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Abstract

Traditional capture-recapture methods assume that lists operate
independently (local independence) and that capture probabilities are
homogeneous. In studies involving human populations, these
assumptions are often violated. This paper presents an approach where
dependence between the lists and the effects due to the observable
covariates are modelled directly in the capture probability. For this
purpose, we employ a multinomial latent class model. Estimation of
the model parameters is based on the maximum likelihood method via
the EM algorithm. An approximation for the variance of the unknown
population size is also formulated.
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1. Introduction

Capture-recapture models have long been applied to estimate the
population size of wild animals (see Schwarz and Seber [22], Pollock [21]
for details). In practice, it is unlikely that an entire animal population will be
surveyed, thus these models are used to determine an estimate of the
population size. In a wildlife context, capture-recapture methods utilize the
information available from the animals captured on a number of occasions.
These methods are now widely used to count human populations in various
settings such as in epidemiology (LaPorte et al. [15], Verlato and Muggeo
[26]) and in social sciences (Davies et al. [9], Gurgel et al. [11]). In situations
involving human populations, unlike animal studies, an estimate of the
population size is obtained by using a number of existing lists. Each list can
detect only a part of the population of interest, thus some individuals are
unobserved and this is the parameter that we wish to estimate.

List dependence and heterogeneity are features of most capture-recapture
data relating to human populations. If the effects of these features are not
accounted for in the modelling, then a biased estimate of the population size
will result (Wittes et al. [30], Hook and Regal [12], Chao et al. [7]). In the
literature of capture-recapture analysis, various models are available which
focus on controlling the effects of heterogeneity. When the capture
probabilities are heterogeneous, modelling them in terms of observable
covariates provides a way to account for observed heterogeneity (Huggins
[13], Alho [1]). Zwane and van der Heijden [31] developed a model which
simultaneously accounts for list dependence and observed heterogeneity by
means of a multinomial logit model. In the absence of influential covariates
latent class modelling (Lazarsfeld and Henry [16], McCutcheon [19]), which
assumes that the whole population consists of a number of sub-populations or
classes where the class membership for each individual is unknown, can be
employed to control unobserved heterogeneity (Link [17], Bohning et al.
[3]). New mixture models within the context of capture-recapture focus on
estimation via the nonparametric maximum likelihood approach (Kuhnert et
al. [14], Mao [18]); further methods are compiled in Béhning [5]. Recently, a
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few researchers have attempted to develop models which can simultaneously
account for list dependence and heterogeneity (both observed and
unobserved). Cruyff and van der Heijden [8] introduced a zero-truncated
negative binomial regression model which explained both the observed and
unobserved heterogeneity. Stanghellini and van der Heijden [23] and
Bartolucci and Forcina [2] presented a hierarchical log-linear model and a
class of latent marginal regression models, respectively, where the effects of
list dependence, observed and unobserved heterogeneity are simultaneously
modelled.

In this paper, we extend the method of Zwane and van der Heijden [31]
by including the effects of unobserved heterogeneity. We use a multinomial
latent class model in which the effects of the list interaction and the
covariates directly affect the capture probability. In contrast, in our previous
work (Thandrayen and Wang [25]), we treated the covariates as affecting the
latent class probabilities. In practice, both ways in which the covariates can
be incorporated in the modelling are important because they provide useful
information about the population under study. Our proposed method can
accommodate covariates which are both categorical and continuous in nature,
unlike the model of Stanghellini and van der Heijden [23] which incorporates
only categorical covariates. Our method also employs an approximation to
the information matrix (McLachlan and Peel [20]) when evaluating the
standard errors, which renders our model computationally less intensive
than those of Stanghellini and van der Heijden [23] and Bartolucci and
Forcina [2].

The structure of this paper is as follows: in Section 2, we formulate our
proposed model and estimate it by the maximum likelihood method via the
EM algorithm. In the present context, the available covariates affect only the
capture probability. In Section 3, the mathematical formulae for the standard
errors are derived. In Section 4, simulation studies are performed while
in Section 5, the proposed method is illustrated by means of a study on
the prevalence of diabetes in northern Italy. In Section 6, we draw our
conclusions.
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2. Method

Assume that there are m lists in the multiple list problem. Then there are
K = 2™ possible capture histories for each individual. Let ny =1 if
individual i has capture history k (k =1, ..., K) and 0 otherwise. We also

assume that there exist influential covariates which may affect the capture
probabilities of individuals. The information for these covariates is collected
into a matrix X with dimension nx H, where n denotes the unknown

population size and H represents the number of available covariates. The
elements of X are denoted as xj,, i =1, ..., n, h =1, ..., H. List effects are

collected into a design matrix Y with dimension J x K, where J represents
the number of list effects. The elements of Y are Yik:
j=1..,3J3, k=1 .., K. The form of the design matrix depends on the

existing interactions among the lists (Wang and Thandrayen [28]).

Let fij(k, A) denote a multinomial probability mass function for the
capture history k (k =1, ..., K) of an individual i (i =1, ..., n), where A is
a matrix of parameters associated with the covariate and list effects. The
elements of A are Ay, h=1..,H, j=1..,J. Thus, fi(k, A) is of the

form (Zwane and van der Heijden [31])

EXP(Z::I ijl XihAhj Y jk j
z:zl exp(z:ﬂz;ﬂ XihMhj ijj

In particular, f;(K, A) refers to the case where an individual i with capture

fi(k, A) = i=1 .. n k=1 .. K.

history K is not captured by any list and

fi(K, A) =

1
Z:zlexp(z:zl ijzl Xihkhjyjk) |

Assume that the proposed model is a finite mixture model whose
marginal form is
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L
fi(k)=> afik, A,
=)

where 0 < q; <1, | =1, ..., L, are the mixing proportions with Z:‘:1q| =1

A is a matrix of parameters associated with ¢, and

exp(z:_lzj_l Xihllijjk J
Z:_lexp(z:_lZ;_l Xin¥hj¥ ik j

We also assume that A~ = 0 to ensure that the parameters are identifiable
(Vermunt [27]).

fi(k, Al) =

Assume that a sample of n,g individuals has been identified by the lists.
The number ny of uncaptured individuals is not known and we wish to

estimate it. The Horvitz-Thompson estimator for the population size is

ngfsl/ni, where m; =1 - f;(K), and

iK)=3 4 .
1=1 Zl}::l eXp(Z:ﬂ Z?:l xih}th Yik J

Since the model parameters are unknown, we estimate n by
Nobs

=D

i=1

An estimate of the unobserved number of individuals is thus given as Ak =

|~

2.1)

=2

A — Ngps. In the literature, various estimation methods are available for finite

mixtures; the most popular method is the maximum likelihood method via
the EM algorithm (Dempster et al. [10]) due to its interesting properties: it
shows monotone convergence and provides reasonable estimates if the
starting values are appropriate. However, the main drawbacks for the EM
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algorithm are: it converges slowly and the optimal solution depends on both
the initial values used and the stopping rule employed to detect whether the
maximum has been reached. We employ the conditional likelihood function
as it accommodates the fact that the covariate information for the unobserved
individuals is not available (Thandrayen and Wang [24]). To proceed with

the EM algorithm, we assume the unobserved variable zi'k is 1 if individual i

with capture history k belongs to class I; otherwise zi'k is 0 (B6hning and

Kuhnert [4]). Wang and Thandrayen [28] provided the details of how to
construct the conditional likelihood function, which is given by

Nobs K1 H, l{q.f(k Al

Nik
Le(A, Q) = HH ,

’

where Q = (ay, ..., ) -

Let
K H |
Dy = ZkzleXp(ZhﬂZj:lxih)”Wyjk j

The log-likelihood of L, is

gL (H
lc = Znikzik szmkmyjk —log Dy
i1 k=L1=1 h=1j=1
Nobs K—1 L Nops K-1
+ Z ankzlk logq — Z ank log ;. (2.2)
i=1 k=11=1 i=1 k=

In the E-step, the algorithm substitutes zi'k by their expected values ei'k

based on the observed data and current values of A and Q such that

o _ ik, A
ik = L I
D afik, A

(B6hning and Kuhnert [4]).
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In the M-step, the expected version of the conditional log-likelihood

(2.2) is maximized to generate new values A and (5 This maximization

procedure does not give a closed form solution for A and (5 Instead it

provides an iterative solution, which needs to be updated until convergence.
Once the optimal values of A and Q are obtained, (2.1) is used to obtain an

estimate of the population size.

3. Standard Error Approximation

The unknown parameter is 0 = (k'hj, q|)’, h=1..,H, j=1..7,
I =1, ..., L. Since the dimension of 0 is large, standard errors based on the
observed information matrix are difficult to obtain. To evaluate standard
errors, we apply the technique of McLachlan and Peel [20, pp. 64-66], which
involves approximating the observed information matrix. Let 0 denote the
MLE of 0. It is convenient to approximate the observed information matrix

1(8) by the so-called empirical observed information matrix Ie(é).

To proceed with the empirical observed information matrix, we need to
decompose the conditional log-likelihood (2.2). Under the assumption that
data are independently and identically distributed, this decomposition allows

(2.2) to be formulated as 1,(0) = Zinzoi’s l¢ji(8), where I¢;(0) is the likelihood

function for @ formed in respect of each individual i. The corresponding

mathematical formula for 1¢;(0) is

K-1L H J
| |
I (0) = > > mizie| DD Xinkhy Y — log Dy
k=11=1 h=1j=1
K-1 L | K-1
+ Z Nik Zik Iog q - Z Nik Iog . (31)
k:]. |:1 k:l
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In a similar manner, the score vector s(0) can be formulated as s(0) =
Zing‘l’s s(i, 8), where s(i, 8) = 0l¢;(0)/08. The mathematical equations for
the evaluation of the score vector are obtained by differentiating (3.1) with

respect to x'hj and q.

Let

D, = EXp(Zh lzj 1xlh7\‘hjyjk jYJk

The derivative of (3.1) with respect to k'hj is

Olji X q D
|| _thznlkzlkyj |kZ|k - A2 I 2 an ,
Ol
while that with respect to q; is
alc|| 1 i

n Z +—>< Nk -
aq, ql Z ik ik T D, - ik

The observed empirical information matrix is then evaluated by the
relationship 14(8) = Zlnggs s(i, 0)s'(i, 8). Under asymptotic conditions, the
covariance matrix of © can be approximated by the inverse of the empirical
observed information matrix, that is, cov(é) ~lg 1((3). The square root of the
diagonal elements of cov(é) leads to the standard error of 0.

We then employ the method of conditioning to derive a variance
estimator of the population size and express (2.1) as

Nobs 1 Zn:
R
where §; is an indicator which equals 1 (individual is observed in the

sample) and 0 (individual is not observed in the sample). When we condition
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on the observed sample size, then
Var(n) = E{Var(fi|ngys )} + Var{E(N|ngps )} (3.3

The first term of (3.3) is a measure of the variability in the multinomial
distribution conditional on being observed whereas the second term measures
the fluctuation in the observed sample size (Zwane and van der Heijden
[31]). We follow the procedure in Wang and Yip [29] to evaluate the first
and second terms of (3.3). The variance estimate of the population size

LL_ZTE‘) (see details in Wang and

is given by §% =K'EK +>
Thandrayen [28]), where

N
- 1 O
Kz—ESix—x—'
~2
i=1 TTj M |

[==31

The evaluation of K employs the following mathematical formulae:

omi(8) _ xindiDy

O D?

and
5Tti (9) _ —_l
aqy Dy

4. Simulations

To better understand the performance of the estimators of the proposed
method, a small simulation study, with a total number of 1000 simulations,
was undertaken. It was not possible to carry out an extensive number of
simulation studies due to the time factor associated with the running of the
EM algorithm. A four list capture-recapture experiment was generated for a
population size which was fixed to be 500. The heterogeneity effects (both
observed and unobserved heterogeneity) were modelled by a covariate matrix
and a multinomial mixture model with two latent classes. The covariate
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matrix consists of a standard normal random variable and an intercept. The
class proportions were g; = 0.2 and g, = 0.8. The capture probabilities of

each individual were generated by setting

AL 01 -05 -05 -05 -05
=05 -01 -01 -01 -05)

where lists 1 and 3 are assumed to be negatively dependent.

The standard deviation of the 1000 population size estimates was
calculated and this value was then compared with the standard error §
derived as in Section 3. Based on the simulation results, the mean and
standard deviation of A were 502.91 and 14.35, respectively. The mean of
the estimated standard errors of the population size was S = 13.79. As such,
the mean of f is close to the true population size of 500. Likewise, the mean
of the standard errors estimates § is close to the empirical standard deviation
of A. We also noted that the divergence rate for this simulation study was
2.9%. It is thus reasonable to conclude that the estimators of the proposed
method have performed reasonably well.

5. Results

The data are taken from Stanghellini and van der Heijden [23, p. 513,
Table 1] and refer to 2047 cases of diabetes in a town in northern Italy
(Bruno et al. [6]). The data were recorded on the basis of four different lists:
diabetic clinic and/or family physicians data list (list 1), hospital discharges
data list (list 2), insulin and oral hypoglycemic data list (list 3), and reagent
strips and insulin syringes data list (list 4). There also exists a categorical
covariate, namely treatment, by which the diabetes patients can be split into
three separate groups: diet (205 cases), hypoglycemic agents (1514 cases),
and insulin (328 cases). We wish to estimate the number of cases which were
missed by the four lists.

The methodology is illustrated with models involving only two latent
classes to facilitate the discussion. Similarly, only models including a single
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first order interaction between the lists were examined. The preliminary
analyses of the interactions between the lists have led us to conclude that the
best model should include the interaction between list 1 and list 3.

A series of models can be regarded as competitors and they were thus
analyzed to identify the best fitting one. We started by fitting a multinomial
mixture model with no list interactions and covariates (NLNC) and one with
list interactions but with no covariates (LNC). In this particular context, since
we are modelling the effects of the covariates within the capture probability,
we then fitted a multinomial mixture model with no list interactions but with
covariates in the capture probability (NLCC) and the proposed model with
list interactions and covariates in the capture probability (LCC). Table 1
shows the results for all these models and Table 2 sets up a comparison
between various sets of models by means of the likelihood ratio test statistics.
The comparisons showed that the inclusion of the list interaction
significantly improved the model fit (see model comparisons 1 and 5, each

with p-value < 10_4). Likewise, the same effect was observed when the
covariate was included in the modelling (comparisons 2 and 4, p-values
< 10‘4). Furthermore, the results of Table 2 indicated that the addition of
both the list interaction and the covariate leads to the best fitting model
(comparisons 3, 4 and 5, p-values < 10‘4), which is LCC (the proposed

model). This conclusion is also supported by the values of the Bayesian
Information Criterion (see Table 1) whereby LCC is the model with the
smallest BIC value. We then observed how the value of the population size
estimator changes across the various models. The population estimates
obtained from LNC and NLCC, respectively, are quite similar and exhibit
only a small increase over the population estimate obtained from NLNC
though the addition of either the list interaction or the covariate significantly
improved the fit (see Table 2). On the other hand, the population estimate
undergoes a considerable increase when LCC is used. Thus, this confirms the
importance of adding both the covariate and the list interaction in the
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modelling since ignoring one of these effects might result in the estimate
being biased (see Section 1).

The results from the chosen LCC are shown in Table 3. We also
determined that the probabilities of class 1 and class 2 are 0.978 and 0.022,
respectively, with corresponding standard errors of 0.019 and 0.007. The
values of the standard errors reflect positively on the accuracy of the
estimated sizes of class 1 and class 2. Using the coefficients in Table 3, we
can derive estimates of probabilities (see Table 4) as illustrated in the
following example: For diabetes patients following a diet and being
identified by list 1, the probability of being in class 1 is

exp(—0.086)
[exp(-0.086) + exp(0)]

exp(0)
[exp(—0.086) + exp(0)]

being identified by both lists 1 and 3, the probability of being in class 1 is

exp(~0.086 + —0.088)
[exp(—0.086 + —0.088) + exp(0)]

= 0.479, and the probability of being in class 2 is

= 0.521. For diabetes patients following a diet and

= 0.457, and the probability of being in

: exp(0) B . :
class 2 is [6Xp(~0.086 + —0.088) + exp(0)] 0.543. For diabetes patients

receiving hypoglycemic agents and being identified by list 1, the probability

N . exp(0.260) 3 -
of being in class 1 is [exp(0.260) + exp(0)] 0.565, and the probability of
L , exp(0) 3 , :
being in class 2 is [exp(0.260) + exp(0)] 0.435. For diabetes patients

receiving hypoglycemic agents and being identified by both lists 1 and 3, the

exp(0.260 + 1.095)

[EXp(0.260 + 1.095) + exp(0)] - > &N

probability of being in class 1 is

- N : exp(0) 3
the probability of being in class 2 is [exp(0.260 + 1.095) + exp(0)] 0.205.

In a similar manner, the other probabilities in Table 4 can be calculated.
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We noted that some of the estimated standard errors are larger than
expected (see Table 3). The very large standard error estimate associated

with parameter yh might be due to the fact that list 4 did not identify

individuals who were following a diet. In addition, the number of individuals
who were identified by list 4 (irrespective of which treatment they had
received) was very low (see Stanghellini and van der Heijden [23, p. 513,
Table 1]). Consequently, the amount of available information might have
been insufficient for estimation purposes. It is also possible that the
conditional likelihood function was rather at and this might explain why two

other standard error estimates (klll and k115) were slightly larger than we

would expect.

Within class 1, for diabetes patients receiving hypoglycemic agents (as
compared to those being administered insulin), the probability of being
identified by list 1 (diabetic clinic and/or family physicians) is relatively
high. This probability increases when the patients are also identified by list 3
(insulin and oral hypoglycemic). This seems reasonable in practice as we
expect diabetes patients who are receiving hypoglycemic agents (list 3) to be
primarily seen at diabetic clinics and/or by family physicians (list 1), leading
to a high probability of being in both lists. This increase in probability was
also observed when the capture probabilities for list 3 were computed.
Within class 2, for both diabetes patients following a diet or receiving
hypoglycemic agents (as compared to those being administered insulin), the
probabilities of being identified by list 2 (hospital discharges) and list 4
(reagent strips and insulin syringes), respectively, are quite high. A similar
pattern in the probability was observed when diabetes patients following a
diet were identified by list 3. Based on the above, we can conclude that the
probability of identification within class 2 is generally higher than in class 1.

6. Discussion

The model presented here for estimating the population size presented
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combines three related problems. As human behaviour is expected to be less
homogeneous than that of animals, their capture probabilities are
heterogeneous and require modelling in terms of individual characteristics
such as the covariates observed during a particular study. Though covariate
modelling controls to a great extent the existing heterogeneity within a
dataset, it cannot account for the whole of the heterogeneity. There is still
some heterogeneity which is left unexplained. Latent class modelling can
help with controlling the effects of unobserved heterogeneity. The lists for
identification are usually constructed from various sources so that some
dependence is likely to arise between them. In this paper, we have introduced
a multinomial latent class model where the effects of both observed and
unobserved heterogeneity are accounted for and the assumption of list
independence is also relaxed. Our method thus minimizes the risk of
obtaining an inaccurate estimate of the population size when these three
problems are not accounted for in the modelling.

As discussed in Section 2, the estimation technique employed via the
conditional likelihood approach and the EM algorithm reduces the
computational effort required. However, we were faced with the common
problems associated with the use of the EM algorithm: we encountered slow
convergence and selecting an appropriate set of initial values proved to be
quite a tedious task. We also had to test multiple sets of initial values so as to
avoid the problem of local maxima which frequently occurs in latent class
analysis. The choice of the conditional likelihood approach over the full
likelihood approach is explained by the fact that our modelling involves
covariates. If the latter approach is adopted, then the EM algorithm is quite
complicated as it would involve the handling of missing data, i.e., the
missing covariate information of those uncaptured individuals.

Future research will involve developing a more unified framework where
the available covariates will affect both the capture probability and the latent
class membership. This future work will be an extension of the model
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proposed in this paper, with the latent class membership being modelled in

terms of the available covariates through a multinomial logit model.
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Appendix

Table 1. Estimates from different models

Model No. of —2log-likelihood BIC Population estimate
parameters
NLNC 5 7556.212 7594.333 2228.910(14.357)
LNC 6 7542.806 7588.551 2380.171(54.090)
NLCC 9 7075.457 7144.074 2396.126(58.092)
LCCt 11 7043.595 7127.460 2619.750(95.769)

t: the proposed model; BIC: Bayesian Information Criterion standard errors
are given in brackets.

Table 2. Likelihood ratio test statistics among different models

Model comparison LRT df p-value
1. NLNC v/s LNC 13406 1 2508x107%
2. NLNC v/s NLCC 480.755 4 <107
3. NLNC v/s LCC 512.617 6 <107
4. LNC v/s LCC 499211 5 <107
5. NLCC v/s LCC 31.862 2 <107

LRT: likelihood ratio test; df: degrees of freedom.
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Table 3. Estimates from chosen LCC
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A entry Parameter Estimate s.e. z-value p-value
Class 1
yt List 1: D -0.086 0.410 -0.210 0.834
Aot List2: D 2535 0.308 -8.231 <107
Mgt List3: D 2,579 0.497 -5.189 <10
e List4: D ~11.244°
s (List 1x List 3): D -0.088 0.579 -0.152 0.879
Aot List L: H 0.260 0.160 1.625 0.104
Ny List2: H -1.963 0.084 -23.369 <10
o~ List 3: H -0.943 0.174 -5.420 <107
Mg List 4: H -4.942 0.499 -9.904 <107
As (List 1x List 3) : H 1.095 0.185 5.919 <107
Class 2
e List 1: D 0
Iy List 2: D 0
7»132 List3: D 0
e List4: D 0
hs (List 1x List 3): D 0
hogy? List 1: H 0
7‘222 List2: H 0
Do List 3: H 0
hoot” List 4: H 0
Do (List 1x List 3): H 0

s.e.: standard error; D: diet (with insulin as baseline); H: hypoglycemic agents (with insulin as

baseline).

List 1: diabetic clinic and/or family physicians; List 2: hospital discharges; List 3: insulin and
oral hypoglycemic; List 4: reagent strips and insulin syringes (lists identifying diabetes

patients). List 1 x List 3: interaction between lists 1 and 3. The A entries for class 2 are all

zero due to the constraint AL = 0, which is employed for identifiability purposes.

1: the s.e. is very large rendering the estimate useless.
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Table 4. Estimated probabilities from chosen LCC

Latent class

List Covariate 1 2
1 0.479 if not in list 3; 0.521 if not in list 3;
0.457 if also in list 3. 0.543 if also in list 3.

0.565 if not in list 3; 0.435 if not in list 3;
0.795 if also in list 3. 0.205 if also in list 3.

2 D 0.073 0.927
H 0.123 0.877
3 0.071if not in list 1; 0.929 if not in list 1;
0.065 if also in list 1. 0.935 if also in list 1.
0.280 if not in list 1; 0.720 if not in list 1;
0.538 if also in list 1. 0.462 if also in list 1.
4 D * *

H 0.007 0.993

D: diet (with insulin as baseline); H: hypoglycemic agents (with insulin as
baseline). 1: diabetic clinic and/or family physicians; 2: hospital discharges;
3: insulin and oral hypoglycemic; 4: reagent strips and insulin syringes (lists
identifying diabetes patients).

*: calculations are not valid because the s.e. is very large (see Table 3).



