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Abstract

Let F(n) be the homotopy theoretic fibre of the double suspension
E% . 8271 5 02827+1 It is known that there is a fibration SZ*1
02827+l _, BF(n) such that QBF(n)= F(n). In this paper, we

construct BF(n) in terms of (n + 1) -tuples of polynomials.

1. Introduction
Let F(n) be the homotopy theoretic fibre of the double suspension
E? . 8?1 5 @282t I [2], Gray constructed a fibration
72
sl 5 %8l 5 BF(n) (1.1)

such that QBF(n)= F(n). For n =1, we can set BF(1)= Q%5%(3)
(where SS<3> denotes the 3-connected cover of S?), since Q28> =

S x 0%83(3). In order to construct BF(n) for all n, let J'(n) denote the
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I-th stage of the James construction which builds QS?**!, and let Wl(n)

be the homotopy theoretic fibre of the inclusion

./ o7l ~ 2n+1

j'(n):J'(n) — J(n)=QS . 1.2)
For a certain map

vl(n): W(n) —» s2n-1, (1.3)

we denote the fibre of y'(n) by BF'(n). Let p be a prime. It is shown in

[2] that if 1</, I'< p-1, then we have a homotopy equivalence
localized at p : BF'(n)= BF’(n). Then, localized at p, we define BF(n)
in (1.1) to be BF'(n) for 1 <1< p-1. Thus for the construction of
BF(n), it is important to construct a map v!(n) in (1.3). An alternate

but equivalent construction of wl(n) is given in [6].

The purpose of this paper is to construct the map \ul(n) in terms of

(n +1)-tuples of polynomials. More precisely, we define a finite

dimensional space X]i (n) and a map

oL(n): Xh(n) > S20+1)n-1 (1.4)
integrally so that if we form the direct limit & — o, then we obtain
v!(n). Thus if we denote the fibre of (pé(n) by BL(n), then we have

B'.(n)= BF!(n). Hence, Bi(n) is a certain refinement of BF'(n).

Let Raty(n) denote the space of based holomorphic maps of degree k

from the Riemannian sphere S? to the complex projective space CP”".

The basepoint condition we assume is that f(o)=[1,...,1]. Such

holomorphic maps are given by rational functions:

Rat,(n) = {(py(2), ..., p,(2)) : each p;(z) is monic, degree-k polynomial

and such that there are no roots common to all p;(z)}.
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There is an inclusion
: . 2 n ~ ~2g2n+l
zk(n) . Ratk(n) —> QkCP =Q~S . (15)

Segal [7] proved that i,(n) is a homotopy equivalence up to dimension
k(2n —-1) (i.e., ip(n) induces isomorphisms in homotopy groups in
dimensions less than k(2n —1), and an epimorphism in dimension

k(2n - 1)).

Later, the stable homotopy type of Ratj,(n) was described in [1] in

2S2n+1

terms of Snaith’s stable summands of Q . The Segal theorem is

sharp only for n =1 as it follows from results of [1] that i (n) is a

homotopy equivalence up to dimension (k +1)(2n —1) - 1.

We generalize the definition of Raty(n) as follows. We set

X;lg(n) ={(po(2), ..., p,(2)) : each p;(z) is a monic, degree-k polynomial

and such that there are at most / roots common to all p;(z)}.

In [3] for [ =1 and in [4] for general [, the stable homotopy type of

X]i(n) was described in terms of stable summands of W'(n), where

Wl(n) is defined in (1.2). But a stability theorem as in [7] is not known.

Far from it: we do not know an unstable map X ;le(n) — W(n) which is a

generalization of i, (n) for [ = 0 (compare (1.5)). Our first result is then:
Theorem A. For | > 1, there is a map
ak(n) : Xj(n) > W(n)

which satisfies the following properties: For a prime p and the

homomorphism aj(n), : H.(X},(n) Z/p) - H.(W'(n); Z/p),
(1) aé(n)* is injective.

(i) Im ok (n), is spanned by monomials in H,(W'(n);, Z/p) of weight
<k
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From Theorem A, we obtain:
Theorem B. For [ >1, ocﬁa(n) is a homotopy equivalence up to

dimension ([“—J + 1) (2 +1)n-1)-1, where [“—J is as usual the

. k
<
largest integer < T+1°

Remarks.

1. We construct the map aﬁe(n) in Section 2. The construction

essentially uses the fact that
XL (n)XE (n) = 2" (Raty_y(n) v S°).
Note that aé(n) is defined integrally.

2. The structures of H,(Xh(n) Z/p) and H.(W'(n); Z/p) were

determined in [3] for [/ =1 and in [4] for general . We recall them in

Section 2.

In Section 2 we construct a map ¢%(n): X}(n)—> S ptegrally
(compare (2.1)). Let B}i (n) be the fibre of ¢} (n).

Theorem C. Let I > 1.

(1) We have the following homotopy commutative diagram:

!
B]le (n) X}i (n) (Pk(n) SZ(l+1)n—1

Bi(n)l ai(n)l
l

BF'(n) —— W) v,

S2(l+1)nfl
where Bi (n) is the restriction of ai (n) to the fibres.

(i1) Bﬁa(n) is a homotopy equivalence up to dimension ([_lljl} +1)

(20 +1)n-1)-2.
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Since we can use BF!(n) as BF(n) in (1.1) integrally, we study
Bi(n) in detail.
Theorem D.

(1) Let p be a prime and we write k = ps+1i, where 0 <i < p-—1.

Then there are homotopy equivalences localized at p:
Bps(n) = Bpsy1(n) and Bpg,p(n) = Bpg,i(n) (2 <i < p-1),
where we consider the latter only for odd primes p.
(11) We have
H,(Bgs(n); 2/2) = H.(X35(n); Z/2) ® H.(QS*; Z/2).

(111) For an odd prime p and s 2 0, there is a homotopy equivalence

localized at p:
52 Rat gy (n) = S22 x By ().
Remarks.
1. From results of [1], there is a homotopy equivalence localized at p:
Rat ,g,1(n) = Rat pe,i(n) (1 < i < p-1).

Similarly, from results of [3], there are homotopy equivalences localized

at p:
X})s(n) = X})S-%—l(n) and X})s+2(n) = X})sﬂ'(n) (2 <i< p- 1)'
Theorem D(i) is a consequence of the latter.
2. For an odd prime p, we know H*(B})s+2(n); Z/p) from Theorem D
(iii) (compare Lemma 2.5). In particular, pl.,o(n), : H(B,.o(n);, Z/p)
> Pps+2 * *\Pps+2 »
— H,(BF!(n);, Z/p) is injective. On the other hand, H*(B;,S(n); Z/p) is

somewhat complicated and contains unstable elements (i.e., B},s(n)* is

not injective).
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3. For all &, I and n, there is a map
vé(n) : Raty,(n) > B,le(n)

so that when localized at pand 1 <[ < p -1, vio(n) is the map Q2§27+1

— BF(n) in (1.1). It is interesting to study how different the fibre of

Vi(n) is from S?"7!. We discuss this briefly in Section 2 (compare

Lemma 2.7).
2. Proofs

Note that as sets we have
!
Xh(n) = HCq x Raty,_,(n),
q=0

where C? x Ratj,_,(n) corresponds to the subspace of X}Ze (n) consisting

of elements (py(2), ..., p,(2)) such that there are exactly g roots common

to all p;(z). Hence,
Xk(n) = X,lgl(n)]_[ ¢! x Rat;, ;(n).

It is known that the normal bundle of C! x Rat,_;(n) in X%(n) is trivial
(compare [3] and [4]). In X;Ze(n), we pinch an open set X,la_1 (n) to a point.
Then we have a map
n : Xp(n) - Xp(n)X5 () = Z2M((C! x Raty_j(n) v S°).
Let
g : Y27 Raty,_,(n) v S2" - Y27 Rat,,_,;(n)

Szln

be the map pinching to a point. We set

ph(n) = my o my : Xf(n) » X" Raty,_y(n).
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Recall that there is an inclusion (compare (1.5)):
ip_;(n) : Raty,_;(n) = Q282"+,
Taking the adjoint of i;,_;(n) and the (2In — 2)-fold suspensions, we have
S202(Ad(i,_,(n)) : T2 Rat,_(n) — S20H)nL

Let (pi,/(n) : X;le(n) - SRl b the composition

oh(n) = "2 (Ad(ig(n)) o PL(n). 2.1)

l . Q2(l+1)n-1 l .
Let f'(n): S — J'(n) be the map which may be used to
attach a cell to obtain J'"(n). In particular, f'(n) is the Whitehead

product [eg,, e5,], where ey, denotes the generator of my,(S%")

represented by the identity map. Let hb(n): Xi(n) > J'(n) be the

composition

h,(n) = f'(n) o @} (n).
Recall the map jl(n) in (1.2). Since jl(n) ° fl(n) is null homotopic, so is
jl(n) o hi(n). Hence, there is a lifting

hi(n) : XL(n) > W(n). (2.2)

Recall that H,(Q2S8%"*!: Z/p) is given as follows. There is a (torsion

free) generator 1y, ; € Hy, 1(Q2S?"*; Z/p) = Z/p, and the following
hold:

(1) For p =2,

H,(Q*S*™*; 7/2) = Z/2 (15,1, @ (197-1): s @1+ @1 (12-1): -]

(i1) For an odd prime p,
H.(@*S™ Z/p) = A (on-1, @ (2n-1) s @1 Q1 (t2p1 ) --.)
®Z/p B (12n-1), .- B - @1 (19-1)s -]
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In (i) and (i1), @; is the first Dyer-Lashof operation (it takes a class of
dimension d to a class of dimension dp+ p—-1) and B is the mod p

Bockstein operation.

For each monomial in (i) and (i1), we define a weight function w in the
usual manner, that is, (1) w(ig, 1) =1 (2) W@ (i9,1)) = wPQ(19,_1))

= p?, where Q¢ = @, Q;; () w(x *y) = w(x)+ w(y), where * is the
d times

loop sum Pontryagin product.

The structure of H*(Wl(n); Z/p) is given in [4]. For simplicity, we
recall only the case [ =1 (compare also [3] and [5]).

(1) For p = 2,

H,(W'(n), 2/2) = 2/2[@ (197-1): --» @ - @1 (19-1): -.]-
(i1) For an odd prime p, there is a (torsion free) generator x4, _;

e Hy,_,(W'(n);, Z/p) = Z/p so that

H*(Wl(n)§ Z/p) = /\(x4n—1’ Q1 (2n-1)s s @1 Q1(1271), )
®Z/pB@(12p-1)s - BA - @1 (12p—1), -] (2.3)
We set w(xy,_;) = 2. The structure of H,(X,(n); Z/p) is given as follows.
Proposition 2.4 [4]. For a prime p, H*(X;le(n), Z/p) is isomorphic to
the subspace of H., (Wl(n); Z/p) spanned by monomials of weight < k.
Proof of Theorem A. From the construction of the map h;, (n) and
Proposition 2.4, we see that we can choose a lifting ﬁ}i (n) in (2.2) so that
E}i(n)x : H,(X,le(n), Z/p) —» H.(W!(n), Z/p) satisfies the properties of
Theorem A (i) and (ii). Setting aﬁa(n) = ﬁ;ﬁ (n), we obtain Theorem A.

Proof of Theorem B. Among elements of H,(W'(n); Z/p) which are

not contained in Im Oti(n)*, the element of least degree is given as
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follows. Note that X} (n)= ) (k<) and Xll+1 (n) = CH1 x (cny”,
Hence, when %k > [ +1, the element of H*(X}le (n);, Z/p) of least positive
degree has degree 2(/+1)n—-1. We write the element by x5.1)p_1

(compare (2.3) for [ =1). When p =2, 1s non-trivial in

x;(lﬂ)n—l
H.(W!(n); Z/2) for all i >1 (compare [4]). Hence, the least degree
element of H.(W'(n), Z/p) which is not contained in Im aﬁe (n), occurs

i

when p = 2 and is of the form X9(1+1)n-1

. Since w(xg(g41yp-1) =1 +1, we

have (I+1)i > k+1, ie., i > LLJ +1. Hence, ak(n), : H.(XL(n), Z/p)
+

— H,(W!(n), Z/p) is an isomorphism for *< ([HLJ + 1) 2(l+1)n-1)-1.

From the universal coefficient theorem and the Whitehead theorem,
ab(n), : 1. (Xh(n) = n.(W!(n)) is an isomorphism for * < ([“LJ + 1]

(2(+1)n-1)-1 and an epimorphism for * = ([HLJ + 1) 2l +1)n-1)

— 1. This completes the proof of Theorem B.

Proof of Theorem C. The map y'(n) is defined as the following

composition (compare [2, p. 304]):
Wi(n) > W)U CW' ™ (n) - BH(s21 ),

Noting the map pl(n): Xi(n) » 22" Rat,_,(n), it is easy to show that
the restriction of y'(n) to X}i (n) is homotopic to ¢k (n). Hence (i) follows.
(i1) 1s an immediate consequence of Theorem B and the five lemma. This
completes the proof of Theorem C.

Proof of Theorem D. From the structure of H,(W'(n); Z/p) and

Proposition 2.4, each monomial in H,(X%(n); Z/p) has weight 0 or 2 mod

p. Hence, localized at p, we have
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X})S(n) = X})S+1 (n) and X})s+2(n) = X})sﬁ—i(n) 2<i<p-1)

Now (i) is clear from the fibration of the first row of Theorem C(i).

(11) is proved by comparing the mod 2 Serre spectral sequence for the
fibrations:

sl 5 Bl(n) —— X1.(n)

H B%s (”)J/ Oés (n)l/

st 5 BFY(n) —— Wi(n)
For the rest of this paper we prove (iii).
Lemma 2.5. Let p be an odd prime.
@
H.(BF'(n) Z/p) = A\ @ (2p-1). - @ - Q1 (tgn1). )
®Z/p B (12n-1) - PG - @ (12p1), -]-

(i1) B},Hg(n)* : H*(B},Sﬂ(n); Z/p) — H.(BF'(n), Z/p) is injective so
that Im B},Hg(n)* is spanned by monomials in H,(BF'(n), Z/p) of weight
< ps.

Proof. (i) is clear from the fibration BF'(n) — W' (n) — S4n1 mg

prove (i), let M), be the subspace of H,(BF(n), Z/p) spanned by
monomials of weight <k From (2.3) and Proposition 2.4,
H*(X})s+2(n); Z/p) is isomorphic to M,s; @ xy,_; ® M. (Recall that
w(xy,-1) = 2.) From the mod p Serre spectral sequence for the fibration
B},s+2 (n)—> X})s+2 (n)—> S, we have H, (B})s+2(n); Z/p) = M. Hence
(11) holds. This completes the proof of Lemma 2.5.

Since my |X,l€_1 (n) is null homotopic, so is (pi, (n)|X;l‘,/_1 (n). Hence, the

inclusion X} (n) = X (n) lifts to a map X} *(n) > Bl(n) (compare the
fibration of the first row of Theorem C(i)). Restricting to Rat,(n), there is



GEOMETRIC CONSTRUCTION OF A CLASSIFYING ... 33
a map

vk (n) : Raty(n) > BL(n).
Note that when localized at p and 1<1< p-1, vfb(n) is the map
028?21 _, BF(n) in (1.1). In particular, we consider the map
v} (n) : Raty(n) — Bi(n). (2.6)
Let Cj(n) be the fibre of (2.6).
Lemma 2.7. For an odd primep and k = ps +1i with 2<i< p-1,
H,(Cy(n); Z/p) = H(S*"; Z/p).

Proof. The lemma follows easily from Lemma 2.5 and the mod p
Serre spectral sequence for the fibration (2.6).

Lemma 2.7 implies that localized at p, there is a fibration

S#71 5 Rat ,9(n) — Bhg,o(n). (2.8)

Let F — E 5 B be a fibration with a retraction 3 E — 3 F.

Then we have a homotopy equivalence

>"E=%"(F x B).
(Compare the proof of [2, Proposition 7].) We use this for r = 2 and apply
to (2.8). A retraction ¥2 Rat ps.9(n) - S27*1 is constructed as the adjoint
of ips,9(n) in (1.5). Then

22 Rat yg,5(n) = (S x By, 5(n).

Localized at p, we have Rat g .;(n)=Rat,g,9(n). Hence Theorem D(iii)

holds. This completes the proof of Theorem D.
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