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Abstract 

Traditional capture-recapture methods assume that lists operate 
independently (local independence) and that capture probabilities are 
homogeneous. In studies involving human populations, these 
assumptions are often violated. This paper presents an approach where 
dependence between the lists and the effects due to the observable 
covariates are modelled directly in the capture probability. For this 
purpose, we employ a multinomial latent class model. Estimation of 
the model parameters is based on the maximum likelihood method via 
the EM algorithm. An approximation for the variance of the unknown 
population size is also formulated. 
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1. Introduction 

Capture-recapture models have long been applied to estimate the 
population size of wild animals (see Schwarz and Seber [22], Pollock [21] 
for details). In practice, it is unlikely that an entire animal population will be 
surveyed, thus these models are used to determine an estimate of the 
population size. In a wildlife context, capture-recapture methods utilize the 
information available from the animals captured on a number of occasions. 
These methods are now widely used to count human populations in various 
settings such as in epidemiology (LaPorte et al. [15], Verlato and Muggeo 
[26]) and in social sciences (Davies et al. [9], Gurgel et al. [11]). In situations 
involving human populations, unlike animal studies, an estimate of the 
population size is obtained by using a number of existing lists. Each list can 
detect only a part of the population of interest, thus some individuals are 
unobserved and this is the parameter that we wish to estimate. 

List dependence and heterogeneity are features of most capture-recapture 
data relating to human populations. If the effects of these features are not 
accounted for in the modelling, then a biased estimate of the population size 
will result (Wittes et al. [30], Hook and Regal [12], Chao et al. [7]). In the 
literature of capture-recapture analysis, various models are available which 
focus on controlling the effects of heterogeneity. When the capture 
probabilities are heterogeneous, modelling them in terms of observable 
covariates provides a way to account for observed heterogeneity (Huggins 
[13], Alho [1]). Zwane and van der Heijden [31] developed a model which 
simultaneously accounts for list dependence and observed heterogeneity by 
means of a multinomial logit model. In the absence of influential covariates 
latent class modelling (Lazarsfeld and Henry [16], McCutcheon [19]), which 
assumes that the whole population consists of a number of sub-populations or 
classes where the class membership for each individual is unknown, can be 
employed to control unobserved heterogeneity (Link [17], Böhning et al. 
[3]). New mixture models within the context of capture-recapture focus on 
estimation via the nonparametric maximum likelihood approach (Kuhnert et 
al. [14], Mao [18]); further methods are compiled in Böhning [5]. Recently, a 
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few researchers have attempted to develop models which can simultaneously 
account for list dependence and heterogeneity (both observed and 
unobserved). Cruyff and van der Heijden [8] introduced a zero-truncated 
negative binomial regression model which explained both the observed and 
unobserved heterogeneity. Stanghellini and van der Heijden [23] and 
Bartolucci and Forcina [2] presented a hierarchical log-linear model and a 
class of latent marginal regression models, respectively, where the effects of 
list dependence, observed and unobserved heterogeneity are simultaneously 
modelled. 

In this paper, we extend the method of Zwane and van der Heijden [31] 
by including the effects of unobserved heterogeneity. We use a multinomial 
latent class model in which the effects of the list interaction and the 
covariates directly affect the capture probability. In contrast, in our previous 
work (Thandrayen and Wang [25]), we treated the covariates as affecting the 
latent class probabilities. In practice, both ways in which the covariates can 
be incorporated in the modelling are important because they provide useful 
information about the population under study. Our proposed method can 
accommodate covariates which are both categorical and continuous in nature, 
unlike the model of Stanghellini and van der Heijden [23] which incorporates 
only categorical covariates. Our method also employs an approximation to 
the information matrix (McLachlan and Peel [20]) when evaluating the 
standard errors, which renders our model computationally less intensive    
than those of Stanghellini and van der Heijden [23] and Bartolucci and 
Forcina [2]. 

The structure of this paper is as follows: in Section 2, we formulate our 
proposed model and estimate it by the maximum likelihood method via the 
EM algorithm. In the present context, the available covariates affect only the 
capture probability. In Section 3, the mathematical formulae for the standard 
errors are derived. In Section 4, simulation studies are performed while         
in Section 5, the proposed method is illustrated by means of a study on           
the prevalence of diabetes in northern Italy. In Section 6, we draw our 
conclusions. 



Joanne Thandrayen and Yan Wang 68 

2. Method 

Assume that there are m lists in the multiple list problem. Then there are 
mK 2=  possible capture histories for each individual. Let 1=ikn  if 

individual i has capture history ( )Kkk ...,,1=  and 0 otherwise. We also 

assume that there exist influential covariates which may affect the capture 
probabilities of individuals. The information for these covariates is collected 
into a matrix X with dimension ,Hn ×  where n denotes the unknown 
population size and H represents the number of available covariates. The 
elements of X are denoted as ....,,1,...,,1, Hhnixih ==  List effects are 

collected into a design matrix Y with dimension ,KJ ×  where J represents 

the number of list effects. The elements of Y are ,jky  

....,,1,...,,1 KkJj ==  The form of the design matrix depends on the 

existing interactions among the lists (Wang and Thandrayen [28]). 

Let ( )Λ,kfi  denote a multinomial probability mass function for the 

capture history k ( )Kk ...,,1=  of an individual ( ),...,,1 nii =  where Λ  is 

a matrix of parameters associated with the covariate and list effects. The 
elements of Λ  are ....,,1,...,,1, JjHhhj ==λ  Thus, ( )Λ,kfi  is of the 

form (Zwane and van der Heijden [31]) 
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In particular, ( )Λ,Kfi  refers to the case where an individual i with capture 

history K is not captured by any list and 
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Assume that the proposed model is a finite mixture model whose 
marginal form is 
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We also assume that 0=LΛ  to ensure that the parameters are identifiable 
(Vermunt [27]). 

Assume that a sample of obsn  individuals has been identified by the lists. 

The number Kn  of uncaptured individuals is not known and we wish to 

estimate it. The Horvitz-Thompson estimator for the population size is 

∑ = πobsn
i i1 ,1  where ( ),1 Kfii −=π  and  
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Since the model parameters are unknown, we estimate n by 

∑
=

π
=

obsn

i i
n

1
.

ˆ
1ˆ  (2.1) 

An estimate of the unobserved number of individuals is thus given as =Kn̂  

.ˆ obsnn −  In the literature, various estimation methods are available for finite 

mixtures; the most popular method is the maximum likelihood method via 
the EM algorithm (Dempster et al. [10]) due to its interesting properties: it 
shows monotone convergence and provides reasonable estimates if the 
starting values are appropriate. However, the main drawbacks for the EM 
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algorithm are: it converges slowly and the optimal solution depends on both 
the initial values used and the stopping rule employed to detect whether the 
maximum has been reached. We employ the conditional likelihood function 
as it accommodates the fact that the covariate information for the unobserved 
individuals is not available (Thandrayen and Wang [24]). To proceed with 

the EM algorithm, we assume the unobserved variable l
ikz  is 1 if individual i 

with capture history k belongs to class l; otherwise l
ikz  is 0 (Böhning and 

Kuhnert [4]). Wang and Thandrayen [28] provided the details of how to 
construct the conditional likelihood function, which is given by 
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In the E-step, the algorithm substitutes l
ikz  by their expected values l

ike  

based on the observed data and current values of Λ  and Q  such that 
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(Böhning and Kuhnert [4]). 
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In the M-step, the expected version of the conditional log-likelihood 

(2.2) is maximized to generate new values Λ̂  and .Q̂  This maximization 

procedure does not give a closed form solution for Λ̂  and .Q̂  Instead it 

provides an iterative solution, which needs to be updated until convergence. 
Once the optimal values of Λ  and Q  are obtained, (2.1) is used to obtain an 

estimate of the population size. 

3. Standard Error Approximation 

The unknown parameter is ( ) ,, ′λ= l
l
hj qθ  ,...,,1 Hh =  ,...,,1 Jj =  

....,,1 Ll =  Since the dimension of θ  is large, standard errors based on the 

observed information matrix are difficult to obtain. To evaluate standard 
errors, we apply the technique of McLachlan and Peel [20, pp. 64-66], which 

involves approximating the observed information matrix. Let θ̂  denote the 
MLE of .θ  It is convenient to approximate the observed information matrix 

( )θ̂I  by the so-called empirical observed information matrix ( ).θ̂eI  

To proceed with the empirical observed information matrix, we need to 
decompose the conditional log-likelihood (2.2). Under the assumption that 
data are independently and identically distributed, this decomposition allows 

(2.2) to be formulated as ( ) ( )∑ = |= obsn
i icc ll 1 ,θθ  where ( )θicl |  is the likelihood 

function for θ  formed in respect of each individual i. The corresponding 

mathematical formula for ( )θicl |  is 
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In a similar manner, the score vector ( )θs  can be formulated as ( ) =θs  

( )∑ =
obsn

i is1 ,, θ  where ( ) ( ) ., θθθ ∂∂= |iclis  The mathematical equations for 

the evaluation of the score vector are obtained by differentiating (3.1) with 

respect to l
hjλ  and .lq  
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The observed empirical information matrix is then evaluated by the 

relationship ( ) ( ) ( )∑ =
′= obsn

ie isisI 1 .ˆ,ˆ,ˆ θθθ  Under asymptotic conditions, the 

covariance matrix of θ̂  can be approximated by the inverse of the empirical 

observed information matrix, that is, ( ) ( ).ˆˆ 1 θθ −≈ eIcov  The square root of the 

diagonal elements of ( )θ̂cov  leads to the standard error of .θ̂  

We then employ the method of conditioning to derive a variance 
estimator of the population size and express (2.1) as 

∑ ∑
= =

π
δ

=
π

=
obsn

i

n

i i
i

i
n

1 1
,ˆˆ

1ˆ  (3.2) 

where iδ  is an indicator which equals 1 (individual is observed in the 

sample) and 0 (individual is not observed in the sample). When we condition 
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on the observed sample size, then 

( ) { ( )} { ( )}.ˆˆˆ obsobs nnEVarnnVarEnVar |+|=  (3.3) 

The first term of (3.3) is a measure of the variability in the multinomial 
distribution conditional on being observed whereas the second term measures 
the fluctuation in the observed sample size (Zwane and van der Heijden 
[31]). We follow the procedure in Wang and Yip [29] to evaluate the first 
and second terms of (3.3). The variance estimate of the population size         

is given by 
( )∑ = π

π−δ
+′= n

i
i

iiKKs 1 2
2

ˆ
ˆ1ˆˆˆˆ Σ  (see details in Wang and 

Thandrayen [28]), where 

∑
= =∂

π∂
×

π
×δ−=
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i
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iK

1 ˆ2 .
ˆ
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The evaluation of K employs the following mathematical formulae: 
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( ) .1
1Dql

i −
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π∂ θ

 

4. Simulations 

To better understand the performance of the estimators of the proposed 
method, a small simulation study, with a total number of 1000 simulations, 
was undertaken. It was not possible to carry out an extensive number of 
simulation studies due to the time factor associated with the running of the 
EM algorithm. A four list capture-recapture experiment was generated for a 
population size which was fixed to be 500. The heterogeneity effects (both 
observed and unobserved heterogeneity) were modelled by a covariate matrix 
and a multinomial mixture model with two latent classes. The covariate 
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matrix consists of a standard normal random variable and an intercept. The 
class proportions were 2.01 =q  and .8.02 =q  The capture probabilities of 

each individual were generated by setting  

=1Λ ,
5.01.01.01.05.0
5.05.05.05.01.0
⎟
⎠
⎞

⎜
⎝
⎛

−−−−−
−−−−

 

where lists 1 and 3 are assumed to be negatively dependent. 

The standard deviation of the 1000 population size estimates was 
calculated and this value was then compared with the standard error ŝ  
derived as in Section 3. Based on the simulation results, the mean and 
standard deviation of n̂  were 502.91 and 14.35, respectively. The mean of 
the estimated standard errors of the population size was .79.13ˆ =s  As such, 
the mean of n̂  is close to the true population size of 500. Likewise, the mean 
of the standard errors estimates ŝ  is close to the empirical standard deviation 
of .n̂  We also noted that the divergence rate for this simulation study was 
2.9%. It is thus reasonable to conclude that the estimators of the proposed 
method have performed reasonably well. 

5. Results 

The data are taken from Stanghellini and van der Heijden [23, p. 513, 
Table 1] and refer to 2047 cases of diabetes in a town in northern Italy 
(Bruno et al. [6]). The data were recorded on the basis of four different lists: 
diabetic clinic and/or family physicians data list (list 1), hospital discharges 
data list (list 2), insulin and oral hypoglycemic data list (list 3), and reagent 
strips and insulin syringes data list (list 4). There also exists a categorical 
covariate, namely treatment, by which the diabetes patients can be split into 
three separate groups: diet (205 cases), hypoglycemic agents (1514 cases), 
and insulin (328 cases). We wish to estimate the number of cases which were 
missed by the four lists. 

The methodology is illustrated with models involving only two latent 
classes to facilitate the discussion. Similarly, only models including a single 
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first order interaction between the lists were examined. The preliminary 
analyses of the interactions between the lists have led us to conclude that the 
best model should include the interaction between list 1 and list 3. 

A series of models can be regarded as competitors and they were thus 
analyzed to identify the best fitting one. We started by fitting a multinomial 
mixture model with no list interactions and covariates (NLNC) and one with 
list interactions but with no covariates (LNC). In this particular context, since 
we are modelling the effects of the covariates within the capture probability, 
we then fitted a multinomial mixture model with no list interactions but with 
covariates in the capture probability (NLCC) and the proposed model with 
list interactions and covariates in the capture probability (LCC). Table 1 
shows the results for all these models and Table 2 sets up a comparison 
between various sets of models by means of the likelihood ratio test statistics. 
The comparisons showed that the inclusion of the list interaction 
significantly improved the model fit (see model comparisons 1 and 5, each 

with p-value .)10 4−<  Likewise, the same effect was observed when the 

covariate was included in the modelling (comparisons 2 and 4, p-values 

.)10 4−<  Furthermore, the results of Table 2 indicated that the addition of 

both the list interaction and the covariate leads to the best fitting model 

(comparisons 3, 4 and 5, p-values ,)10 4−<  which is LCC (the proposed 

model). This conclusion is also supported by the values of the Bayesian 
Information Criterion (see Table 1) whereby LCC is the model with the 
smallest BIC value. We then observed how the value of the population size 
estimator changes across the various models. The population estimates 
obtained from LNC and NLCC, respectively, are quite similar and exhibit 
only a small increase over the population estimate obtained from NLNC 
though the addition of either the list interaction or the covariate significantly 
improved the fit (see Table 2). On the other hand, the population estimate 
undergoes a considerable increase when LCC is used. Thus, this confirms the 
importance of adding both the covariate and the list interaction in the 
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modelling since ignoring one of these effects might result in the estimate 
being biased (see Section 1). 

The results from the chosen LCC are shown in Table 3. We also 
determined that the probabilities of class 1 and class 2 are 0.978 and 0.022, 
respectively, with corresponding standard errors of 0.019 and 0.007. The 
values of the standard errors reflect positively on the accuracy of the 
estimated sizes of class 1 and class 2. Using the coefficients in Table 3, we 
can derive estimates of probabilities (see Table 4) as illustrated in the 
following example: For diabetes patients following a diet and being 
identified by list 1, the probability of being in class 1 is 

( )
( ) ( )[ ] ,479.00exp086.0exp

086.0exp
=

+−
−

 and the probability of being in class 2 is 

( )
( ) ( )[ ] .521.00exp086.0exp

0exp =
+−

 For diabetes patients following a diet and 

being identified by both lists 1 and 3, the probability of being in class 1 is 

( )
( ) ( )[ ] ,457.00exp088.0086.0exp

088.0086.0exp
=

+−+−
−+−

 and the probability of being in 

class 2 is ( )
( ) ( )[ ] .543.00exp088.0086.0exp

0exp =
+−+−

 For diabetes patients 

receiving hypoglycemic agents and being identified by list 1, the probability 

of being in class 1 is ( )
( ) ( )[ ] ,565.00exp260.0exp

260.0exp =
+

 and the probability of 

being in class 2 is ( )
( ) ( )[ ] .435.00exp260.0exp

0exp =
+

 For diabetes patients 

receiving hypoglycemic agents and being identified by both lists 1 and 3, the 

probability of being in class 1 is ( )
( ) ( )[ ] ,795.00exp095.1260.0exp

095.1260.0exp =
++

+
 and 

the probability of being in class 2 is ( )
( ) ( )[ ] .205.00exp095.1260.0exp

0exp =
++

 

In a similar manner, the other probabilities in Table 4 can be calculated. 



A Latent Class Approach with Covariates and Local Dependence … 77 

We noted that some of the estimated standard errors are larger than 
expected (see Table 3). The very large standard error estimate associated 

with parameter 1
14γ  might be due to the fact that list 4 did not identify 

individuals who were following a diet. In addition, the number of individuals 
who were identified by list 4 (irrespective of which treatment they had 
received) was very low (see Stanghellini and van der Heijden [23, p. 513, 
Table 1]). Consequently, the amount of available information might have 
been insufficient for estimation purposes. It is also possible that the 
conditional likelihood function was rather at and this might explain why two 

other standard error estimates ( )1
15

1
11 and λλ  were slightly larger than we 

would expect. 

Within class 1, for diabetes patients receiving hypoglycemic agents (as 
compared to those being administered insulin), the probability of being 
identified by list 1 (diabetic clinic and/or family physicians) is relatively 
high. This probability increases when the patients are also identified by list 3 
(insulin and oral hypoglycemic). This seems reasonable in practice as we 
expect diabetes patients who are receiving hypoglycemic agents (list 3) to be 
primarily seen at diabetic clinics and/or by family physicians (list 1), leading 
to a high probability of being in both lists. This increase in probability was 
also observed when the capture probabilities for list 3 were computed. 
Within class 2, for both diabetes patients following a diet or receiving 
hypoglycemic agents (as compared to those being administered insulin), the 
probabilities of being identified by list 2 (hospital discharges) and list 4 
(reagent strips and insulin syringes), respectively, are quite high. A similar 
pattern in the probability was observed when diabetes patients following a 
diet were identified by list 3. Based on the above, we can conclude that the 
probability of identification within class 2 is generally higher than in class 1. 

6. Discussion 

The model presented here for estimating the population size presented 
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combines three related problems. As human behaviour is expected to be less 
homogeneous than that of animals, their capture probabilities are 
heterogeneous and require modelling in terms of individual characteristics 
such as the covariates observed during a particular study. Though covariate 
modelling controls to a great extent the existing heterogeneity within a 
dataset, it cannot account for the whole of the heterogeneity. There is still 
some heterogeneity which is left unexplained. Latent class modelling can 
help with controlling the effects of unobserved heterogeneity. The lists for 
identification are usually constructed from various sources so that some 
dependence is likely to arise between them. In this paper, we have introduced 
a multinomial latent class model where the effects of both observed and 
unobserved heterogeneity are accounted for and the assumption of list 
independence is also relaxed. Our method thus minimizes the risk of 
obtaining an inaccurate estimate of the population size when these three 
problems are not accounted for in the modelling. 

As discussed in Section 2, the estimation technique employed via the 
conditional likelihood approach and the EM algorithm reduces the 
computational effort required. However, we were faced with the common 
problems associated with the use of the EM algorithm: we encountered slow 
convergence and selecting an appropriate set of initial values proved to be 
quite a tedious task. We also had to test multiple sets of initial values so as to 
avoid the problem of local maxima which frequently occurs in latent class 
analysis. The choice of the conditional likelihood approach over the full 
likelihood approach is explained by the fact that our modelling involves 
covariates. If the latter approach is adopted, then the EM algorithm is quite 
complicated as it would involve the handling of missing data, i.e., the 
missing covariate information of those uncaptured individuals. 

Future research will involve developing a more unified framework where 
the available covariates will affect both the capture probability and the latent 
class membership. This future work will be an extension of the model 
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proposed in this paper, with the latent class membership being modelled in 
terms of the available covariates through a multinomial logit model. 
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Appendix 

Table 1. Estimates from different models 

Model No. of 
parameters  

–2log-likelihood BIC  Population estimate 

NLNC 5 7556.212 7594.333 2228.910(14.357) 

LNC 6 7542.806  7588.551 2380.171(54.090) 

NLCC 9 7075.457 7144.074 2396.126(58.092) 

LCC† 11 7043.595 7127.460 2619.750(95.769) 

†: the proposed model; BIC: Bayesian Information Criterion standard errors 
are given in brackets. 

Table 2. Likelihood ratio test statistics among different models 

Model comparison  LRT df p-value 

1. NLNC v/s LNC 13.406 1 410508.2 −×  

2. NLNC v/s NLCC 480.755 4 410−<  

3. NLNC v/s LCC 512.617 6 410−<  

4. LNC v/s LCC 499.211 5 410−<  

5. NLCC v/s LCC 31.862 2 410−<  

LRT: likelihood ratio test; df: degrees of freedom. 
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Table 3. Estimates from chosen LCC 

Λ entry  Parameter  Estimate  s.e. z-value  p-value 

Class 1      

1
11λ  List 1: D –0.086 0.410 –0.210 0.834 

1
12λ  List 2: D –2.535 0.308 –8.231 410−<  

1
13λ  List 3: D –2.579 0.497 –5.189 410−<  

1
14λ  List 4: D –11.244‡    

1
15λ  ( ) D:3List1List ×  –0.088 0.579 –0.152 0.879 

1
21λ  List 1: H 0.260 0.160 1.625 0.104 

1
22λ  List 2: H –1.963 0.084 –23.369 410−<  

1
23λ  List 3: H –0.943 0.174 –5.420 410−<  

1
24λ  List 4: H –4.942 0.499 –9.904 410−<  

1
25λ  ( ) H:3List1List ×  1.095 0.185 5.919 410−<  

Class 2      

2
11λ  List 1: D 0    

2
12λ  List 2: D 0    

2
13λ  List 3: D 0    

2
14λ  List 4: D 0    

2
15λ  ( ) D:3List1List ×  0    

2
21λ  List 1: H 0    

2
22λ  List 2: H 0    

2
23λ  List 3: H 0    

2
24λ  List 4: H 0    

2
25λ  ( ) H:3List1List ×  0    

s.e.: standard error; D: diet (with insulin as baseline); H: hypoglycemic agents (with insulin as 
baseline). 

List 1: diabetic clinic and/or family physicians; List 2: hospital discharges; List 3: insulin and 
oral hypoglycemic; List 4: reagent strips and insulin syringes (lists identifying diabetes 

patients). List 1 × List 3: interaction between lists 1 and 3. The Λ  entries for class 2 are all 

zero due to the constraint ,0=LΛ  which is employed for identifiability purposes. 

‡: the s.e. is very large rendering the estimate useless. 
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Table 4. Estimated probabilities from chosen LCC 

Latent class 

List Covariate 1 2 

1 D 
⎩
⎨
⎧

.3listinalsoif457.0
;3listinnotif479.0

⎩
⎨
⎧

.3listinalsoif543.0
;3listinnotif521.0

 

 H 
⎩
⎨
⎧

.3listinalsoif795.0
;3listinnotif565.0

⎩
⎨
⎧

.3listinalsoif205.0
;3listinnotif435.0

 

2 D 0.073 0.927 

 H 0.123 0.877 

3 D 
⎩
⎨
⎧

.1listinalsoif065.0
;1listinnotif071.0

⎩
⎨
⎧

.1listinalsoif935.0
;1listinnotif929.0

 

 H 
⎩
⎨
⎧

.1listinalsoif538.0
;1listinnotif280.0

⎩
⎨
⎧

.1listinalsoif462.0
;1listinnotif720.0

 

4 D   

 H 0.007 0.993 

D: diet (with insulin as baseline); H: hypoglycemic agents (with insulin as 
baseline). 1: diabetic clinic and/or family physicians; 2: hospital discharges; 
3: insulin and oral hypoglycemic; 4: reagent strips and insulin syringes (lists 
identifying diabetes patients). 

: calculations are not valid because the s.e. is very large (see Table 3). 


