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Abstract

In this paper, we consider a variational inequality problem
VI(F, FixT), where F, T are mappings from a real Hilbert space into

itself and Fix T is the fixed points set of a demicontractive mapping T.
We propose an iterative algorithm given as:

X1 = L= 0)Vy + 0TV, V= Xy — anF(Xp),

to find approximate solutions. Under some assumptions on F, T, o and
(ap), we establish the strong convergence of the sequence (X,)

generated by this schema to the solution of VI(F, FixT). An
application to convex minimization is provided.

1. Introduction

In this paper, we are interested in the following variational inequality
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problem denoted VI(F, FixT):

find x* € FixT such that (v - x*, F(x"))>0 WveFixT, (1)

where F: H — H is a self-mapping on a real Hilbert space H endowed
with an inner product (-, -) and its induced norm ||-||, T :H — H isaself-
mapping on H with a nonempty, closed and convex fixed points set denoted
by FixT :={xeH :Tx=x}. Variational inequality problems were
introduced first by Hartman and Stampacchia [1] with the goal of computing
stationary points for nonlinear programs or finding the best approximation to
the initial data. They provide a broad unifying setting for the study of
optimization, fixed points problems and equilibrium problems and they have
important applications in economics, engineering, operations research, etc.

Numerous algorithms have been proposed to solve variational inequality
problems. These algorithms are based on different techniques and they
proved strong convergence theorems to the solution, see [2, 7, 8, 13, 12]. In
particular, for solving VI(Vf, FixT), one can apply the extragradient
method using the metric projection since a point x* e Fix T is a solution of
(1) if and only if it is a fixed point of the mapping P, (1 — oF), where
o > 0, 1 is the identity mapping and Prj, 7 is the metric projection of H
onto FixT. Other algorithms have been developed as the hybrid steepest
descent method (see [9-11]), that is, to construct iterations by the scheme:

Vit = T (V) = o VE(T (V).

Recently, some authors have considered new iterative algorithms to
approximate the set of fixed points of a nonexpansive (resp. quasi-
nonexpansive, resp. demicontractive) mapping and the set of solutions of the
variational inequality. Their results extend and improve many results in the
literature. For details, see [5, 6, 4, 3] and the references therein.

Motivated by the recent works, in this paper, we introduce a new hybrid
iterative algorithm for solving (1) and we prove a strong convergence



Minimization Over Fixed Points Sets 175

theorem. Such a work is inspired by a remark given in the article of Maingé
[6]. Maingé has considered the problem of minimizing f:H —> R, a

convex function over Fix T, that is,

find x* € FixT suchthat f(x")= inf f(x) 2

xeFixT

and he has proposed an alternative method which is defined by: given
Xg € H and forany n € N,

Xn41 = (1 — 0)v, + oTv,,
{ @)

V= Xp — oy V(%)
Under appropriate assumptions on f, o, (a,) and T, Maingé has given a
strong convergence theorem of the sequence (X,) generated by (3) to the

solution x™ of problem (2) which is characterized by
(v—x5, Vf(x")) >0 Wv e FixT.

Our paper is concerned by solving the general variational inequality
problem (1) with a demi-closed and demicontractive mapping T, using an
analogous approach to that in [6]. For this aim, the study is devoted to the
asymptotic convergence of the sequence (x,) generated by the following

iteration:
Xne1 = (1 - 0)v, + TV, Vp =X, —o,F(X,) VneN, 4)
where Xq is an initial guess in H, (a,) = (0, 1) and o € (0, 1).

Recall that T is said to be demicontractive if there exists some constant
k € (0, 1) such that

lg-Tx|? <|q-x|?+k|x-Tx|> vxeH, vqePFixT,

or equivalently (see [8]),

1-

2k||x—Tx||2 Vx e H, Vvq e FixT.

(x—=Tx, x—q) 2
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Note that the class of demicontractive maps has been introduced
independently by Hicks and Kubicek [2] and Maruster [7]. This class strictly
includes the class of strictly pseudocontractive maps which are the maps
T : H — H such that there exists k € (0, 1) so that

ITx=Ty[? < x =y P + K[ =T)x=(1 =T)y[* vx yeH

And, consequently, it includes the important class of quasi-nonexpansive
maps, that is

[a-Tx|<|g-x| V¥xeH, VvqeFixT.

Furthermore, it is clear that the class of quasi-nonexpansive maps
contains largely the class of nonexpansive maps which are demi-closed.
Namely, amap T : H — H is said to be demi-closed if its graph Gr(T) is
sequentially closed in the product of the weak topology on H with the norm
topology on H, that is, for any sequence (x,) = H, we have:

Xp — Xxand T(x,) > y =y =T(x). (DC)

We recall that F : H — H is a bounded (resp. Lipschitz-continuous, resp.
strongly monotone) operator if for some m >0 (resp. L > 0, resp. pu > 0),

one has
[F(x)|<m VvxeH, (B)
(resp. [ F(x) - F(y)[ < L x=y[ vx, yeH), (LC)
(resp. (FO) - F(y) x=y) = p|x—-y[* wx, yeH).  (SM)

2. Some Technical Lemmas

In this section, we give some useful lemmas. Let us first note that
algorithm (1) can be written as:

Vn1 = To(Vn) — anF (T, (Vn))

with T, = (1 - ®)! + ®T and | is the identity mapping on H. As throughout
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this work, the mapping T is k-demicontractive with FixT = &, one can
check easily that T, is quasi-nonexpansive for any o e (0,1-k]. So, in

this case, Fix T is a closed convex subset of H as the fixed points set of a
quasi-nonexpansive mapping, that is, FixT = Fix T, (see [10]).

Lemma 1. Let T :H — H be a k-demicontractive mapping on H.
Assume furthermore that properties (B), (LC) are satisfied, the sequence

(o) is non-increasing with a,, € (0, 2_1L) (where L # 0) and that o e

(0, %} Then for any q e FixT, the sequence (x,) generated by (4)

satisfies for any n e N,

1
—an(Xy = 0, F(Xn)) = By —Bn + Z(l_ 2Lay )| X1 — Xn "2 - Ynmza

2
_ 1 2 . a :
where By = 5[ %y —q %, vn = g5 and m= sup[F(x)].

Proof. Given an arbitrary q € FixT, by (4), we have
I Xa+1 =0 "2 <|vn-d ”2 —ol-k-o)|v, - Tv, ”2
<[vn =g -0 @k = o) X1~ vy |*
Hence,
I Xa+1 =0 ”2 <|lva—q "2 = [ Xn41 = Vi "2 ®)
since o € (0, 1_7}

Let us now estimate each term in the right-hand side of the previous
inequality. We have

[V = a1 = 1% = =200 (%, =4, F(x0) + ol FO) I, (6)
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2 2 2 2
I Xns1 = Vo |7 = | %1 = X0 I + 200 (Xn41 = Xn, F(X0)) + af] F(Xn) |
2
= | Xn+1 = Xn |7 + 200 (X421 = Xn, F(Xq) = F(Xn41))

2 2
+ 2000 (Xn4+1 = Xn, F(Xn11)) + o F(xq) |
On the other hand, as F is m-bounded and L-Lipschitzian,

(Xn+1 = Xn» F(Xn11)) = =M o1 = Xq |,

(et = X F ) = F(%na1)) = L Xne1 = %o |2

We obtain then
| X041 = Vi ”2
> (1= 2Loy) [ g = %0 [P = 2enm] o1 = %o |+ o] FOR) P ()
and from (5), (6) and (7), we get
| Xn41 =@ "2 <% - ”2 — 200(Xy = 0, F(Xy))

2
— (@ =2Lap)| Xns1 = Xn |© + 2004m]| X 1q = Xp |-

Thus,
1 1
—an(Xy = q, F(xp)) 2 §|| Xn+1—Q ”2 _5” Xy —Q ”2

1 2
+ E(l_ 2Lan )| Xns1 = Xn |© = otaM| X1 = Xn ||

1 2 1 2
P ]

1 2 2 Otﬁ 2
+ 7 L= 2Lan) [ Xna1 = X | "1l "
since (thanks to the canonical form)
oan 2

1 2
Z(l— 2Lou)[ Xns1 = X [© = otnml| X1 = Xn | 2 m-.

~1-2La,
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2

Therefore, setting B, = %" Xq — % v = 1_02L—r|‘_a0 for all ne N, and

assuming the sequence (a,,) non-increasing, we get

1 2 2
—an(Xn — 0, F(Xn)) = Bpys —PBn + Z(l_ 2Lon) | Xns1 = X [© = vam*.

This leads to the conclusion. O

Observe that for the boundedness condition (B), we need only to assume
that the sequence (F(x,,)) is bounded which is satisfied when (x,,) generated

by (4) is bounded and F is Lipschitz-continuous.

Lemma 2. Let T:H — H be a k-demicontractive mapping on H.
Assume in addition that properties (B), (LC), (SM) are satisfied, the sequence

(o) < (O, 2_1Lj(|' # 0) and that © € (0, %} Then for any q € FixT,

the sequence (x,) generated by (4) satisfies for any n e N,

(X —a, F(xp)) > ﬁ(“ﬁn _2_1Hm2)1

1
where B, = §|| Xy — q| and m = suE||| F(X) .
Xe

Proof. Take any g € Fix T, observe that
(X0 =, F(xn)) = (Xn — 0, F(a))
> | %y = alll F(a)]|
> -m| X, - q
and, on the other hand,
(%0 =, F(xn)) = (Xy = a, F(xy) = F(a)) + (xq — 0, F(a))

2
> Xn =gl = mlx, —af.
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Now, setting A, = +an €(0,1) (sothatl—A, = Ajuop), we get the

1+
following inequalities:

(Xn = a, F(Xp))
= (L= 2n) (% — 0, F(Xp)) + An(Xn — 0, F(xp))

2
> —~(L=Ap)M Xy = |+ Apu] Xg = a7 = mip| Xy —q

2
2 Mnbf Xn = @[ =mi %y —q

2
> Ll %o = G + ho (inxn—qn—ij _m
2 V2 V2p 2u2

1 2 m?
2 Eng” X = [ =2y 2

Consider (B,,) as defined in Lemma 2, we conclude that

2
(X —a, F(xp)) > 1+110Cn (Hﬁn _r;_HJ u

We obtain then the following proposition which ensures the boundedness
of the iterations (x,):

Proposition 3. Under the assumptions of the previous lemma, the
sequence (x,,) generated by (4) is bounded.

Proof. It suffices to prove that (B,,) is bounded. Indeed, from Lemmas 1
and 2, we obtain

Bni1 —Bn < —on(Xy — 0, F(Xy)) + Ynmz

2
m 2
< —opApuPp + aphy n +ynm-.
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Ao

Noting that vy, = %an ST
~ 2, _

o, and that the sequence (A,) is

increasing with A, e (0, 1), we obtain the following estimation:

Bn+1 — Bn < —oapPn + anCo,

- | Ly % |2
where o := Agu and Cp = [Zu + 1_2a0)m .
k
On the other hand, using the fact that for t, == > o; and & = e for
i=0
all k e N,
o104 8n
l1-con<e 7l = ,
On+1

one can easily check that for any n,
Sn+1Bn+1 = 8nBn < 8ns1(Bns1 — Bn + otni1Bn)
< 8psa(o(ansy — an)Bn + anCo)
< 8p4+100Co
since (o) is a non-increasing sequence. Consequently,

n
Sn+1Bn+1 — SoPo < Coz oSk +1
k=0

and thus

n
Brs1 < € °M8gBg + Coe M1 Y ayeeL (8)
k=0

In addition, as e — el > (a-— b)eb for a > b, thus by taking a = ot} and
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b = oty_1 = oty 41 — (o + ok )(k > 1), we get the following inequalities:
Gake_20e6tk+l < Gake_c(ak+l+ak )eo-tk+1 < eo-tk _ ectk—l.

The inequality (8) then becomes

2c
B, < eOtniigpy + Co(aoecs(tl—tm) + &7 (eotatan) ec(to—tml))J

2c
_ e _
<e th+180[30 + Co(OLOthl + Te G(er'lJ

e26

and the conclusion follows. O

To provide the strong convergence theorem we need to get the following
lemma:

Lemma 4. Let T: H — H be a k-demicontractive and demi-closed
mapping and let F : H — H be an L-Lipschitzian mapping. Suppose that
(o) converges to 0 and assume furthermore that the sequence (xg)
generated by (4) is bounded and satisfies

[ Xn41 = Xn | = 0.

Then any weak cluster point of (x,,) is a fixed point of T and we have
liminf(x, — x*, F(x")) > 0, 9)
n—o

where x* is the solution of (1).

Proof. Let us consider a subsequence (X)) Of (X;) such that

Xs(n) — X, where s: N — N is an increasing function. As the property
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(LC) is satisfied, the sequence (F(Xs(n))) is bounded so we get that
Vs(n) = Xs(n) — %s(n)F (Xs(n)) — X

since as(n) = 0. Furthermore, by (4), we have
TVs(n) = Vs(n) = CL)_1()(s(n+1) — Vs(n))
= 03_1(Xs(n+1) — Xs(n) T Xs(n) Vs(n))

= 03_1(Xs(n+l) — Xs(n)) + CO_10‘s(n)|:(xs(n))
so that (I —T)vgp) — 0. Thus X =Tx since T is demi-closed and we

conclude that the set of weak cluster point of (x,) is included in Fix T.

It remains to prove inequality (9). As (x,,) is assumed to be bounded, so

is the sequence ((x, — x*, F(x"))). Then there exists a subsequence of (x,)

(denoted (xs(n))) which converges weakly to some point X e FixT such

that
Ilrpw_)lorlﬂxn -x, F(x")) = n|E)T‘IOO<XS(n) - X", F(x"))
=(x-x", F(x")) >0
because x™ is the solution of (1). O

3. Convergence Results

Let us give now our main result.

Theorem 5. Let T : H — H be a k-demicontractive and demi-closed
mapping and let F:H — H be an m-bounded, L-Lipschitzian and

u-strongly monotone mapping. Suppose furthermore that o e (0, %}
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and the sequence (o) < (0, 2_1Lj is non-increasing and converges to 0 so

that

0 o0
D ap = and Y of <. (10)
n=0 n=0

Then the sequence (Xx,,) generated by (4) converges strongly to the solution
x* of (1).
Proof. Let us assume first that the sequence (| x, — X" |) converges and
| Xn+1 — Xn | = 0. It suffices then to prove that A := nITmH Xy — X" || = 0.
From the condition (SM), we have for any n,
(Xn =X FOm)) 2 1l X = %7 ”2 + (X = X", F(X))
and taking the lower limit, we get

liminf(x, — X", F(x,)) > puA? (11)
nN—o0

since by Lemma 4, liminf(x, — x*, F(x*)) >0 (observe that (x,) is
n—oo

bounded as the sequence (| x, — X" ||) is convergent). If X is greater than 0,

the inequality (11) ensures that we can pick N € N so that
* 1 2
(Xn = X7, F(Xp)) 2 §uk vn > N.
Moreover, Lemma 1 yields for q = x*:

2
Bn+1 — Bn < —atn(Xn — X", F(Xp)) + ynm

< —%ukzocn + ynm2
with B, = l|| Xy — X" ||2 which converges and vy, = —a% - 0.
nT2nm " T 2Lag
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Hence,
1 2% 2\
o HA Z ag —m ka <Py = PBn+a
k=n0 k=n0
which leads to a contradiction by assumptions (10).
Consequently, (x,) generated by (4) converges strongly to x™ whenever

(| X, = x" |) converges and lim | Xns1 = Xn || = 0.
—a

It remains to check that these conditions are satisfied. Indeed, according to
the previous section the sequence (| x, — x* |) is bounded, one has
| (% = X" FO)) [<m] %y —x" < C

1

for some constant C. So by setting B, = = x, — x* |, Lemma 1 yields:
n n

1 2
Pni1 —Bn + Z(l_ 2Lou)[ Xns1 = X | - ynm2 <anC

and, clearly, if (8,) (i.e., (| X, — x* [|*)) is convergent, lim | x,,q — Xq [
n—oo
=0.
As the sequence (By) is bounded, its convergence is immediate when

([3n)nZnO is a monotonous sequence from some index ng. Let us discuss the

non-monotonic case, that is, for any ngy large enough, there exist p, q > ng
such that

Bp <Bps1and Bgy1 < PBgq.
So we can pick a subsequence (BS(n))nZno s0 that Bg(n) < Bs(n)+1 for
n > ng, where s: N — N is defined as
s(m)=max{k e N:k <m, By <Pk} VmeN,

see [6] for more details. Hence A := lim || xg(n) — X" || exists with % >0
n—oo
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and 1im | Xs(ny+1 = Xs(n) [© = 0. Soif & = 0 (i.e., & > 0), we get
n—oo

* 1 .2
<Xs(n) - X, F(Xs(n))> 2 f“x
while Lemma 1 yields that

{Xs(ny = X", F(Xs(n))) < 1_%—?_%”12-

Thereby

On 2>£ 2
T=ola, ™ 22"

which leads to a contradiction, thus A = 0.

Moreover, by the definition of s(n), we have either s(n) = n (that is,
Bk <PBk+1 forall k <n) or s(n) <n and then, in this case B < Pgn)s1-

We conclude that
0 < Bp < max(Bs(n), Bs(n)+1) forany n >ng
so that B, — 0 and the result is then proved. O

Let us consider now the problem of minimization given by (2) which is
equivalent to the variational inequality problem:

find x* € FixT suchthat (v —x*, Vf(x")) >0 WveFixT, (12

where the function f is convex and Géateaux differentiable. Consequently, by
taking F = Vf : H — H, the Géteaux derivative of f, we get:

Corollary 6. Given T : H — H, a k-demicontractive and demi-closed
mapping, and f : H — R, a convex and Gateaux differentiable function.
Assume Vf (-) satisfies (B), (LC) with L = 0 and (SM). Suppose furthermore

1-k

that o € (0, 5

}, (o) < (0, 2_1Lj is non-increasing to 0 and such that
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(10) holds. Then the sequence (x,) generated by:

Xne1 = A=)V, + ©TVy,  Vp =Xy —aVi(X,) VneN

with initial guess xy € H, converges strongly to the solution x* of (12) or

).
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