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Abstract 

This paper attempts to develop an analytic tool for exploring whether 
dynamic processes in different complex adaptive systems share a 
common evolutionary mechanism over time. A nonlinear 
autoregressive integrated (NLARI) model is derived from a class of 
nonlinear systems with resilience mechanisms by using Newton’s 
second law to stochastic systems. Whether NLARI effectively models 
a class of dynamic processes in complex adaptive systems with 
common evolutionary mechanism depends on whether it can 
characterize and predict major dynamics of time series data from these 
systems. This study finds that a relative restoring coefficient controls 
bifurcation and stability of NLARI’s deterministic system. 
Unexpectedly, unstable oscillations may be because the relative 
restoring coefficient is too large or too small due to a weak resilience, 
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while a stable fixed point and stable period-2 cycle only occur in an 
approximate value of the relative restoring coefficient. 

1. Introduction 

Complex adaptive systems are characterized by a high degree of adaptive 
capacity, giving them resilience in the face of perturbation. A number of 
studies focus on agent-based and complex network-based modeling 
paradigms under the definition that a complex adaptive system is a dynamic 
network of many agents [1, 2]. Much attention has also been paid to 
signatures of complex system behavior over time for waves, rhythms, 
oscillations, 1/f noise (see [3-6]), chaotic resonance [7, 8] and nonlinear 
dynamics (e.g., [9, 10]). Surprisingly, little research has been devoted to 
modeling dynamic processes that occur in different complex adaptive 
systems but could share a common evolutionary origin based on the same 
physical principle. 

Apparent resilience mechanisms in living organisms, as a crucial 
characteristic of complex adaptive systems, are associated with homeostatic 
function of the body that reverts the disturbed system back to normal       
[11]. However, the homeostatic control is challenged by findings on 
nonstationarity [12] and nonlinearity or perhaps chaos in biological time 
series like heart rate series [13]. Hence, identifying possible patterns and 
control mechanisms of a dynamic process in complex adaptive systems 
should be performed in a wide range of dynamics including stable fixed point 
(corresponding to biological homeostasis), nonlinear stable and unstable 
oscillations. 

Recently, a new class of nonlinear autoregressive integrated (NLARI) 
models was derived from economic systems with delayed resilience 
mechanisms using Newton’s second law to stochastic systems [14]. When 
the resilience mechanisms lose, NLARI is a nonstationary unit root process 
(for definition, see Section 2). NLARI has a line time trend component equal 
to the mean of the process generated by this model when disturbance mean is 
not zero. The fact that NLARI has a unit root and a trend component explains 
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the entanglement of the two dynamics in macroeconomic time series and thus 
defuses a long standing debate about the nature of macroeconomic 
fluctuations (see [15-19]). Simulations study shows that NLARI can 
reproduce a wide range of dynamics from nonstationary unit roots to periodic 
and aperiodic oscillations [14], but their control mechanisms are unclear. 

This paper considers NLARI to describe the time evolution of a dynamic 
process in complex adaptive systems. The NLARI model introduced by He 
[14] has no time delay in a resistance. Herein, NLARI is extended to include 
a delay in the resistance and it is given by 

( )121 112 −κ−κ−−− −α−−+ω= ttttt YYYYY  

[( ) ]
,

exp 2
22

22
t

tt

tt

Y

Y
ε+

μ−

μ−
β−

κ−κ−

κ−κ−  (1) 

where ( )2110 ...,,, κ−−|=μ YYYYE tt  and it has been proved that 

tYt α
ω+=μ 0  

(for proof in ,01 =κ  see [14]); ,0>α  ,0>β  and ω are constants, α is the 

resistance coefficient, β is the restoring coefficient, 1κ  and 2κ  are time 

delays in the resistance and restoration, respectively; and { }tε  is a Gaussian 

white noise process with ( ) 0=εtE  and ( ) .22 σ=εtE  

We investigate dynamics and stability of NLARI’s deterministic system 
(1) for lower order delays. Section 2 describes the derivation of NLARI. 
Section 3 gives two exact solutions of NLARI’s deterministic system. 
Section 4 analyzes stability control mechanism of the solutions. Simulations 
are conducted to confirm theoretical results and to compare deterministic and 
stochastic dynamics near critical values in Section 5. A final section briefly 
discusses and concludes. 

2. Derivation of Models 

Consider that an object at a position y encounters a resistance force f, a 
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restoring force g and a random force ε. Newton’s second law says that a net 
force results in a change of momentum: ( ) dtymdF =  of which ymF =  is 

just a special case only if mass m is constant. Without loss of generality, let 
1=m  because the mass has only a scaling effect; thus, 

.ygfF =ε++=  

Resistance force is regarded as a function of velocity. When the velocity 
is relatively slow, the resistance can be approximated as yf α−=  for 

0>α  like viscous resistance or frictional force by Stokes’ law [20]. 
Restoring force is a variable force that gives rise to an equilibrium in a 
physical system. In a spring, this restoring force is directly proportional to 
the distance that the spring is displaced from the equilibrium position [21]. 
Herein, the restoring force is defined as a function of the deviation from the 
mean ( ),yE=μ  denoted by ( ).μ−yg  The function g should be absolutely 

integrable on R  to avoid an explosive solution as argued by [22]. We further 
assume ( ) 0<xxg  for 0≠μ−= yx  to reflect the nature that a restoring 

force tends to bring the system back down- or up-toward equilibrium after 
the system has been up or down perturbed away from the equilibrium, 

respectively. Here, we adopt the function ( ) ( )2exp xxxg −β−=  for ,0>β  

which satisfies these required conditions. 

Consider that 1τ  and 2τ  are time delays in the resistance and restoration, 

respectively. Then the motion equation is specified by 

( ) ( ) ( ) ( )
{ ( ) ( )[ ] }

( ).
exp 2

22

22
1 t

tty
ttytyty ε+

τ−μ−τ−

τ−μ−τ−
β−τ−α−=  (2) 

Let ι be the interval of the time series and 2,1κ  be the integer of 2,1τ  

with .2,1 ι≥τ  Denote ( ) ( ),, ιε=ει= ttyY tt  ( )....,,,
2110 κ−−|=μ YYYYE tt  

When ,1=ι  ( ) ,2 21 −− +−≈ ttt YYYty  ( ) ,11 11 −κ−κ− −≈τ− tt YYty  and 

( ) .22 κ−≈τ− tYty  Let ( )tE ε=ω  and .ω−ε=ε tt  Substituting them into 

equation (2) yields equation (1). 
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This paper focuses on the resistance delays of 01 =κ  and .11 =κ  

Equation (1) can be written as 

[( ) ] α+
ε

+
μ−

μ−
α+

β−
α+

−
α+
α++

α+
ω=

κ−κ−

κ−κ−
−− 1exp11

1
1
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1 221
22

22 t
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YYY  

for 01 =κ  and 

( ) ( )
[( ) ] t
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ttt

Y

Y
YYY ε+
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μ−
β−−α+α−+ω=

κ−κ−

κ−κ−
−− 221

22

22

exp
12  

for .11 =κ  

The above two equations have the following compact form: 
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We show that NLARI has a time trend component and a unit root 
component. Using a similar method to 01 =κ  in [14], we can prove that for 

,11 =κ  

tYt α
ω+=μ 0  

and the expansion of equation (3) 

∑∑
=
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When ,0=β  equation (3) is the linear autoregressive model 

( ) ,1 21110 tttt vYYY +θ−θ++θ= −−  

whose characteristic equation ( ) 01 11
2 =θ−λθ−−λ  has a unit root 11 =λ  

and a root satisfying 12 <λ  for ,2<α  thus, it is a unit root process or 

integrated process in economics. Hence, equation (1) is called the nonlinear 
autoregressive integrated model. A unit root process is nonstationary 
because its standard deviation changes over time. 

Equation (3) has a more compact structure by removing the process mean 

tμ  (equal to a trend if ).0≠ω  Substituting ( )tYt αω+=μ 0  into equation 

(3) yields 

( ) 21110 1 −− θ−θ++θ=μ− tttt YYY  

[( ) ]
tYv

Y

Y
t

tt

tt
α
ω−−+

μ−

μ−
θ+

κ−κ−

κ−κ−
022

22

22

exp
 

( ) ( ) ( )2211111 −−−− μ−θ−μ−θ+= tttt YY  

[( ) ] t
tt

tt v
Y

Y
+

μ−

μ−
θ+

κ−κ−

κ−κ−
22

22

22

exp
 

provided by 

( ) .01 211100 =μθ−μθ++
α
ω−−θ −− tttY  

Letting ,ttt YX μ−=  equation (3) can be rewritten as 

 ( )
( )

.
exp

1 222111
2

2
t

t

t
ttt v

X

X
XXX +θ+θ−θ+=

κ−

κ−
−−  (5) 

In what follows, we discuss the segmented trend NLARI model (5). 

3. Solutions of Deterministic System 

When the standard deviation of disturbance tv  or tε  is small, equation 
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(5) approximates to the following deterministic system: 

 ( )
( )

,
exp

1 222111
2

2

κ−

κ−
−− θ+θ−θ+=

t

t
ttt

x

x
xxx  (6) 

where 
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1
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Next, we give analytical solutions of deterministic system (6). 

Proposition 1. Let 

 
⎪
⎩

⎪
⎨

⎧

<α=κ
α−

β

=κ
α+

β

=γ
.2,124

,024

1

1

if

if
 (7) 

  (i) For any order delay ,2κ  equation (6) has a unique fixed point 

solution 01 =∗
tx  when .0>γ  

 (ii) For any odd-order delay ,2κ  equation (6) has a period-2 cycle 

solution ( ) γ−=∗ ln12
t

tx  and the periodic solution is unique when γ<1  

.e<  

(iii) For any even-order delay ,2κ  equation (6) has no nontrivial period-

2 cycle solution. 

Proof. For ,01 =κ  we easily confirm that 01 =∗
tx  is a fixed point 

solution of equation (6). If there is another fixed point solution 1xxt =  for 

all ,+∈ Zt  then 

( )
( )2

1

1
211111

exp
1

x
xxxx θ+θ−θ+=  

which leads to ( ) .0exp 2
112 =−θ xx  Hence 01 =x  by .0>β  This implies 

that the system has a unique fixed point .01 =∗
tx  
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When 122 −=κ s  for ,+∈ Zs  substituting ( ) γ−=∗ ln12
t

tx  into the 

right-hand side of equation (6) yields 

( )
( )2

12

12
2211

exp
1

+−

+−
−− θ+θ−θ+

st

st
ttt

x
xxx  

( ) ( ) ( )[ ]111 121ln1 θ++θ−θ+−γ−= t  

( ) ,ln1 γ−= t  

where the second line is given from ( ).12 12 θ+γ−=θ  Therefore, =∗
tx2  

( ) γ− ln1 t  is a period-2 cycle solution for equation (6) when .1>γ  If there 

is another nontrivial period-2 cycle solution, then 122 xxxx sttt === −−  

and .121211 xxxxx sttt ≠=== +−−+  Note that 01 >θ  for 01 =κ  and 

11 −>θ  for .11 =κ  Using equation (6) leads to ( )2
2221 exp2 xxxx −γ−=  

and ( )2
1112 exp2 xxxx −γ−=  provided by ( ) .012 12 ≠θ+γ−=θ  The two 

equations imply that 

( ) .2
2

2
12

1
2
1 21 γ=+

−
γ−

x
exx ee  

Set .2
1xy =  Consider the function of ( )y,γ  on 2R  as 

( ) ( ) .2,
221 γ−+=γ

−γ− yeyy eeyF  

The partial derivatives 

( ) ( ) ( ) ( )yyyeyy
y yeeeeeyF

y −−−γ− γ+γ−γ−+=γ
−

42121,
221  

are continuous in the region of its definition. If 

( ) ( ) ,02,
221 =γ−+=γ

−γ− yeyy eeyF  

then 

( ) ( ) ( ) ( )yyyyy
y yeeeeeyF −−− γ+γ−γ−−γ+=γ 421212,  

 ( ) ( ).422 22 yeeee yyyy γ+γ−γ−−= −  
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Let us now introduce the function 

( ) ( ) .212 y
eyh

y

−
=  

We have 

( )
( )

ye
y
yyh 2212

23
−

−=  

( ) ( )
.

21212 2y
e

y
e yy

−
+

−
=  

Letting ( ) ,00 =yh  we have .230 =y  Then 
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.0421
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e
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It follows that 

( ) ( ) .42
3

212 max γ<−=⎟
⎠
⎞⎜

⎝
⎛=≤

−
eehyhy

e y
 

For ,21<γ  we have 

042 <γ+γ− yey  

which leads to ( ) .0, >γ yFy  Note that γ= lny  is a solution of ( ) .0, =γ yF  

According to the implicit function theorem, there exist open neighborhoods 

( )eA ,10 ⊂  of 0γ  and ( )21,00 ⊂B  of 0y  such that, for all ,0By ∈  the 

equation ( ) 0, =γ yF  has a unique solution .ln 0By ∈γ=  Since ,2
1xy =  

thus, ( ) γ−= ln11
tx  is the unique period-2 cycle solution for equation (6) 

when ( ).,1 e∈γ  

When ,22 s=κ  if equation (6) has a nontrivial period-2 cycle solution, 

then 

( )
,

exp
2 2

2

2
21

x
xxx γ+=  
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( )
,

exp
2 2

1

1
12

x
xxx γ+=  

which result in 

 
( ) ( )

0
expexp 2

2

2
2
1

1 =+
x

x
x

x
 (8) 

for .0>γ  If ,01 =x  then equation (8) implies that 02 =x  so that 21 xx =  

,0=  which is inconsistent with the assumption of another nontrivial period-2 

cycle solution. Therefore, .01 ≠x  Substituting ( )2
1112 exp2 xxxx −γ+=  into 

the numerator 2x  of the second term of equation (8) yields 

( ) ( ) 02expexp 2
2

2
1 <γ−=+ xx  

because 01 ≠x  and .0>γ  This implies that the assumption of the existence 

of a nontrivial period-2 cycle solution is not true for an even number .2κ  

Similarly, we can verify that the result holds for .11 =κ  ~ 

Using Proposition 1 immediately leads to the following proposition. 

Proposition 2. The deterministic system of NLARI (3) has a unique trend 

solution ( )tYy t αω+=∗
01  for any order delay 2κ  and a solution =∗

ty2  

( ) ( ) γ−+αω+ ln10
ttY  for any odd-order delay 2κ  and ( ),,1 e∈γ  but 

no nontrivial period-2 cycle solution for any even-order delay 2κ  after 

detrending ( ) ,0 tY αω+  where γ is defined in (7). 

4. Dynamic Analysis 

We turn now to the stability of two solutions of equation (6). Note that 
( )γθ−−=θ 12 12  for γ defined in (7). Let 

( ) ( ) ( )
( )

.
exp

121 2121111
2

2

κ−

κ−
−−− γθ+−θ−θ+=ϕ

t

t
ttt

X

X
XXZ  
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Denote 

( )
( )

.,
1

1
1

1
⎟
⎠

⎞
⎜
⎝

⎛ϕ=Φ⎟
⎠

⎞
⎜
⎝

⎛=
−

−
−

− t

t
t

t

t
t X

Z
Z

X
X

Z  

Then equation (5) can be written as 

 ( ) ,1 ttt uZZ +Φ= −  (9) 

where 

( )

( )⎪
⎩

⎪
⎨

⎧

⎪
⎩

⎪
⎨

⎧

⎪⎩

⎪
⎨

⎧

=κ′ε

=κ′ε
α+=

α−
β
α+

β

=γ
α−

α+=θ

.1if0,

,0if0,1
1

,24

,24

,1

,1
1

1

1
1

t

t
tu  

The deterministic system of equation (9) is given as 

 ( ),1−Φ= tt zz  (10) 

where ( ) ., 1
′= −ttt xxz  

Proposition 3. For equation (10) with 12 =κ  and γ defined in (7), the 

following results hold: 

  (i) A unique null-fixed point undergoes a transition from stable state 
when 10 <γ<  to unstable state when .1>γ  

 (ii) A branch of additional period-2 cycle ( ) γ− ln1 t  emerges when 

1>γ  and the period-2 cycle is unique and stable when .1 e<γ<  

(iii) The period-2 cycle loses stability when .e>γ  

Proof. Consider ( )′= −1, ttt xxz  as a disturbance to the solution =∗
jtz  

( ( ) ) ( )2,1, 1 =′∗
−

∗ jxx tjjt  for the deterministic system (10) and initiated at a 

small disturbance ( ) ., 100
′= −xxz  We have the approximate expression =tz  

1−tj zJ  for small disturbances where the Jacobian matrix 
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( ) ( )
( )

( ( ))
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
θ−

−

−−
γθ+−θ+

= ∗

∗

01
1exp

121
121 12

2

11
tx

tx
J j

j

j  

for .2,1=j  The characteristic equations are given by 

 ( ) ( ) 0211 11
2 =θ+λγ−θ+−λ  (11) 

for 01 =∗
tx  and 

 ( ) ( ) 01ln41 11
2 =θ+λ−γθ+−λ  (12) 

for ( ) .ln12 γ−=∗ t
tx  Due to ,11 <θ  we can prove that the eigenvalues 

( )2,11 =λ jj  of equation (11) satisfy 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>γ−<λ<λ

=γ−=λ<λ

<γ<λ<λ

1if1,1

1if1,1

1if1,1

1211

1211

1211

 (13) 

for 01 =∗
tx  (for the proof, see Appendix A) and that the eigenvalues j2λ  

( )2,1=j  of equation (12) satisfy 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>γ<λ>λ

=γ<λ=λ

<γ<λ<λ

e

e

e

if1,1

if1,1

if1,1

1221

2221

2221

 (14) 

for ( ) γ−=∗ ln12
t

tx  (for the proof, see Appendix B). 

Without losing generality, we let tz  represent the eigenvector of .jJ  

Then 11 −− λ== tijtjt zzJz  which results in 

t
ij

t
t

t
tt

z
z

z
z

z
z

z
z

λ==
−

−

− 0
1

2
1

10
 

for .2,1, =ji  Therefore, the Lyapunov exponent is given by 
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ij
t

ij z
z

tLE λ=⎟
⎠
⎞

⎜
⎝
⎛= lnln1

0
 

for .2,1, =ji  Using equations (13) and (14) yields 

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎪
⎪
⎩

⎪⎪
⎨

⎧

>γ>

=γ=

<γ<

>γ<

=γ<

<γ<

1if0

1if0

1if0

,1if0

,1if0

,1if0

1211 LELE  

for 01 =∗
tx  and 

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎪
⎪
⎩

⎪⎪
⎨

⎧

>γ<

=γ<

<γ<

>γ>

=γ=

<γ<

e

e

e

LE

e

e

e

LE

if0

if0

if0

,if0

,if0

,if0

2221  

for ( ) .ln12 γ−=∗ t
tx  Hence, the deterministic system (10) or (6) gives rise 

to a stable fixed point when ,10 <γ<  an unstable fixed point when  ,1>γ  

a unique stable period-2 cycle when ,1 e<γ<  and an unstable period-2 

cycle when e>γ  [23]. We have thus proved Proposition 3. ~ 

Proposition 4. For equation (6) with ( ) ( ),2,0, 21 =κκ  the unique fixed 

point 0=∗
tx  undergoes a transition from a stable state when 10 <γ<  to 

an unstable state when 1>γ  where .αβ=γ  

Proof. Let tz  be a disturbance to the solution ( ) .0,0 ′=∗z  For small 

disturbances initiated at ( ) ,, 100
′= −xxz  we have the expression 1−= tt Jzz  

with the Jacobian matrix J at the origin 

⎥
⎦

⎤
⎢
⎣

⎡ θ+θ−θ+
=

01

1 211J  

whose characteristic equation is given by 

 ( ) .01 211
2 =θ−θ+λθ+−λ  (15) 
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We can prove that the eigenvalues j1λ  of equation (15) satisfy 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

α>β>λ

α=β=λ

α<β<λ

if1

if1

if1

1

1

1

j

j

j

 (16) 

for 2,1=j  (for the proof, see Appendix C). Similar to the proof of 

Proposition 3, we can obtain that 

⎪
⎩

⎪
⎨

⎧

α>β>

α=β=

α<β<

=

if0

if0

if0

21 LELE  

for .0=∗
tx  Therefore, the deterministic system (10) or (6) gives rise to a 

stable fixed point for α<β  and an unstable fixed point if ,α>β  which 

completes the proof. ~ 

Proposition 5. For equation (6) with ( ) ( ),2,1, 21 =κκ  

(I) If ,42α>β  then we have the following: 

  (i) The unique fixed point 0=∗
tx  is stable when .10 <γ<  

 (ii) The unique fixed point 0=∗
tx  loses stability when ,1>γ  where 

.αβ=γ  

(II) If ,42α≤β  then we have the following: 

  (i) When ,2<α  the unique fixed point 0=∗
tx  is stable. 

 (ii) When ,4>α  the unique fixed point 0=∗
tx  is unstable. 

(iii) When ,42 <α<  the unique fixed point 0=∗
tx  undergoes a 

transition from an unstable state when 10 <γ<  to a stable state when 

,1>γ  where ( ).42 −αβ=γ  
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Proof. Let tz  be a disturbance to the solution ( ).0,0=∗z  For small 

disturbances initiated at ( ) ,, 100
′= −xxz  we have the approximate expression 

1−= tt Jzz  with the Jacobian matrix J at the origin 

⎥
⎦

⎤
⎢
⎣

⎡ −β−αα−
=

01

12
J  

and the characteristic equation 

 ( ) ( ) .0122 =−β−α−λα−−λ  (17) 

When ,42α>β  we can prove that the eigenvalues of equation (17) 

satisfy 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>γ>λ

=γ=λ

<γ<λ

,1if1

,1if1

,1if1

1

1

1

j

j

j

 (18) 

where ;αβ=γ  when ,42α≤β  the eigenvalues of equation (17) satisfy 

 11 <λ j  (19) 

for ,20 <α<  

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>γ−<λ<λ

=γ−=λ<λ

<γ<λ<λ

1if1,1

1if1,1

1if1,1

1211

1211

1211

 (20) 

for ,42 <α<  and 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>γ−<λ<λ

=γ−<λ−=λ

<γ−<λ−<λ

1if1,1

1if1,1

1if1,1

1211

1211

1211

 (21) 

for ,4>α  where ( )42 −αβ=γ  (for the proofs of (18) to (21), see 

Appendix D). 
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Set 111 ln λ=LE  and .ln 122 λ=LE  Using equation (18) yields 

 
⎪
⎩

⎪
⎨

⎧

>γ>

=γ=

<γ<

=

.1if0

,1if0

,1if0

21 LELE  (22) 

From equations (19)-(21), we have the following results: 

 021 <= LELE  (23) 

for ,20 <α<  

 
⎪
⎩

⎪
⎨

⎧

⎪
⎩

⎪
⎨

⎧

>γ>

=γ=

<γ<

>γ<

=γ<

<γ<

1if0

1if0

1if0

,1if0

,1if0

,1if0

21 LELE  (24) 

for ,42 <α<  and 

 
⎪
⎩

⎪
⎨

⎧

⎪
⎩

⎪
⎨

⎧

>γ>

=γ>

<γ>

>γ<

=γ=

<γ>

1if0

1if0

1if0

,1if0

,1if0

,1if0

21 LELE  (25) 

for .4>α  Proposition 5 immediately follows from equations (22)-(25). ~ 

Propositions 3 to 5 show that the parameter γ controls the bifurcation and 
stability of NLARI’s deterministic system. We give the following: 

Definition 1. The control parameter 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

α≤β>α=κκ
−α
β

α>β=κκ
α
β

<α=κκ
α−

β

=κκ
α
β

=κκ
α+

β

=γ

4,2,2,1,if42

4,2,1,if

2,1,1,if24

2,0,if

1,0,if24

2
21

2
21

21

21

21

 (26) 

is called the relative restoring coefficient. 
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5. Simulation Study 

Simulations are carried out to confirm whether the relative restoring 
coefficient ( )γ  controls the dynamics and stability of NLARI’s deterministic 

system (6) and to compare deterministic and stochastic dynamics near the     
γ critical values. Equation (5) with 0=σ  plots the trajectories of 
deterministic dynamics over time, while the corresponding stochastic 
dynamics are stochastic realizations of equation (5) with .2.0=σ  In each 
case, ,01 =κ  ,12 =κ  ,37=α  the initial values are 1.01 −=−X  and 

.15.00 =X  

5.1. A fixed point gains stability 

Figure 1(a) shows that after disturbed by the non-null initial values, the 
deterministic dynamics at the critical value 0=γ  converges to a non-null 

constant, while all the deterministic dynamics near the critical value 01.0=γ  

to 0.1 revert to zero. From Figure 1(b), we see that the corresponding 
stochastic dynamics are differentiated into two completely different types: 
deviation far from the null mean for 05.0≤γ  and fluctuations around the null 

mean for .05.0>γ  Consequently, simulation study confirms the theoretical 

result that NLARI’s deterministic system represents an unstable fixed point 
corresponding to a nonstationary unit root process in stochastic systems 
when ,0=γ  but the fixed point gains stability when .0>γ  
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Figure 1. NLARI’s deterministic ( )0=σ  and stochastic dynamics ( )2.0=σ  

near the critical value .0=γ  NLARI is a nonstationary unit root process 

when 0=γ  and a unique fixed point of NLARI’s deterministic system gains 

stability when ,0>γ  where σ is the standard deviation of disturbances and γ 

is the relative restoring coefficient. 
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5.2. A branch of period cycle from a fixed point 

 

Figure 2. NLARI’s deterministic ( )0=σ  and stochastic dynamics ( )2.0=σ  

near the bifurcation .1=γ  A unique fixed point of NLARI’s deterministic 

system loses stability and a branch of an additional unique stable period-2 

cycle ( ) γ− ln1 t  emerges when ,1>γ  where σ is the standard deviation of 

disturbances and γ is the relative restoring coefficient. 

Figure 2(a) indicates that NLARI’s deterministic dynamics near the 
critical bifurcation value 1.01 −=γ  converges to zero, but exhibits periodic 

oscillations at the critical bifurcation value 1=γ  and a regular period-2 

cycle with 31.0±  amplitudes near the critical bifurcation value .1.01 +=γ  
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Note that ( ) .31.01.1ln1 ±≈− t  In contrast, Figure 2(b) shows that the 

corresponding stochastic system produces sudden erratic bursts at and near 
the critical bifurcation value .1.01±=γ  These results confirm the theoretical 

result that a unique period-2 cycle ( ) γ− ln1 t  bifurcates from a unique stable 

fixed point when .1>γ  

5.3. Period-2 cycle loses stability 

 

Figure 3. NLARI’s deterministic ( )0=σ  and stochastic dynamics ( )2.0=σ  

near the critical value .e=γ  A unique period-2 cycle ( ) γ− ln1 t  of 

NLARI’s deterministic system loses stability when ,e>γ  where σ is the 

standard deviation of disturbances and γ is the relative restoring coefficient. 
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From Figure 3(a), we see that NLARI’s deterministic dynamics is a 

regular period-2 cycle with amplitudes ,71.065.1ln ±≈±  ≈± 45.1ln  

61.0±  at and near the bifurcation value ( ),65.1 e≈=γ  ,2.065.1 −  

respectively, and irregular oscillations when .2.065.1 +=γ  However, 

Figure 3(b) displays that the corresponding stochastic system exhibits larger 
irregular fluctuations than the deterministic dynamics at and near the critical 
bifurcation value .2.065.1 ±=γ  These results are consistent with the 

theoretical result that a unique stable period-2 cycle ( ) γ− ln1 t  loses stability 

when .e>γ  

5.4. Unit root dynamics to unstable period-2 cycle 

In Figure 4(a), we observe that NLARI’s deterministic dynamics reverts 
to zero inside the stable fixed point range ( )1,05.0,01.0 ∈=γ  but deviates 

from zero at the critical value 0=γ  after being disturbed, and moreover, the 

deterministic system exhibits a regular period-2 cycle with amplitudes 

64.05.1ln ±≈±  inside the stable period cycle range ( )e,15.1 ∈=γ  and 

irregular oscillations inside the unstable period cycle range ∈=γ 25.2  

( )., ∞+e  Figure 4(b) shows that the corresponding stochastic dynamics   

has an obviously larger amplitude when 01.0,0=γ  than those when  =γ  

5.1,5.0  in which the dynamics for 0=γ  as a unit root process is strikingly 

similar to noise-disturbed unstable period-2 cycle for .25.2=γ  
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Figure 4. NLARI’s deterministic ( )0=σ  and stochastic dynamics ( ).2.0=σ  

NLARI can capture a unit root process when ,0=γ  a stable fixed point 

when ( ),5.010 =γ<γ<  a stable period-2 cycle when ( ),5.11 =γ<γ< e  

and an unstable period-2 cycle when ( ).25.2=γ>γ e  The noise-disturbed 

unstable period-2 cycle displays very similar dynamics to a unit root process. 
The parameter σ is the standard deviation of disturbances and γ is the relative 
restoring coefficient. 
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6. Conclusion and Discussions 

In this paper, we have demonstrated that the relative restoring coefficient 
( )γ  controls dynamic patterns and stability of NLARI for lower order delays. 

When ,0=γ  NLARI is a nonstationary unit root process in economics. For 

the segmented trend NLARI’s deterministic system with 01 =κ  or 1 and 

,12 =κ  a unique fixed point undergoes a transition from stable to unstable 

dynamics and a branch of an additional unique stable period-2 cycle 

( ) γ− ln1 t  emerges when ,1>γ  but the period cycle loses stability when 

.e>γ  Simulation results confirm these theological results and show noise-

disturbed deterministic dynamics near the critical values. 

There is no universally accepted mathematical definition of chaos. In 
economics, the behavior of dynamic systems that are highly sensitive to 
initial conditions and exhibit irregular oscillations is often regarded as 
chaotic dynamics. In this sense, we say that NLARI’s deterministic system 

possibly exhibits chaos when .e>γ  

It is difficult to derive a control parameter of NLARI in a higher order 
delay because this problem refers to solving a high order polynomial 
characteristic equation. In a separated paper, simulation study shows that a 
higher delay not only affects NLARI’s dynamic patterns and stability, but 
also induces a long memory or long-range dependence. The long-range 
dependence is associated with fractals which appear in many complex 
adaptive systems such as heart rate variability. 
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Appendix A 

Proof of equation (13). The characteristic roots of equation (11) are 
given by 

( ) ( ) ( ) ( )
2

4211211 1
22

11
1

θ−γ−θ+±γ−θ+=λ j  for .2,1=j  (A1) 

Recall that 

 
⎪⎩

⎪
⎨
⎧

<α=κα−

=κ
α+=θ

.2,1for1

,0for1
1

1

1
1  (A2) 

Denote ( ) ( ) .4211 1
22

1 θ−γ−θ+=Δ  From (A2), we see that 

 .11 <θ  (A3) 

(i) 11 <λ j  for 1<γ  and 2<α  if :11 =κ  

For ,0<Δ  we have 

[( ) ( ) ( ) ( ) ] 11
22

1
22

1
2
1 42112114

1 θ=θ+γ−θ+−γ−θ+=λ j  

which leads to 11 <λ j  by (A3). 

For ,0≥Δ  if we can prove that 

 ( ) ( ) ( ) ( ),21124211 11
22

1 γ−θ+±<θ−γ−θ+±  (A4) 

then 11 <λ j  holds. When 10 <γ<  and 2<α  for ,11 =κ  we have 

( ) ( )γ−θ+±<θ− 211444 11  

which leads to 

( ) ( ) ( ) ( ) ( ) ( )22
111

22
1 211211444211 γ−θ++γ−θ+±<θ−γ−θ+  (A5) 
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and 

 ( ) ( ) 012112 11 >θ−>γ−θ+±  (A6) 

provided by (A2). Because ,0≥Δ  (A5) and (A6), we get (A4) and thus 

.11 <λ j  

(ii) ( )1,1111 −∈θ−=λ  and 112 −=λ  if :1=γ  

According to (A1), we have 

( ) ( ) ( ) ( )
2

11
2

411 111
2

11
1

θ−±θ+−=θ−θ+±θ+−=λ j  

which leads to ( )1,1111 −∈θ−=λ  due to (A3) and .112 −=λ  

(iii) 111 <λ  and 112 −<λ  if :1>γ  

Note that 121 −<γ−  for .1>γ  Then we can write 

( ) ( ) ( ) ( ) 01414211 2
11

2
11

22
1 >θ−=θ−θ+>θ−γ−θ+=Δ  

by (A2). Because 

( ) ( ) ( ) ( ) ( ) ( )γ−θ+−γ−θ++<θ−γ−θ+ 211421144211 1
22

11
22

1  (A7) 

provided by 01 1 >θ+  and ,0>γ  thus, 

 ( ) ( ) ( ) ( )γ−θ+−<θ−γ−θ+± 21124211 11
22

1  (A8) 

due to ( ) ( ).2112 1 γ−θ+>  Accordingly, .111 <λ  Note that 

( ) ( ) ( ) ( )[ ]211
22

1 21124211 γ−θ++>θ−γ−θ+  

provided by .1>γ  Then 

 ( ) ( ) ( ) ( )[ ],21124211 11
22

1 γ−θ++±>θ−γ−θ+  (A9) 

from which 111 −>λ  holds. It follows that .111 <λ  Using (A9) yields 

.112 −<λ  We have obtained the result (13). ~ 
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Appendix B 

Proof of equation (14). The characteristic roots of equation (12) are 
given by 

 
( ) ( ) ( ) ( )

2
41ln411ln41 1

22
11

2
θ−−γθ+±−γθ+=λ j  (B1) 

for .2,1=j  Denote ( ) ( ) .41ln41 1
22

1 θ−−γθ+=Δ  

(i) 12 <λ j  if :1 e<γ<  

Due to ,1 e<γ<  we have 

 11ln41 <−γ<−  (B2) 

which produces ( ) ( ) .211ln41 11 <θ+<−γθ+±  

If ,0<Δ  then we have 

[( ) ( ) ( ) ( ) ] 11
22

1
22

1
2
2 41ln411ln414

1 θ=θ+−γθ+−−γθ+=λ j  

from which 12 <λ j  holds due to (A3). 

If ,0≥Δ  then we wish to prove that 

 ( ) ( ) ( ) ( )1ln41241ln41 11
22

1 −γθ+±<θ−−γθ+  (B3) 

from which 12 <λ j  holds. Using (B2) yields 

 ( ) ( ) .01ln412 1 >−γθ+±  (B4) 

From (B2), we have 

( ) ( ).1ln411 11 −γθ+±<θ−  

Then 

( ) ( ) 1
22

1 41ln41 θ−−γθ+  

( ) ( ) ( ) ( )22
11 1ln411ln4144 −γθ++−γθ+±<  

which leads to (B3) provided by (B4). 
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(ii) 121 =λ  and ( )1,1122 −∈θ=λ  if :e=γ  

Substituting e=γ  into (B1) produces that 121 =λ  and 122 θ=λ  

implying that ( )1,122 −∈λ  due to (B3). 

(iii) 121 >λ  and 122 <λ  if :e>γ  

When ,e>γ  we have 11ln4 >−γ  and then 

( ) ( ) ( ) ( )21
2

11
22

1 14141ln41 1θ−=θ−θ+>θ−−γθ+=Δ  

which implies that .0>Δ  Note that 

( ) ( )[ ] 01ln411 1 <−γ−θ+  

because .11ln4 >−γ  Therefore, 

( ) ( ) ( ) ( )[ ]211
22

1 1ln41241ln41 −γθ+−>θ−−γθ+  

resulting in 

 ( ) ( ) ( ) ( )[ ]1ln41241ln41 11
22

1 −γθ+−±>θ−−γθ+  (B5) 

from which 121 >λ  holds. According to (B5), we have 

( ) ( ) ( ) ( )1ln41241ln41 11
22

1 −γθ+−<θ−−γθ+−  

and hence .122 <λ  Since 0>α  and ,e>γ  thus, 

( ) ( )1ln41444 11 −γθ++<θ−  

and then 

( ) ( ) 1
22

1 41ln41 θ−−γθ+  

( ) ( ) ( ) ( ) .1ln411ln4144 22
11 −γθ++−γθ++<  

Note that ( ) ( ) .01ln412 1 >−γθ++  Hence we have 

( ) ( ) ( ) ( )1ln41241ln41 11
22

1 −γθ++<θ−−γθ+  



Zonglu He 30 

or 

 ( ) ( ) ( ) ( )[ ].1ln41241ln41 11
22

1 −γθ++−>θ−−γθ+−  (B6) 

Using (B6) yields .122 −>λ  It follows that .122 <λ  Consequently, 

we have obtained the result (14). ~ 

Appendix C 

Proof of equation (16). The characteristic roots of equation (15) are 
given by 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

α+
β+−⎟

⎠
⎞⎜

⎝
⎛

α+
+±

α+
+=λ 1

141
111

112
1 2

1 j  (C1) 

for .2,1=j  Denote 

.1
141

11
2

α+
β+−⎟

⎠
⎞⎜

⎝
⎛

α+
+=Δ  

(i) For ( ),14
1 2 α+α≤β  we have 

 α<β  (C2) 

and 

( ) α+
+

α+
α≤

α+
β+

1
4

11
14 2

2
 

which implies that 

( )
.01

4
11

11 2

22
=⎥

⎦

⎤
⎢
⎣

⎡
α+

+
α+

α−⎟
⎠
⎞⎜

⎝
⎛

α+
+≥Δ  

Note that 

( ) ( ) ( ) 22 1142 α<β+α+−α+  
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due to .0>β  Then we can write 

⎟
⎠
⎞⎜

⎝
⎛

α+
+−=

α+
α<

α+
β+−⎟

⎠
⎞⎜

⎝
⎛

α+
+± 1

11211
141

11
2

 

which leads to .11 <λ j  Obviously, 

α+
+<

α+
β+−⎟

⎠
⎞⎜

⎝
⎛

α+
+± 1

111
141

11
2

 

from which 01 >λ j  holds. It follows that .10 1 <λ< j  

(ii) For ( ),14
1 2 α+α>β  we have 0<Δ  and hence 

.1
12

1 α+
β+=λ j  

Therefore, 11 <λ j  if .α<β  Combining with (C2) yields 

⎪
⎪
⎩

⎪⎪
⎨

⎧

α>β>λ

α=β=λ

α<β<λ

if1

if1

if1

1

1

1

j

j

j

 

which immediately leads to the result (16). ~ 

Appendix D 

Proofs of equations (18)-(21). The characteristic roots of equation (17) 
are given as 

( ( ) ( ) )14222
1 2

1 −β−α+α−±α−=λ j  for .2,1=j  

Denote ( ) ( ).142 2 −β−α+α−=Δ  Since 

( ) ( ) ,4142 22 β−α=−β−α+α−  
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thus, 

 ( )β−α±α−=λ 422
1 2

1 j  for .2,1=j  (D1) 

(i) For ,0<Δ  i.e., ,42α>β  we have 

[( ) ( )] .1424
1 222

1 β+α−=α−β+α−=λ j  

Since ,242 −α>α>β  thus, .11 −>β+α−  Note that 11 <β+α−  for 

.α<β  Then 11 <λ j  if .α<β  It is easy to see that 11 =λ j  if α=β  

and 11 >λ j  if .α>β  Define .αβ=γ  We immediately obtain the result 

(18). 

(ii) For ,0≥Δ  i.e., ,42α≤β  we can show that for ,4<α  

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−α<β−<λ<λ

−α=β−=λα−=λ

−α>β<λ<λ

42if1,1

42if1,3

42if1,1

1211

1211

1211

 (D2) 

which implies that ( )2,111 =<λ jj  for 20 <α<  and 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−α<β−<λ<λ

−α=β−=λ<λ

−α>β<λ<λ

42if1,1

42if1,1

42if1,1

1211

1211

1211

 (D3) 

for .42 <α<  For ,4>α  we can show that 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−α<β−<λ<λ

−α=β−<α−=λ−=λ

−α>β−<λ−<λ

.42if1,1

42if13,1

42if1,1

1211

1211

1211

 (D4) 

Define ( )42 −αβ=γ  for .2>α  We have proved the results (19) to 

(21). 

Consequently, we have obtained the results (18) to (21). ~ 


