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Abstract 

Type II censored samples have been extensively collected from many 
fields including engineering and biomedical sciences. These samples 
frequently contain extreme values and the predictive inference from 
such type of samples may produce invalid results. In this paper, we 
compare predictive variability with respect to the location parameter 
mean as well as median. A simulation study and a real life study are 
considered to determine the predictive results. It is obtained that the 
predictive estimates with the location parameter median give more 
precise results compared with the location parameter mean when type 
II censored sample contains extreme values. 

1. Introduction 

Predictive inference has been used to solve many problems in the fields 
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of engineering and biomedical sciences. In order to make a predictive 
inference, the recorded sample may be viewed as a censored sample. A 
censored sample is a partially observed sample from an experiment. There 
are several published statistical research papers available based on censored 
samples, including Ahmed and Saleh [3], Ahmed and Rahbar [4], and 
Buhamra et al. [10]. 

In life testing experiments, the failure times of certain devices may be 
recorded, but in order to record the failures of the devices, the experimenter 
would have to wait until all the devices have failed. Sometimes, in order to 
save both time and money, the experimenter may choose to stop the 
experiment after observing a reasonable number of devices’ failure times. In 
such a situation, failure times occur in an ordered fashion and form a type II 
censored sample. In the biomedical field, one may wish to determine the 
effectiveness of a certain drug by analyzing survival data in connection with 
lab experiments. The survival times for a given treatment are recorded as life 
data. These data usually occur in an ordered fashion; for example, in life tests 
the weakest ‘unit’ fails first, the second weakest fails next, and so on. These 
failure times data are modeled as life testing models. 

Studies related to type II censored sample have been published in several 
referred articles, for example, Khan et al. [15], Buhamra et al. [10, 11]. 
Ahmed [2] described an asymptotic estimation of reliability in a life testing 
model. Bakilzi and Ahmed [7] used the Weibull lifetime model to discuss the 
estimation of the reliability function. 

The mean is an appropriate measure of the central tendency when the 
distribution of a data set is symmetrical. In this case, the data points are 
usually concentrated at the middle, where the mean is located. When the 
distribution is skewed, then the mean is not in the middle. At this stage, the 
median is particularly useful due to a few extreme data points. For example, 
the mean of the ten numbers 1, 1, 1, 2, 2, 3, 5, 6, 15, 30 is 6.6. Eight of the 
ten numbers are less than the mean, with only two of the ten numbers greater 
than the mean. In this situation, a better measure of the center for this 
distribution would be the median, which is 2.5. In this example, the mean is 
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greater than the median. This is common for a distribution that is skewed to 
the right. One may choose to use the middle observations for statistical 
inference from this type of data set. 

Another example, in calculating the mean salary obtained by a group of 
people in a community with different professions, it may happen that a few 
people are earning extraordinarily high salaries. To calculate the mean salary 
of the people, if one considers all values including very high values, then 
mean will be affected by a few extreme salaries. Statistical models from  
such a type of sample may be viewed as right skewed models. Predictive 
inferences from such a sample are not accurate and often lead to invalid 
results. In such situations, one may consider the predictive analysis based on 
the location parameter mean as well as median and compare their results. The 
median can be used as a measure of location when a distribution is skewed. 
When data contain extreme values or there may exist measurement error that 
may not be known, researchers may typically derive the predictive estimates 
for future responses by choosing an appropriate location parameter. The 
present work deals with the predictive inferences for future responses from 
the right skewed half-normal model based on the location parameter mean as 
well as median. 

Bayesian predictive inference has been studied by many authors, 
including Thabane and Haq [18], Khan [17]. In order to derive the predictive 
model for a future response, the Bayesian approach may be considered. 
Berger [8] discussed a general Bayesian prediction problem. Geisser [13] 
described the inferential use of predictive distributions, and Geisser [14] 
considered various Bayesian predictive problems for future responses. Evans 
and Nigm [12] used the Bayesian approach to derive future responses from 
the Weibull distribution. Additional applications of the Bayesian approach to 
predictive inference have been discussed for instance, by Bernardo and Smith 
[9], and Thabane and Haq [18]. Ahsanullah and Ahmed [5] discussed in 
detail Bayes and empirical Bayes estimates of survival, and hazard functions 
of a class of distributions. Ahmed [1] used a priori information in the 
estimation of Poisson parameter. 
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Although a number of studies related to the half-normal model have been 
conducted for the parameters by several authors based on non-censored 
samples but none of the studies used predictive inference for future responses 
based on type II censored samples. The goal of this paper is to derive 
predictive model for future responses and compare the variability by 
considering the location parameter mean as well as median on the basis of a 
type II censored sample from the two-parameter half-normal model whose 
density function is given by 
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where µ is the mean as a location parameter and σ is a scale parameter. 

The rest of the paper is organized as follows: Section 2 presents the 
predictive density for a single future response under a type II censored 
sample. To illustrate the results, a simulated sample and a real life sample are 
considered in Section 3. Finally, a conclusion is added in Section 4. 

2. The Predictive Approach 

In a biomedical experiment, one may decide to terminate an experiment 
after recording the lifetimes of a preassigned number of mice. Let m mice be 
followed after receiving a concentration of dose of a drug and assume that 
the experiment is terminated after k mice’s survival days are recorded. Let 1x  

be the first mouse’s survival days, 2x  be the next mouse’s survival days, and 

so on. In total, ( )mk ≤  lifetimes are being observed with no observation on 

the remaining ( )km −  mice. Thus, ;21 kxxx ≤≤≤  and ( )′= kxx ...,,1x  

forms an observed type II censored sample. Following Khan [16], let z be a 
future response, which is independent of the observed data, and the pdf of z 
may be defined from model (1). The predictive density for a single future 
response z given ( )kxx ...,,1=x  is 
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where ( )x1Ψ  is a normalizing constant. The above model can be used to 

obtain the predictive inference for a single future response on the basis of the 
location parameter mean ( ).µ  

One may replace the location parameter µ with µ~  in equation (2), where 
µ~  is the median. Thus the predictive density for a single future response z 

given ( )kxx ...,,1=x  is 
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where ( )x1Φ  is a normalizing constant. Equation (3) can be used to obtain 
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predictive inferences for a future response on the basis of the location 
parameter median ( ).~µ  

The hyperparameters are usually unknown and may be estimated from 
the data set by applying the maximum likelihood method; see Geisser [14] 
and Berger [8]. When the maximum likelihood equations (MLEs) do not 
yield closed form representations for a and b, one may then consider some 
arbitrary values for a and b to perform statistical analysis, see Khan et al. 
[15]. An advanced statistical package may then be used to display the 
predictive density graphically with several choices of a and b and a scientific 
conclusion can be drawn. 

3. Numerical Studies 

We consider two numerical studies. The first study describes a simulated 
sample from the half-normal model, and the second study presents a real life 
survival sample of hepatocellular carcinoma of liver patients. Equations (2) 
and (3) are utilized for both studies. 

3.1. Simulation study 

We have simulated a sample of size 25=m  with some higher extremes 
from the half-normal model. To make a type II censored sample, data are 
arranged in order, and the last five observations are discarded from the 
ordered sample. Therefore, the value for the kx  was the 20th position. This 

sample was utilized to evaluate its corresponding normalizing constants and 
to plot the predictive graphs. It is also used to calculate the predictive 
variance and average absolute deviation from mean as well as median. 

We used the numerical integration command ‘NIntegrate’ in conjunction 
with the symbolic computational software Mathematica version 7.0, Wolfram 
Research. This package was utilized to carry out all predictive related 
calculations. For the estimation of the hyperparameters, this software failed 
to estimate the hyperparameters for a and b from the likelihood equations 
and the Newton-Raphson iterative algorithm also fails to achieve solutions 
for a and b, simultaneously. Thus, we considered some arbitrary values of a 
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and b, and these values were substituted in equations (2) and (3) to determine 
the predictive density. 

Graphical representations of the predictive densities are given with 
certain values of the hyperparameters with the location parameter mean 
(Figure 1). The figure at the top ( )5,1;1,1 ==== baba  indicates that 
the predictive density with hyperparameters ,1=a  5=b  has a lower 
variance compared with the variance of the predictive density with ,1=a  

.1=b  Similarly, the predictive density with ,16=a  5=b  has a higher 
variance compared with the variance of the predictive density with the 
hyperparameters ,2=a  .5=b  

 

 
Figure 1. Comparison of variability of the predictive densities for a single 
future response with the location parameter mean under certain values of the 
hyperparameters. 
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Figure 2. Comparison of variability of the predictive densities for a single 
future response with the location parameter median under certain values of 
the hyperparameters. 

Based on the location parameter median, the graphical representations of 
the predictive densities are given with respect to certain values of the 
hyperparameters (Figure 2). The figure at the top ( )5,1;1,1 ==== baba  

indicates that the predictive density with hyperparameters ,1=a  5=b  has  

a lower variance compared with the predictive variance with ,1=a       

.1=b  Similarly, the predictive density with ,16=a  5=b  has a higher         

variance compared with the variance of the predictive density with the 
hyperparameters ,2=a  .5=b  
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Figure 3. Comparison of variability of the predictive densities for a single 
future response with the location parameter mean and median under certain 
values of the hyperparameters. 
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Figure 4. Comparison of variability of the predictive densities for a single 
future response with the location parameter mean and median under certain 
values of the hyperparameters. 

Figures 3 and 4 are the comparisons of the predictive variability based on 
the location parameter mean and median with respect to some combination of 
values of the hyperparameters. In Figure 3, two graphs are superimposed. 
The first graph is a combination of the hyperparameters ,1=a  ,1=b  and         

is drawn on the basis of the mean and median. The second graph is a 
combination of the hyperparameters ,1=a  ,5=b  and is drawn on the basis 

of the mean and median. When the hyperparameter a is fixed and b varies, 
one would observe the predictive variability given the location parameter. 
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Given the location parameter median, one would obtain a narrower predictive 
interval and given the location parameter mean, one would obtain a wider 
predictive interval. 

In Figure 4, two graphs are superimposed. The first graph is a 
combination of the hyperparameters ,1=a  ,5=b  and is drawn on the basis 

of the location parameter mean and median. The second graph is a 
combination of the hyperparameters ,2=a  ,5=b  and is drawn on the basis 

of the mean and median. In this case, the graphs look almost the same, but 
the second graph’s variability is slightly higher than that of the first graph 
since the hyperparameter a widens the interval. 

Table 1 includes the estimates of the predictive variance with the location 
parameter mean as well as median with respect to several values of the 
hyperparameters. Comparing all the results, it may be commented that the 
predictive interval becomes wider with an increased value of a. For larger 
values of b, the predictive interval becomes narrower. 

The relative efficiency for a single future response is calculated on the 
basis of the ratio of the two variances, i.e., 

( )
( )

.
Variance
Variance

median

mean
z
z  

It is noted that as a increases with a fixed b, the relative efficiency slowly 
decreases. When a is fixed and b increases, the relative efficiency increases. 

Table 2 presents the estimates of the average absolute deviation from the 
mean as well as median with respect to several values of the hyperparameters. 
It may be commented that the estimated absolute deviation is minimum when 
it is measured from the median. 
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Table 1. Comparison of variances for predictive densities with several values 
of the hyperparameters when the location parameter is considered mean as 
well as median 

Hyperparameters Variance ( )meanz Variance ( )medianz  Relative efficiency 

a b    

1 1 0.487820 0.366278 1.33183 

2 1 0.496841 0.373932 1.32869 

3 1 0.504421 0.381586 1.32190 

4 1 0.511998 0.389239 1.31538 

1 2 0.451763 0.338117 1.33611 

1 3 0.419559 0.313956 1.33636 

1 4 0.391618 0.293006 1.33655 

1 5 0.366992 0.274520 1.33685 

3 2 0.465787 0.352256 1.32230 

4 2 0.472798 0.359327 1.31579 

5 2 0.479807 0.366398 1.30952 

6 2 0.486815 0.373469 1.30350 

2 3 0.426077 0.320521 1.329330 

2 4 0.397704 0.299132 1.329530 

2 5 0.372860 0.280411 1.329690 

2 6 0.350931 0.263891 1.329830 
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Table 2. Comparison of the deviation measured from mean as well median 
for predictive densities with several values of the hyperparameters 

Hyperparameters mean−zE median−zE ( )x1Ψ  ( )x1Φ  

a b     

1 1 0.853860 0.717214 481005482.2 −× 451087460.2 −×  

2 1 0.859895 0.723970 481038982.1 −× 451070323.1 −×  

3 1 0.865982 0.730645 491045499.9 −× 451001988.1 −×  

4 1 0.872016 0.737243 491046937.6 −× 461016913.6 −×  

1 2 0.823302 0.692195 521038945.4 −× 481010512.1 −×  

1 3 0.795940 0.669693 561045265.9 −× 521028312.4 −×  

1 4 0.771179 0.649311 591005014.2 −× 551067173.1 −×  

1 5 0.748632 0.630732 631047419.4 −× 591056516.6 −×  

3 2 0.835132 0.705201 521089988.1 −× 491061411.3 −×  

4 2 0.840971 0.711591 521026172.1 −× 491010143.2 −×  

5 2 0.846760 0.717908 531042975.8 −× 491023478.1 −×  

6 2 0.852502 0.724154 531066506.5 −× 501032917.7 −×  

2 3 0.801699 0.676041 561001126.6 −× 521033734.2 −×  

2 4 0.776772 0.655481 591026427.1 −× 561075519.8 −×  

2 5 0.754072 0.636739 631067556.2 −× 591029978.3 −×  

2 6 0.733284 0.619561 671069346.5 −× 621025045.1 −×  

Table 3. Summary results for the posterior parameters and the 
hyperparameters based on simulated data by making use of the software 
WinBUGS 

Node Mean SD MC Error 2.5% Median 97.5% Start Sample 
a 100.5 70.87 0.2954 12.34 84.50 279.8 1001 60000 
b 19.96 14.11 0.057 2.473 16.75 55.77 1001 60000 
µ 3.465 0.2522 9.911E–4 2.968 3.465 3.965 1001 60000 

σ 0.872 0.2841 0.001248 0.4086 0.8404 1.51 1001 60000 
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The Bayesian Markov chain Monte Carlo (MCMC) method is a useful 
alternative to obtain the posterior distributions of the parameters. The 
implementation of this method can be obtained by making use of the 
software WinBUGS. The BUGS (Bayesian Inference Using Gibbs Sampling) 
project is designed with a software package on the basis of carrying out 
MCMC computations for a wide variety of Bayesian models. MCMC 
methods are a class of algorithms for selecting samples from probability 
distributions on the basis of a Markov chain. In the case of the simulated 
data, there are 1,001 burn-in samples excluded, and the results are based on 
the additional 60,000 samples. The summary results of the parameters and 
hyperparameters are reported in Table 3. Figures 5 and 6 are the kernel 
densities, dynamic trace, and quantile plots for the parameters and 
hyperparameters. 

 

Figure 5. Posterior densities and dynamic trace plots for the parameters and 
hyperparameters based on simulated data. 
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Figure 6. Trace and quantile plots for the parameters and hyperparameters 
based on simulated data. 

3.2. Real data study 

In this subsection, we consider a health related cancer data. 
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the 
world with 80% of cases occurring in developing countries. The cancer is 
rapidly fatal in almost all cases with survival generally less than 1 year from 
diagnosis. The major risk factors for this cancer have been identified as 
chronic infection with hepatitis B (HBV) and hepatitis C (HCV) viruses and 
dietary exposure to aflatoxins. There is a safe and effective vaccine to 
prevent chronic HBV infection. Given estimates that approximately 70% of 
HCC in developing countries is attributable to HBV, then vaccination could 
prevent more than 250,000 cases per year in these areas of the world. A 
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major challenge now is to ensure the availability of vaccine in countries   
with endemic infection. Development of a vaccine against HCV is more 
problematic due to the genetic heterogeniety of the virus. However, with 
24% of HCC in developing countries attributable to HCV (approximately 
93,000 cases per year), a vaccine would make a major contribution to cancer 
prevention, Wild and Hall [19]. 

A survival analysis of 20 patients diagnosed with hepatocellular 
carcinoma of liver (HCC) in 2002 is performed. The data set is taken from a 
cancer registry at the University Hospital located in Newark, New Jersey. 
The survival days of 17 patients are recorded, and three out of 20 patients are 
lost to follow-up. They are the last three patients’ survival days in order. 
These survival days can be formed as a type II censored sample. 

This data set is composed of 17 patients’ survival days and it contains a 
few extreme values. We consider several statistical probability models to fit 
the data. A Q-Q (quantile-quantile) plot is used to check whether or not a 
data-based sample comes from a specific population. We reported some Q-Q 
plots in Figures 7-9. The histogram of the survival days is shown in Figure 9. 
Based on the Q-Q plots, it is determined that the half-normal model is the 
appropriate fit (Anderson-Darling Test Statistics )6937.0,8521.0 == P  for 

modeling the survival data of hepatocellular carcinoma of liver patients. The 
gamma model has the next lowest differences and the exponential model has 
the highest differences, see in Table 4. 

Table 4. Estimated values and fitted distributions 

Distributions Anderson-Darling statistics P-value 

Half-normal 0.8521 0.6937 

Gamma 1.1723 0.3410 

Exponential 3.2370 0.2100 
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Figure 7. Q-Q plots for the survival days of HCC patients. 
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Figure 8. Q-Q plots for the survival days of HCC patients. 

 

Figure 9. Q-Q plot and histogram for the survival days of HCC patients. 
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In addition to checking the goodness of fit, we also compared the 
empirical distribution function (EDF) with the corresponding theoretical 
cumulative distribution function (CDF) given the sample of survival days. 
We consider two measures of discrepancy are being used to determine the 
best fit model. We considered the exponential, gamma, and half-normal 
models. The mean squared differences, i.e., 

( ) ( )( )∑ =
−

n
i ii nxGxF

1
2 ,  

and the absolute mean differences i.e., 

( ) ( )∑ =
−

n
i ii nxGxF

1
 

are considered, where F is the empirical distribution function, G is the 
functional representation of the cumulative distribution function, and n is the 
observed sample size. It was obtained that the half-normal model is the best 
fit considering the lowest differences of mean squared differences and 
absolute mean differences. The gamma model has the next lowest differences 
and the exponential model has the highest differences, see in Table 5. 

Table 5. Estimated values and fitted distributions 

Distributions ( ) ( )( )∑ = −17
1

2 17i ii xGxF ( ) ( )∑ = −17
1 17i ii xGxF  

Half-normal 0.000067 0.023974 

Gamma 0.004346 0.051685 

Exponential 0.014260 0.104116 

The predictive variances of a single future response are estimated          
given the 17 patients’ survival days with respect to some values of              
the hyperparameters on the basis of the location parameter mean and   
median. The relative efficiency is estimated given each combination of the 
hyperparameters. Table 6 includes the estimate of the predictive variance 
based on the location parameter mean as well as median with respect to 
several values of the hyperparameters. Table 7 presents the estimate of the 



Hafiz M. R. Khan 20 

average absolute deviation from the mean as well as median with respect to 
several values of the hyperparameters. It is obvious from Tables 6 and 7 that 
based on the median, the predictive estimates are better. The estimated 
absolute deviation is minimum when it is measured from the median. 

Table 6. Comparison of variances for predictive densities with several values 
of the hyperparameters of the HCC patients survival days when the location 
parameter is considered mean as well as median 

Hyperparameters Variance ( )meanz Variance ( )medianz Relative efficiency 

a b    

1 1 3450.86 1505.17 2.29267 

2 1 3450.87 1505.18 2.29266 

3 1 3450.88 1505.19 2.29265 

4 1 3450.89 1505.20 2.29264 

1 2 3225.93 1391.58 2.31818 

1 3 3022.44 1292.11 2.33915 

1 4 2838.88 1204.66 2.35658 

1 5 2673.12 1127.44 2.37096 

3 2 3225.79 1391.59 2.31806 

4 2 3225.80 1391.60 2.31805 

5 2 3225.81 1391.61 2.31804 

6 2 3225.82 1391.62 2.31803 

2 3 3022.45 1292.11 2.33916 

2 4 2838.88 1204.66 2.35658 

2 5 2673.12 1127.45 2.37094 

2 6 2523.29 1058.91 2.38291 
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Table 7. Comparison of the deviation measured from mean as well median 
for predictive densities of the survival days of HCC patients with several 
values of the hyperparameters 

Hyperparameters mean−zE median−zE ( )x1Ψ  ( )x1Φ  

a b     

1 1 77.9911 45.793 1341021664.2 −× 1231084105.1 −×  

2 1 77.9912 45.793 1341021652.2 −× 1231084098.1 −×  

3 1 77.9913 45.793 1341021652.2 −× 1231084075.1 −×  

4 1 77.9914 45.793 1341021629.2 −× 1231084051.1 −×  

1 2 75.1406 44.1389 146108657.9 −× 1341070565.4 −×  

1 3 72.5452 42.6432 1571040221.4 −×   144102131.1 −×  

1 4 70.1752 41.2854  168109688.1 −×  1551015087.3 −×  

1 5 68.0044 40.0473 1801082293.8 −× 1661023774.8 −×  

3 2 75.1408 44.1391 1461086458.9 −× 1341070436.4 −×  

4 2 75.1409 44.1392 1461086401.9 −× 1341070372.4 −×  

5 2 75.1409 44.1393 1461086345.9 −× 1341070307.4 −×  

6 2 75.1410 44.1394 1461086289.9 −× 1341070243.4 −×  

2 3 72.5453 42.6433 1571040194.4 −× 1441021292.1 −×  

2 4 70.1752 41.2855 1681096867.1 −× 1551015037.3 −×  

2 5 68.0044 40.0473 1801082231.8 −× 1661023635.8 −×  

2 6 68.0098 38.9137 1911096079.3 −× 1781016577.2 −×  

In the survival data analysis of 17 HCC patients, there are 1,001 burn-in 
samples excluded, and the results are based on the additional 60,000 samples. 
The summary results of the parameters and hyperparameters are reported     
in Table 8. Figures 10 and 11 are the kernel densities, dynamic trace, and 
quantile plots for the parameters and hyperparameters of the survival days of 
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the HCC patients. Figure 12 presents a graphical comparison of the variance 
and relative efficiency on the basis of the simulated study and real data study. 

Table 8. Summary results for the posterior parameters and the 
hyperparameters in the case of survival days of the HCC patients by making 
use of the software WinBUGS 

Node Mean SD MC Error 2.5% Median 97.5% Start Sample 

a 100.4 70.88 0.2771 12.32 84.44 280.0 1001 6000 

b 19.99 14.12 0.061 2.453 16.81 55.67 1001 6000 

µ 68.86 19.31 0.08898 28.05 69.96 103.9 1001 6000 

σ 4E493.1 −  5E709.5 − 7E662.2 − 5E941.5 − 4E419.1 − 4E794.2 − 1001 6000 

 
Figure 10. Posterior densities and dynamic trace plots for the parameters and 
hyperparameters of the survival days of the HCC patients. 
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Figure 11. Trace and quantile plots for the parameters and hyperparameters 
of the survival days of the HCC patients. 
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Figure 12. Predictive variability plots with respect to certain values of the 
hyperparameters for both studies. 

4. Conclusion 

We considered some arbitrary values of the hyperparameters to obtain 
the predictive variance with respect to the location parameter mean as well as 
median. Comparing all the predictive variability results, it is commented that 
the location parameter based on the median gives precise results. The 
WinBUGS software was used to obtain the summary results for the posterior 
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model parameters and hyperparameters. It is also used to graphically display 
the posterior densities, dynamic trace, and quantile plots for the parameters 
and hyperparameters. Furthermore, it was determined that the average 
predictive absolute deviation from the median is smaller than the average 
predictive absolute deviation from the mean with respect to the choices of the 
hyperparameters. 
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