Universal Journal of Mathematics and Mathematical Sciences
Volume 4, Number 1, 2013, Pages 173-188
Proceedings of International Conference: Mathematical Science and Applications,
December 26-30, 2012, Abu Dhabi, UAE
Published Online: June 2013
Available online at http://pphmj.com/journals/ujmms.htm
Published by Pushpa Publishing House, Allahabad, INDIA

MINIMIZATION OVER FIXED POINTS SETS

Khadra Nachi
University of Oran
Laboratory of Mathematics and Its Applications
BP 1524, El M’naoeur
Algeria
e-mail: nachikhadra@yahoo.fr

Abstract

In this paper, we consider a variational inequality problem $\mathrm{VI}(F, F i x T)$, where F, T are mappings from a real Hilbert space into itself and Fix T is the fixed points set of a demicontractive mapping T. We propose an iterative algorithm given as: $$
x_{n+1}:=(1-\omega) v_{n}+\omega T v_{n}, \quad v_{n}:=x_{n}-\alpha_{n} F\left(x_{n}\right),
$$ to find approximate solutions. Under some assumptions on F, T, ω and $\left(\alpha_{n}\right)$, we establish the strong convergence of the sequence $\left(x_{n}\right)$ generated by this schema to the solution of $\operatorname{VI}(F, \operatorname{Fix} T)$. An application to convex minimization is provided.

1. Introduction

In this paper, we are interested in the following variational inequality © 2013 Pushpa Publishing House
2010 Mathematics Subject Classification: 90C25, 49M45, 65C25.
Keywords and phrases: demicontractive mapping, quasi-nonexpansive mapping, fixed point, variational inequality, descent method.

Communicated by Haydar Akca
Received May 29, 2013
problem denoted $\mathrm{VI}(F$, Fix $T)$:

$$
\begin{equation*}
\text { find } x^{*} \in \operatorname{Fix} T \text { such that }\left\langle v-x^{*}, F\left(x^{*}\right)\right\rangle \geq 0 \quad \forall v \in \operatorname{Fix} T \tag{1}
\end{equation*}
$$

where $F: H \rightarrow H$ is a self-mapping on a real Hilbert space H endowed with an inner product $\langle\cdot, \cdot\rangle$ and its induced norm $\|\cdot\|, T: H \rightarrow H$ is a selfmapping on H with a nonempty, closed and convex fixed points set denoted by Fix $T:=\{x \in H: T x=x\}$. Variational inequality problems were introduced first by Hartman and Stampacchia [1] with the goal of computing stationary points for nonlinear programs or finding the best approximation to the initial data. They provide a broad unifying setting for the study of optimization, fixed points problems and equilibrium problems and they have important applications in economics, engineering, operations research, etc.

Numerous algorithms have been proposed to solve variational inequality problems. These algorithms are based on different techniques and they proved strong convergence theorems to the solution, see [2, 7, 8, 13, 12]. In particular, for solving $\operatorname{VI}(\nabla f, \operatorname{Fix} T)$, one can apply the extragradient method using the metric projection since a point $x^{*} \in \operatorname{Fix} T$ is a solution of (1) if and only if it is a fixed point of the mapping $P_{\text {Fix } T}(I-\alpha F)$, where $\alpha>0, I$ is the identity mapping and $P_{\operatorname{Fix} T}$ is the metric projection of H onto Fix T. Other algorithms have been developed as the hybrid steepest descent method (see [9-11]), that is, to construct iterations by the scheme:

$$
v_{n+1}=T\left(v_{n}\right)-\alpha_{n+1} \nabla f\left(T\left(v_{n}\right)\right) .
$$

Recently, some authors have considered new iterative algorithms to approximate the set of fixed points of a nonexpansive (resp. quasinonexpansive, resp. demicontractive) mapping and the set of solutions of the variational inequality. Their results extend and improve many results in the literature. For details, see [5, 6, 4, 3] and the references therein.

Motivated by the recent works, in this paper, we introduce a new hybrid iterative algorithm for solving (1) and we prove a strong convergence
theorem. Such a work is inspired by a remark given in the article of Maingé [6]. Maingé has considered the problem of minimizing $f: H \rightarrow \mathbb{R}$, a convex function over Fix T, that is,

$$
\begin{equation*}
\text { find } x^{*} \in \operatorname{Fix} T \text { such that } f\left(x^{*}\right)=\inf _{x \in \operatorname{Fix} T} f(x) \tag{2}
\end{equation*}
$$

and he has proposed an alternative method which is defined by: given $x_{0} \in H$ and for any $n \in \mathbb{N}$,

$$
\left\{\begin{array}{l}
x_{n+1}:=(1-\omega) v_{n}+\omega T v_{n}, \tag{3}\\
v_{n}:=x_{n}-\alpha_{n} \nabla f\left(x_{n}\right)
\end{array}\right.
$$

Under appropriate assumptions on $f, \omega,\left(\alpha_{n}\right)$ and T, Maingé has given a strong convergence theorem of the sequence $\left(x_{n}\right)$ generated by (3) to the solution x^{*} of problem (2) which is characterized by

$$
\left\langle v-x^{*}, \nabla f\left(x^{*}\right)\right\rangle \geq 0 \quad \forall v \in \operatorname{Fix} T
$$

Our paper is concerned by solving the general variational inequality problem (1) with a demi-closed and demicontractive mapping T, using an analogous approach to that in [6]. For this aim, the study is devoted to the asymptotic convergence of the sequence (x_{n}) generated by the following iteration:

$$
\begin{equation*}
x_{n+1}:=(1-\omega) v_{n}+\omega T v_{n}, \quad v_{n}:=x_{n}-\alpha_{n} F\left(x_{n}\right) \quad \forall n \in \mathbb{N}, \tag{4}
\end{equation*}
$$

where x_{0} is an initial guess in $H,\left(\alpha_{n}\right) \subset(0,1)$ and $\omega \in(0,1)$.
Recall that T is said to be demicontractive if there exists some constant $k \in(0,1)$ such that

$$
\|q-T x\|^{2} \leq\|q-x\|^{2}+k\|x-T x\|^{2} \quad \forall x \in H, \quad \forall q \in \operatorname{Fix} T,
$$

or equivalently (see [8]),

$$
\langle x-T x, x-q\rangle \geq \frac{1-k}{2}\|x-T x\|^{2} \quad \forall x \in H, \quad \forall q \in \operatorname{Fix} T .
$$

Note that the class of demicontractive maps has been introduced independently by Hicks and Kubicek [2] and Maruster [7]. This class strictly includes the class of strictly pseudocontractive maps which are the maps $T: H \rightarrow H$ such that there exists $k \in(0,1)$ so that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2} \quad \forall x, y \in H
$$

And, consequently, it includes the important class of quasi-nonexpansive maps, that is

$$
\|q-T x\| \leq\|q-x\| \quad \forall x \in H, \quad \forall q \in \operatorname{Fix} T
$$

Furthermore, it is clear that the class of quasi-nonexpansive maps contains largely the class of nonexpansive maps which are demi-closed. Namely, a map $T: H \rightarrow H$ is said to be demi-closed if its $\operatorname{graph} \operatorname{Gr}(T)$ is sequentially closed in the product of the weak topology on H with the norm topology on H, that is, for any sequence $\left(x_{n}\right) \subset H$, we have:

$$
\begin{equation*}
x_{n} \rightharpoonup x \text { and } T\left(x_{n}\right) \rightarrow y \Rightarrow y=T(x) \tag{DC}
\end{equation*}
$$

We recall that $F: H \rightarrow H$ is a bounded (resp. Lipschitz-continuous, resp. strongly monotone) operator if for some $m \geq 0$ (resp. $L \geq 0$, resp. $\mu>0$), one has

$$
\begin{align*}
& \|F(x)\| \leq m \quad \forall x \in H \tag{B}\\
& \text { (resp. }\|F(x)-F(y)\| \leq L\|x-y\| \quad \forall x, y \in H) \tag{LC}\\
& \left(\operatorname{resp} .\langle F(x)-F(y), x-y\rangle \geq \mu\|x-y\|^{2} \quad \forall x, y \in H\right) \tag{SM}
\end{align*}
$$

2. Some Technical Lemmas

In this section, we give some useful lemmas. Let us first note that algorithm (1) can be written as:

$$
v_{n+1}=T_{\omega}\left(v_{n}\right)-\alpha_{n} F\left(T_{\omega}\left(v_{n}\right)\right)
$$

with $T_{\omega}:=(1-\omega) I+\omega T$ and I is the identity mapping on H. As throughout
this work, the mapping T is k-demicontractive with Fix $T \neq \varnothing$, one can check easily that T_{ω} is quasi-nonexpansive for any $\omega \in(0,1-k]$. So, in this case, Fix T is a closed convex subset of H as the fixed points set of a quasi-nonexpansive mapping, that is, $\operatorname{Fix} T=\operatorname{Fix} T_{\omega}$ (see [10]).

Lemma 1. Let $T: H \rightarrow H$ be a k-demicontractive mapping on H. Assume furthermore that properties (B), (LC) are satisfied, the sequence $\left(\alpha_{n}\right)$ is non-increasing with $\alpha_{n} \in\left(0, \frac{1}{2 L}\right)$ (where $L \neq 0$) and that $\omega \in$ $\left(0, \frac{1-k}{2}\right]$. Then for any $q \in \operatorname{Fix} T$, the sequence $\left(x_{n}\right)$ generated by (4) satisfies for any $n \in \mathbb{N}$,

$$
-\alpha_{n}\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle \geq \beta_{n+1}-\beta_{n}+\frac{1}{4}\left(1-2 L \alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}-\gamma_{n} m^{2}
$$

where $\beta_{n}:=\frac{1}{2}\left\|x_{n}-q\right\|^{2}, \gamma_{n}:=\frac{\alpha_{n}^{2}}{1-2 L \alpha_{0}}$ and $m:=\sup _{x \in H}\|F(x)\|$.
Proof. Given an arbitrary $q \in$ Fix T, by (4), we have

$$
\begin{aligned}
\left\|x_{n+1}-q\right\|^{2} & \leq\left\|v_{n}-q\right\|^{2}-\omega(1-k-\omega)\left\|v_{n}-T v_{n}\right\|^{2} \\
& \leq\left\|v_{n}-q\right\|^{2}-\omega^{-1}(1-k-\omega)\left\|x_{n+1}-v_{n}\right\|^{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|x_{n+1}-q\right\|^{2} \leq\left\|v_{n}-q\right\|^{2}-\left\|x_{n+1}-v_{n}\right\|^{2} \tag{5}
\end{equation*}
$$

since $\omega \in\left(0, \frac{1-k}{2}\right]$.
Let us now estimate each term in the right-hand side of the previous inequality. We have

$$
\begin{equation*}
\left\|v_{n}-q\right\|^{2}=\left\|x_{n}-q\right\|^{2}-2 \alpha_{n}\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle+\alpha_{n}^{2}\left\|F\left(x_{n}\right)\right\|^{2} \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
\left\|x_{n+1}-v_{n}\right\|^{2}= & \left\|x_{n+1}-x_{n}\right\|^{2}+2 \alpha_{n}\left\langle x_{n+1}-x_{n}, F\left(x_{n}\right)\right\rangle+\alpha_{n}^{2}\left\|F\left(x_{n}\right)\right\|^{2} \\
= & \left\|x_{n+1}-x_{n}\right\|^{2}+2 \alpha_{n}\left\langle x_{n+1}-x_{n}, F\left(x_{n}\right)-F\left(x_{n+1}\right)\right\rangle \\
& +2 \alpha_{n}\left\langle x_{n+1}-x_{n}, F\left(x_{n+1}\right)\right\rangle+\alpha_{n}^{2}\left\|F\left(x_{n}\right)\right\|^{2} .
\end{aligned}
$$

On the other hand, as F is m-bounded and L-Lipschitzian,

$$
\begin{aligned}
& \left\langle x_{n+1}-x_{n}, F\left(x_{n+1}\right)\right\rangle \geq-m\left\|x_{n+1}-x_{n}\right\|, \\
& \left\langle x_{n+1}-x_{n}, F\left(x_{n}\right)-F\left(x_{n+1}\right)\right\rangle \geq-L\left\|x_{n+1}-x_{n}\right\|^{2} .
\end{aligned}
$$

We obtain then

$$
\begin{align*}
& \left\|x_{n+1}-v_{n}\right\|^{2} \\
\geq & \left(1-2 L \alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}-2 \alpha_{n} m\left\|x_{n+1}-x_{n}\right\|+\alpha_{n}^{2}\left\|F\left(x_{n}\right)\right\|^{2} \tag{7}
\end{align*}
$$

and from (5), (6) and (7), we get

$$
\begin{aligned}
\left\|x_{n+1}-q\right\|^{2} \leq & \left\|x_{n}-q\right\|^{2}-2 \alpha_{n}\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle \\
& \quad-\left(1-2 L \alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}+2 \alpha_{n} m\left\|x_{n+1}-x_{n}\right\| .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
-\alpha_{n}\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle \geq & \frac{1}{2}\left\|x_{n+1}-q\right\|^{2}-\frac{1}{2}\left\|x_{n}-q\right\|^{2} \\
& +\frac{1}{2}\left(1-2 L \alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}-\alpha_{n} m\left\|x_{n+1}-x_{n}\right\| \\
& \geq \frac{1}{2}\left\|x_{n+1}-q\right\|^{2}-\frac{1}{2}\left\|x_{n}-q\right\|^{2} \\
& +\frac{1}{4}\left(1-2 L \alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}-\frac{\alpha_{n}^{2}}{1-2 L \alpha_{n}} m^{2}
\end{aligned}
$$

since (thanks to the canonical form)

$$
\frac{1}{4}\left(1-2 L \alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}-\alpha_{n} m\left\|x_{n+1}-x_{n}\right\| \geq-\frac{\alpha_{n}^{2}}{1-2 L \alpha_{n}} m^{2}
$$

Therefore, setting $\beta_{n}:=\frac{1}{2}\left\|x_{n}-q\right\|^{2}, \quad \gamma_{n}:=\frac{\alpha_{n}^{2}}{1-2 L \alpha_{0}}$ for all $n \in \mathbb{N}$, and assuming the sequence (α_{n}) non-increasing, we get

$$
-\alpha_{n}\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle \geq \beta_{n+1}-\beta_{n}+\frac{1}{4}\left(1-2 L \alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}-\gamma_{n} m^{2} .
$$

This leads to the conclusion.
Observe that for the boundedness condition (B), we need only to assume that the sequence $\left(F\left(x_{n}\right)\right)$ is bounded which is satisfied when $\left(x_{n}\right)$ generated by (4) is bounded and F is Lipschitz-continuous.

Lemma 2. Let $T: H \rightarrow H$ be a k-demicontractive mapping on H. Assume in addition that properties (B), (LC), (SM) are satisfied, the sequence $\left(\alpha_{n}\right) \subset\left(0, \frac{1}{2 L}\right)(L \neq 0)$ and that $\omega \in\left(0, \frac{1-k}{2}\right]$. Then for any $q \in \operatorname{Fix} T$, the sequence (x_{n}) generated by (4) satisfies for any $n \in \mathbb{N}$,

$$
\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle \geq \frac{1}{1+\mu \alpha_{n}}\left(\mu \beta_{n}-\frac{1}{2 \mu} m^{2}\right),
$$

where $\beta_{n}:=\frac{1}{2}\left\|x_{n}-q\right\|^{2}$ and $m:=\sup _{x \in H}\|F(x)\|$.
Proof. Take any $q \in \operatorname{Fix} T$, observe that

$$
\begin{aligned}
\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle & \geq\left\langle x_{n}-q, F(q)\right\rangle \\
& \geq-\left\|x_{n}-q\right\|\|F(q)\| \\
& \geq-m\left\|x_{n}-q\right\|
\end{aligned}
$$

and, on the other hand,

$$
\begin{aligned}
\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle & =\left\langle x_{n}-q, F\left(x_{n}\right)-F(q)\right\rangle+\left\langle x_{n}-q, F(q)\right\rangle \\
& \geq \mu\left\|x_{n}-q\right\|^{2}-m\left\|x_{n}-q\right\| .
\end{aligned}
$$

Now, setting $\lambda_{n}:=\frac{1}{1+\mu \alpha_{n}} \in(0,1)$ (so that $1-\lambda_{n}=\lambda_{n} \mu \alpha_{n}$), we get the following inequalities:

$$
\begin{aligned}
& \left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle \\
= & \left(1-\lambda_{n}\right)\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle+\lambda_{n}\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle \\
\geq & -\left(1-\lambda_{n}\right) m\left\|x_{n}-q\right\|+\lambda_{n} \mu\left\|x_{n}-q\right\|^{2}-m \lambda_{n}\left\|x_{n}-q\right\| \\
\geq & \lambda_{n} \mu\left\|x_{n}-q\right\|^{2}-m\left\|x_{n}-q\right\| \\
\geq & \frac{1}{2} \lambda_{n} \mu\left\|x_{n}-q\right\|^{2}+\lambda_{n} \mu\left(\left(\frac{1}{\sqrt{2}}\left\|x_{n}-q\right\|-\frac{m}{\sqrt{2} \mu}\right)^{2}-\frac{m^{2}}{2 \mu^{2}}\right) \\
\geq & \frac{1}{2} \lambda_{n} \mu\left\|x_{n}-q\right\|^{2}-\lambda_{n} \frac{m^{2}}{2 \mu} .
\end{aligned}
$$

Consider $\left(\beta_{n}\right)$ as defined in Lemma 2, we conclude that

$$
\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle \geq \frac{1}{1+\mu \alpha_{n}}\left(\mu \beta_{n}-\frac{m^{2}}{2 \mu}\right) .
$$

We obtain then the following proposition which ensures the boundedness of the iterations $\left(x_{n}\right)$:

Proposition 3. Under the assumptions of the previous lemma, the sequence (x_{n}) generated by (4) is bounded.

Proof. It suffices to prove that $\left(\beta_{n}\right)$ is bounded. Indeed, from Lemmas 1 and 2, we obtain

$$
\begin{aligned}
\beta_{n+1}-\beta_{n} & \leq-\alpha_{n}\left\langle x_{n}-q, F\left(x_{n}\right)\right\rangle+\gamma_{n} m^{2} \\
& \leq-\alpha_{n} \lambda_{n} \mu \beta_{n}+\alpha_{n} \lambda_{n} \frac{m^{2}}{2 \mu}+\gamma_{n} m^{2} .
\end{aligned}
$$

Noting that $\gamma_{n}=\frac{\alpha_{n}}{1-2_{\alpha_{0}}} \alpha_{n} \leq \frac{\alpha_{0}}{1-2_{\alpha_{0}}} \alpha_{n}$ and that the sequence $\left(\lambda_{n}\right)$ is increasing with $\lambda_{n} \in(0,1)$, we obtain the following estimation:

$$
\beta_{n+1}-\beta_{n} \leq-\sigma \alpha_{n} \beta_{n}+\alpha_{n} C_{0}
$$

where $\sigma:=\lambda_{0} \mu$ and $C_{0}:=\left(\frac{1}{2 \mu}+\frac{\alpha_{0}}{1-2_{\alpha_{0}}}\right) m^{2}$.

On the other hand, using the fact that for $t_{k}:=\sum_{i=0}^{k} \alpha_{i}$ and $\delta_{k}:=e^{\sigma t_{k}}$ for all $k \in \mathbb{N}$,

$$
1-\sigma \alpha_{n+1} \leq e^{-\sigma \alpha_{n+1}}=\frac{\delta_{n}}{\delta_{n+1}}
$$

one can easily check that for any n,

$$
\begin{aligned}
\delta_{n+1} \beta_{n+1}-\delta_{n} \beta_{n} & \leq \delta_{n+1}\left(\beta_{n+1}-\beta_{n}+\sigma \alpha_{n+1} \beta_{n}\right) \\
& \leq \delta_{n+1}\left(\sigma\left(\alpha_{n+1}-\alpha_{n}\right) \beta_{n}+\alpha_{n} C_{0}\right) \\
& \leq \delta_{n+1} \alpha_{n} C_{0}
\end{aligned}
$$

since $\left(\alpha_{n}\right)$ is a non-increasing sequence. Consequently,

$$
\delta_{n+1} \beta_{n+1}-\delta_{0} \beta_{0} \leq C_{0} \sum_{k=0}^{n} \alpha_{k} \delta_{k+1}
$$

and thus

$$
\begin{equation*}
\beta_{n+1} \leq e^{-\sigma t_{n+1}} \delta_{0} \beta_{0}+C_{0} e^{-\sigma t_{n+1}} \sum_{k=0}^{n} \alpha_{k} e^{\sigma t_{k+1}} . \tag{8}
\end{equation*}
$$

In addition, as $e^{a}-e^{b} \geq(a-b) e^{b}$ for $a \geq b$, thus by taking $a:=\sigma t_{k}$ and
$b:=\sigma t_{k-1}=\sigma t_{k+1}-\sigma\left(\alpha_{k+1}+\alpha_{k}\right)(k \geq 1)$, we get the following inequalities:

$$
\sigma \alpha_{k} e^{-2 \sigma} e^{\sigma t_{k+1}} \leq \sigma \alpha_{k} e^{-\sigma\left(\alpha_{k+1}+\alpha_{k}\right)} e^{\sigma t_{k+1}} \leq e^{\sigma t_{k}}-e^{\sigma t_{k-1}} .
$$

The inequality (8) then becomes

$$
\begin{aligned}
\beta_{n+1} & \leq e^{-\sigma t_{n+1}} \delta_{0} \beta_{0}+C_{0}\left(\alpha_{0} e^{\sigma\left(t_{1}-t_{n+1}\right)}+\frac{e^{2 \sigma}}{\sigma}\left(e^{\sigma\left(t_{n}-t_{n+1}\right)}-e^{\sigma\left(t_{0}-t_{n+1}\right)}\right)\right) \\
& \leq e^{-\sigma t_{n+1}} \delta_{0} \beta_{0}+C_{0}\left(\alpha_{0} e^{\sigma t_{1}}+\frac{e^{2 \sigma}}{\sigma} e^{-\sigma \alpha_{n+1}}\right) \\
& \leq \delta_{0} \beta_{0}+\frac{e^{2 \sigma}}{\sigma} C_{0}\left(\alpha_{0} \sigma+1\right)
\end{aligned}
$$

and the conclusion follows.
To provide the strong convergence theorem we need to get the following lemma:

Lemma 4. Let $T: H \rightarrow H$ be a k-demicontractive and demi-closed mapping and let $F: H \rightarrow H$ be an L-Lipschitzian mapping. Suppose that $\left(\alpha_{n}\right)$ converges to 0 and assume furthermore that the sequence $\left(x_{n}\right)$ generated by (4) is bounded and satisfies

$$
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 .
$$

Then any weak cluster point of $\left(x_{n}\right)$ is a fixed point of T and we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\langle x_{n}-x^{*}, F\left(x^{*}\right)\right\rangle \geq 0, \tag{9}
\end{equation*}
$$

where x^{*} is the solution of (1).
Proof. Let us consider a subsequence $\left(x_{s(n)}\right)$ of $\left(x_{n}\right)$ such that $x_{s(n)} \rightharpoonup \bar{x}$, where $s: \mathbb{N} \rightarrow \mathbb{N}$ is an increasing function. As the property
$(L C)$ is satisfied, the sequence $\left(F\left(x_{s(n)}\right)\right)$ is bounded so we get that

$$
v_{s(n)}=x_{s(n)}-\alpha_{s(n)} F\left(x_{s(n)}\right) \rightharpoonup \bar{x}
$$

since $\alpha_{s(n)} \rightarrow 0$. Furthermore, by (4), we have

$$
\begin{aligned}
T v_{s(n)}-v_{s(n)} & =\omega^{-1}\left(x_{s(n+1)}-v_{s(n)}\right) \\
& =\omega^{-1}\left(x_{s(n+1)}-x_{s(n)}+x_{s(n)}-v_{s(n)}\right) \\
& =\omega^{-1}\left(x_{s(n+1)}-x_{s(n)}\right)+\omega^{-1} \alpha_{s(n)} F\left(x_{s(n)}\right)
\end{aligned}
$$

so that $(I-T) v_{s(n)} \rightarrow 0$. Thus $\bar{x}=T \bar{x}$ since T is demi-closed and we conclude that the set of weak cluster point of $\left(x_{n}\right)$ is included in Fix T.

It remains to prove inequality (9). As (x_{n}) is assumed to be bounded, so is the sequence $\left(\left\langle x_{n}-x^{*}, F\left(x^{*}\right)\right\rangle\right)$. Then there exists a subsequence of $\left(x_{n}\right)$ (denoted $\left.\left(x_{s(n)}\right)\right)$ which converges weakly to some point $\bar{x} \in \operatorname{Fix} T$ such that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left\langle x_{n}-x^{*}, F\left(x^{*}\right)\right\rangle & =\lim _{n \rightarrow \infty}\left\langle x_{s(n)}-x^{*}, F\left(x^{*}\right)\right\rangle \\
& =\left\langle\bar{x}-x^{*}, F\left(x^{*}\right)\right\rangle \geq 0
\end{aligned}
$$

because x^{*} is the solution of (1).

3. Convergence Results

Let us give now our main result.
Theorem 5. Let $T: H \rightarrow H$ be a k-demicontractive and demi-closed mapping and let $F: H \rightarrow H$ be an m-bounded, L-Lipschitzian and μ-strongly monotone mapping. Suppose furthermore that $\omega \in\left(0, \frac{1-k}{2}\right]$
and the sequence $\left(\alpha_{n}\right) \subset\left(0, \frac{1}{2 L}\right)$ is non-increasing and converges to 0 so that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \alpha_{n}=\infty \text { and } \sum_{n=0}^{\infty} \alpha_{n}^{2}<\infty . \tag{10}
\end{equation*}
$$

Then the sequence (x_{n}) generated by (4) converges strongly to the solution x^{*} of (1).

Proof. Let us assume first that the sequence $\left(\left\|x_{n}-x^{*}\right\|\right)$ converges and $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$. It suffices then to prove that $\lambda:=\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=0$. From the condition (SM), we have for any n,

$$
\left\langle x_{n}-x^{*}, F\left(x_{n}\right)\right\rangle \geq \mu\left\|x_{n}-x^{*}\right\|^{2}+\left\langle x_{n}-x^{*}, F\left(x^{*}\right)\right\rangle
$$

and taking the lower limit, we get

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\langle x_{n}-x^{*}, F\left(x_{n}\right)\right\rangle \geq \mu \lambda^{2} \tag{11}
\end{equation*}
$$

since by Lemma 4, $\liminf _{n \rightarrow \infty}\left\langle x_{n}-x^{*}, F\left(x^{*}\right)\right\rangle \geq 0$ (observe that $\left(x_{n}\right)$ is bounded as the sequence $\left(\left\|x_{n}-x^{*}\right\|\right)$ is convergent). If λ is greater than 0 , the inequality (11) ensures that we can pick $N \in \mathbb{N}$ so that

$$
\left\langle x_{n}-x^{*}, F\left(x_{n}\right)\right\rangle \geq \frac{1}{2} \mu \lambda^{2} \quad \forall n \geq N .
$$

Moreover, Lemma 1 yields for $q:=x^{*}$:

$$
\begin{aligned}
\beta_{n+1}-\beta_{n} & \leq-\alpha_{n}\left\langle x_{n}-x^{*}, F\left(x_{n}\right)\right\rangle+\gamma_{n} m^{2} \\
& \leq-\frac{1}{2} \mu \lambda^{2} \alpha_{n}+\gamma_{n} m^{2}
\end{aligned}
$$

with $\beta_{n}:=\frac{1}{2}\left\|x_{n}-x^{*}\right\|^{2}$ which converges and $\gamma_{n}:=\frac{\alpha_{n}^{2}}{1-2 L \alpha_{0}} \rightarrow 0$.

Hence,

$$
\frac{1}{2} \mu \lambda^{2} \sum_{k=n_{0}}^{n} \alpha_{k}-m^{2} \sum_{k=n_{0}}^{n} \gamma_{k} \leq \beta_{n_{0}}-\beta_{n+1}
$$

which leads to a contradiction by assumptions (10).
Consequently, $\left(x_{n}\right)$ generated by (4) converges strongly to x^{*} whenever

$$
\left(\left\|x_{n}-x^{*}\right\|\right) \text { converges and } \lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

It remains to check that these conditions are satisfied. Indeed, according to the previous section the sequence $\left(\left\|x_{n}-x^{*}\right\|^{2}\right)$ is bounded, one has

$$
\left|\left\langle x_{n}-x^{*}, F\left(x_{n}\right)\right\rangle\right| \leq m\left\|x_{n}-x^{*}\right\| \leq C
$$

for some constant C. So by setting $\beta_{n}=\frac{1}{2}\left\|x_{n}-x^{*}\right\|^{2}$, Lemma 1 yields:

$$
\beta_{n+1}-\beta_{n}+\frac{1}{4}\left(1-2 L \alpha_{n}\right)\left\|x_{n+1}-x_{n}\right\|^{2}-\gamma_{n} m^{2} \leq \alpha_{n} C
$$

and, clearly, if $\left(\beta_{n}\right)$ (i.e., $\left(\left\|x_{n}-x^{*}\right\|^{2}\right)$) is convergent, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|^{2}$ $=0$.

As the sequence $\left(\beta_{n}\right)$ is bounded, its convergence is immediate when $\left(\beta_{n}\right)_{n \geq n_{0}}$ is a monotonous sequence from some index n_{0}. Let us discuss the non-monotonic case, that is, for any n_{0} large enough, there exist $p, q \geq n_{0}$ such that

$$
\beta_{p} \leq \beta_{p+1} \text { and } \beta_{q+1} \leq \beta_{q}
$$

So we can pick a subsequence $\left(\beta_{s(n)}\right)_{n \geq n_{0}}$ so that $\beta_{s(n)} \leq \beta_{s(n)+1}$ for $n \geq n_{0}$, where $s: \mathbb{N} \rightarrow \mathbb{N}$ is defined as

$$
s(m):=\max \left\{k \in \mathbb{N}: k \leq m, \beta_{k} \leq \beta_{k+1}\right\} \quad \forall m \in \mathbb{N}
$$

see [6] for more details. Hence $\lambda:=\lim _{n \rightarrow \infty}\left\|x_{s(n)}-x^{*}\right\|$ exists with $\lambda \geq 0$
and $\lim _{n \rightarrow \infty}\left\|x_{S(n)+1}-x_{S(n)}\right\|^{2}=0$. So if $\lambda \neq 0$ (i.e., $\lambda>0$), we get

$$
\left\langle x_{s(n)}-x^{*}, F\left(x_{s(n)}\right)\right\rangle \geq \frac{1}{2} \mu \lambda^{2}
$$

while Lemma 1 yields that

$$
\left\langle x_{S(n)}-x^{*}, F\left(x_{S(n)}\right)\right\rangle \leq \frac{\alpha_{n}}{1-2 L \alpha_{n}} m^{2} .
$$

Thereby

$$
\frac{\alpha_{n}}{1-2 L \alpha_{n}} m^{2} \geq \frac{1}{2} \mu \lambda^{2}
$$

which leads to a contradiction, thus $\lambda=0$.
Moreover, by the definition of $s(n)$, we have either $s(n)=n$ (that is, $\beta_{k} \leq \beta_{k+1}$ for all $k \leq n$) or $s(n)<n$ and then, in this case $\beta_{n} \leq \beta_{s(n)+1}$. We conclude that

$$
0 \leq \beta_{n} \leq \max \left(\beta_{s(n)}, \beta_{s(n)+1}\right) \text { for any } n \geq n_{0}
$$

so that $\beta_{n} \rightarrow 0$ and the result is then proved.
Let us consider now the problem of minimization given by (2) which is equivalent to the variational inequality problem:

$$
\begin{equation*}
\text { find } x^{*} \in \operatorname{Fix} T \text { such that }\left\langle v-x^{*}, \nabla f\left(x^{*}\right)\right\rangle \geq 0 \quad \forall v \in \operatorname{Fix} T, \tag{12}
\end{equation*}
$$

where the function f is convex and Gâteaux differentiable. Consequently, by taking $F:=\nabla f: H \rightarrow H$, the Gâteaux derivative of f, we get:

Corollary 6. Given $T: H \rightarrow H$, a k-demicontractive and demi-closed mapping, and $f: H \rightarrow \mathbb{R}$, a convex and Gâteaux differentiable function. Assume $\nabla f(\cdot)$ satisfies (B), (LC) with $L \neq 0$ and (SM). Suppose furthermore that $\omega \in\left(0, \frac{1-k}{2}\right],\left(\alpha_{n}\right) \subset\left(0, \frac{1}{2 L}\right)$ is non-increasing to 0 and such that
(10) holds. Then the sequence $\left(x_{n}\right)$ generated by:

$$
x_{n+1}:=(1-\omega) v_{n}+\omega T v_{n}, \quad v_{n}:=x_{n}-\alpha_{n} \nabla f\left(x_{n}\right) \quad \forall n \in \mathbb{N}
$$

with initial guess $x_{0} \in H$, converges strongly to the solution x^{*} of (12) or (2).

Acknowledgements

This work was supported by the National Research Program of the Ministry of Higher Education and Scientific Research (Algeria), under Grant $\mathrm{N}^{\circ} 50 / 03$.

References

[1] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115 (1966), 153-188.
[2] T. L. Hicks and J. D. Kubicek, On the Mann iteration process in Hilbert space, J. Math. Anal. Appl. 59 (1977), 498-504.
[3] Na Huang, Changfeng Ma and Zhenggang Liu, A new extragradient-like method for solving variational inequality problems, Fixed Point Theory and Applications 2012 (2012), 1-13.
[4] H. Iiduka, Hybrid conjugate gradient method for a convex optimization problem over the fixed-point set of a nonexpansive mapping, J. Optim. Theory Appl. 140 (2009), 463-475.
[5] P. E. Maingé, Inertial interactive process for fixed points of certain quasinonexpansive mappings, Set Valued Anal. 15(1) (2007), 67-79.
[6] P. E. Maingé, Convex minimization over the fixed point set of demi-contractive mappings, Positivity 12 (2008), 269-280.
[7] S. Maruster, The solution by iteration of nonlinear equations in Hilbert space, Proc. Am. Math. Soc. 63(1) (1997), 69-73.
[8] C. Moore, Iterative approximations methods for fixed-points problems, The Abdus Salam Intern. Centre for Theoretical Physics, Trieste, Italy, Scientific Report, IC/98/214, November, 1998.
[9] I. Yamada, The hybrid steepest descent method for the variational inequality over the intersection of fixed point sets of nonexpansive mappings, Inherently Parallel

Algorithm for Feasibility and Optimization and Their Applications, D. Butnariu, Y. Censor and S. Reich, eds., Elsevier, 2001, pp. 473-504.
[10] I. Yamada and N. Ogura, Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Num. Funct. Anal. Optim. 25(7-8) (2004), 619-655.
[11] I. Yamada, N. Ogura and N. Shirakawa, A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems, Inverse Problems, Image Analysis and Medical Imaging, Z. Nashed and O. Scherzer, eds., Contemporary Mathematics, Vol. 313, 2002, pp. 269-305.
[12] L.-C. Zeng and J.-C. Yao, Strong convergence theorem by an extra-gradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10(5) (2006), 1293-1303.
[13] Y. Yao and J.-C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186(2) (2007), 1551-1558.

