laminar and incompressible. The 
fluid properties are assumed constant, except for the density in the buoyancy 
term, where the Boussinesq approximation is valid. The mathematical 
formulation for this physical problem can be written in dimensionless form 
as: 
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where the following dimensionless parameters are introduced: 



Peng Ding and Dong-Liang Sun 90 

,,,,, 2

2

ρν
=

ν
=

ν
=== pwPvwVuwUw

yYw
xX  

( ) .,,
3

να
−β

=
α
ν=

−
−

=θ
wTTgRaPrTT

TT ch
ch
c  

The parameters g, α, β and ν are the acceleration due to gravity, the thermal 
diffusivity of the fluid, the coefficient of thermal expansion, and the fluid 
kinetic viscosity, respectively. 

The boundary conditions are 0== VU  on all rigid walls, 1=θ  at 
,0=X  0=θ  at 1=X  and 0=∂θ∂ n  on the insulation walls, wherein n  

means the normal direction of walls. 

 
 (a) (b) 
Figure 8. Computed V velocity and temperature θ along the center vertical 
line of the cavity at .105=Ra  

 
 (a) (b) 
Figure 9. Computed V velocity and temperature θ along the center vertical 
line of the cavity at .107=Ra  
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Figure 8 presents the computed results at Ra of .105  Figure 8(a) shows 
the dimensionless V velocity profile along the center of the cavity, Figure 
8(b) shows the dimensionless temperature profile along the center of the 
cavity. The benchmark solution of Wan was also shown in the figure for 
comparison. Wan used a high-accuracy discrete singular convolution (DSC) 
method for the solution of problem on a 161161 ×  grid system. The solid 
line is the results with the QUICK convection scheme on a 128128 ×  grid 
system, while the dashed line is the results with the TS convection scheme on 
a 6464 ×  grid system. An overview of Figure 8 can say that the TS 
convection scheme on a coarse grid almost gives the same results with the 
QUICK convection scheme on a fine grid. 

Figure 9 give the computed results for Ra of ,107  the results with the TS 
scheme are also in well agreement with that of the QUICK scheme. 

    
 (a) (b) 

Figure 10. Streamline pattern and temperature contour for .107=Ra  

The streamline pattern computed with the TS scheme on a grid system of 

6464 ×  at Ra of 710  is shown in Figure 10. The distribution of the contour 
line is in excellent agreement with the results report by Wan et al. [41]. 

3.3. Flow over a backward facing step 

Fluid flow over a backward facing step is another important benchmark 
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problem. It has an outflow boundary condition, flow separation, flow 
reattachment and multiple recirculating bubbles in the channel depending on 
the Reynolds number and the expansion ratio. The expansion ratio is defined 
as the ratio of total height of the channel to the step height. 

We solve the backward facing step problem at Reynolds number of 800. 
Figure 11 shows computed results with TS and QUICK convection schemes 
on different grid systems. The benchmark solutions of the Gartling [42] is 
also shown in the figure for comparison. We start the computation from a 
grid of .20100 ×  We cannot obtain a convergent solution with the QUICK 
scheme, a 20300 ×  grid must be used for a fully convergent solutions. 
While the TS convection scheme gives an excellent prediction on a grid of 

20100 ×  since it is unconditional stable. 
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Figure 11. Computed U velocity at .800,0.7 == ReX  
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The pressure contour and the stream line are shown in Figure 12. The 
distribution of the pressure contour, the position of the second vortex bumble 
on the upper wall are in good agreement with the Gartling’s results. 

 

(a) Pressure contour 

 

(a) Stream line 

Figure 12. Streamline pattern and pressure contour for 800=Re  with TS. 

4. Concluding Remark 

A comparison has been made of upwinding and symmetry convection 
schemes for the solution of the Navier-Stokes equations. We have applied the 
CD scheme, QUICK scheme and the third order symmetry scheme (TS) to 
the driven cavity flow problems at Reynolds number as high as 10000. The 
following are some findings: 

The TS scheme can provide more accurate results than the QUICK 
scheme. 

The TS scheme resumes the same computation cost with the QUICK 
scheme. 

The demonstrated accuracy combined with the low computational cost of 
the TS scheme suggests us to further extend the use of the third order 
symmetry scheme for the discretization of convection term especially at high 
Reynolds number. 
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