# GEOMETRIC CONSTRUCTION OF A CLASSIFYING SPACE FOR THE FIBRE OF THE DOUBLE SUSPENSION 

## YASUHIKO KAMIYAMA

Department of Mathematics, University of the Ryukyus
Nishihara-Cho, Okinawa 903-0213, Japan
e-mail: kamiyama@sci.u-ryukyu.ac.jp


#### Abstract

Let $F(n)$ be the homotopy theoretic fibre of the double suspension $E^{2}: S^{2 n-1} \rightarrow \Omega^{2} S^{2 n+1}$. It is known that there is a fibration $S^{2 n-1} \rightarrow$ $\Omega^{2} S^{2 n+1} \rightarrow B F(n)$ such that $\Omega B F(n)=F(n)$. In this paper, we construct $B F(n)$ in terms of $(n+1)$-tuples of polynomials.


## 1. Introduction

Let $F(n)$ be the homotopy theoretic fibre of the double suspension $E^{2}: S^{2 n-1} \rightarrow \Omega^{2} S^{2 n+1}$. In [2], Gray constructed a fibration

$$
\begin{equation*}
S^{2 n-1} \stackrel{E^{2}}{\rightarrow} \Omega^{2} S^{2 n+1} \rightarrow B F(n) \tag{1.1}
\end{equation*}
$$

such that $\Omega B F(n)=F(n)$. For $n=1$, we can set $B F(1)=\Omega^{2} S^{3}\langle 3\rangle$ (where $S^{3}\langle 3\rangle$ denotes the 3 -connected cover of $S^{3}$ ), since $\Omega^{2} S^{3} \simeq$ $S^{1} \times \Omega^{2} S^{3}\langle 3\rangle$. In order to construct $B F(n)$ for all $n$, let $J^{l}(n)$ denote the
$l$-th stage of the James construction which builds $\Omega S^{2 n+1}$, and let $W^{l}(n)$ be the homotopy theoretic fibre of the inclusion

$$
\begin{equation*}
j^{l}(n): J^{l}(n) \hookrightarrow J(n) \simeq \Omega S^{2 n+1} . \tag{1.2}
\end{equation*}
$$

For a certain map

$$
\begin{equation*}
\psi^{l}(n): W^{l}(n) \rightarrow S^{2(l+1) n-1}, \tag{1.3}
\end{equation*}
$$

we denote the fibre of $\psi^{l}(n)$ by $B F^{l}(n)$. Let $p$ be a prime. It is shown in [2] that if $1 \leq l, l^{\prime} \leq p-1$, then we have a homotopy equivalence localized at $p: B F^{l}(n) \simeq B F^{l^{\prime}}(n)$. Then, localized at $p$, we define $B F(n)$ in (1.1) to be $B F^{l}(n)$ for $1 \leq l \leq p-1$. Thus for the construction of $B F(n)$, it is important to construct a map $\psi^{l}(n)$ in (1.3). An alternate but equivalent construction of $\psi^{l}(n)$ is given in [6].

The purpose of this paper is to construct the map $\psi^{l}(n)$ in terms of $(n+1)$-tuples of polynomials. More precisely, we define a finite dimensional space $X_{k}^{l}(n)$ and a map

$$
\begin{equation*}
\varphi_{k}^{l}(n): X_{k}^{l}(n) \rightarrow S^{2(l+1) n-1} \tag{1.4}
\end{equation*}
$$

integrally so that if we form the direct limit $k \rightarrow \infty$, then we obtain $\psi^{l}(n)$. Thus if we denote the fibre of $\varphi_{k}^{l}(n)$ by $B_{k}^{l}(n)$, then we have $B_{\infty}^{l}(n) \simeq B F^{l}(n)$. Hence, $B_{k}^{l}(n)$ is a certain refinement of $B F^{l}(n)$.

Let $\operatorname{Rat}_{k}(n)$ denote the space of based holomorphic maps of degree $k$ from the Riemannian sphere $S^{2}$ to the complex projective space $\mathbf{C} P^{n}$. The basepoint condition we assume is that $f(\infty)=[1, \ldots, 1]$. Such holomorphic maps are given by rational functions:

$$
\begin{gathered}
\operatorname{Rat}_{k}(n)=\left\{\left(p_{0}(z), \ldots, p_{n}(z)\right): \text { each } p_{i}(z)\right. \text { is monic, degree-k polynomial } \\
\text { and such that there are no roots common to all } \left.p_{i}(z)\right\} .
\end{gathered}
$$

There is an inclusion

$$
\begin{equation*}
i_{k}(n): \operatorname{Rat}_{k}(n) \hookrightarrow \Omega_{k}^{2} \mathbf{C} P^{n} \simeq \Omega^{2} S^{2 n+1} \tag{1.5}
\end{equation*}
$$

Segal [7] proved that $i_{k}(n)$ is a homotopy equivalence up to dimension $k(2 n-1)$ (i.e., $i_{k}(n)$ induces isomorphisms in homotopy groups in dimensions less than $k(2 n-1)$, and an epimorphism in dimension $k(2 n-1))$.

Later, the stable homotopy type of $\operatorname{Rat}_{k}(n)$ was described in [1] in terms of Snaith's stable summands of $\Omega^{2} S^{2 n+1}$. The Segal theorem is sharp only for $n=1$ as it follows from results of [1] that $i_{k}(n)$ is a homotopy equivalence up to dimension $(k+1)(2 n-1)-1$.

We generalize the definition of $\operatorname{Rat}_{k}(n)$ as follows. We set

$$
\begin{aligned}
X_{k}^{l}(n)= & \left\{\left(p_{0}(z), \ldots, p_{n}(z)\right): \text { each } p_{i}(z) \text { is a monic, degree- } k\right. \text { polynomial } \\
& \text { and such that there are at most } \left.l \text { roots common to all } p_{i}(z)\right\} .
\end{aligned}
$$

In [3] for $l=1$ and in [4] for general $l$, the stable homotopy type of $X_{k}^{l}(n)$ was described in terms of stable summands of $W^{l}(n)$, where $W^{l}(n)$ is defined in (1.2). But a stability theorem as in [7] is not known. Far from it: we do not know an unstable map $X_{k}^{l}(n) \rightarrow W^{l}(n)$ which is a generalization of $i_{k}(n)$ for $l=0$ (compare (1.5)). Our first result is then:

Theorem A. For $l \geq 1$, there is a map

$$
\alpha_{k}^{l}(n): X_{k}^{l}(n) \rightarrow W^{l}(n)
$$

which satisfies the following properties: For a prime $p$ and the homomorphism $\alpha_{k}^{l}(n)_{*}: H_{*}\left(X_{k}^{l}(n) ; \mathbf{Z} / p\right) \rightarrow H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$,
(i) $\alpha_{k}^{l}(n)_{*}$ is injective.
(ii) $\operatorname{Im} \alpha_{k}^{l}(n)_{*}$ is spanned by monomials in $H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$ of weight $\leq k$.

From Theorem A, we obtain:
Theorem B. For $l \geq 1, \alpha_{k}^{l}(n)$ is a homotopy equivalence up to dimension $\left(\left[\frac{k}{l+1}\right]+1\right)(2(l+1) n-1)-1$, where $\left[\frac{k}{l+1}\right]$ is as usual the largest integer $\leq \frac{k}{l+1}$.

## Remarks.

1. We construct the map $\alpha_{k}^{l}(n)$ in Section 2. The construction essentially uses the fact that

$$
X_{k}^{l}(n) / X_{k}^{l-1}(n) \simeq \sum^{2 l n}\left(\operatorname{Rat}_{k-l}(n) \vee S^{0}\right)
$$

Note that $\alpha_{k}^{l}(n)$ is defined integrally.
2. The structures of $H_{*}\left(X_{k}^{l}(n) ; \mathbf{Z} / p\right)$ and $H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$ were determined in [3] for $l=1$ and in [4] for general $l$. We recall them in Section 2.

In Section 2 we construct a map $\varphi_{k}^{l}(n): X_{k}^{l}(n) \rightarrow S^{2(l+1) n-1}$ integrally (compare (2.1)). Let $B_{k}^{l}(n)$ be the fibre of $\varphi_{k}^{l}(n)$.

Theorem C. Let $l \geq 1$.
(i) We have the following homotopy commutative diagram:

where $\beta_{k}^{l}(n)$ is the restriction of $\alpha_{k}^{l}(n)$ to the fibres.
(ii) $\beta_{k}^{l}(n)$ is a homotopy equivalence up to dimension $\left(\left[\frac{k}{l+1}\right]+1\right)$ $(2(l+1) n-1)-2$.

Since we can use $B F^{1}(n)$ as $B F(n)$ in (1.1) integrally, we study $B_{k}^{1}(n)$ in detail.

## Theorem D.

(i) Let $p$ be a prime and we write $k=p s+i$, where $0 \leq i \leq p-1$.

Then there are homotopy equivalences localized at $p$ :

$$
B_{p s}^{1}(n) \simeq B_{p s+1}^{1}(n) \text { and } B_{p s+2}^{1}(n) \simeq B_{p s+i}^{1}(n)(2 \leq i \leq p-1)
$$

where we consider the latter only for odd primes $p$.
(ii) We have

$$
H_{*}\left(B_{2 s}^{1}(n) ; \mathbf{Z} / 2\right) \cong H_{*}\left(X_{2 s}^{1}(n) ; \mathbf{Z} / 2\right) \otimes H_{*}\left(\Omega S^{4 n-1} ; \mathbf{Z} / 2\right)
$$

(iii) For an odd prime $p$ and $s \geq 0$, there is a homotopy equivalence localized at $p$ :

$$
\sum^{2} \operatorname{Rat}_{p s+1}(n) \simeq \sum^{2}\left(S^{2 n-1} \times B_{p s+2}^{1}(n)\right)
$$

## Remarks.

1. From results of [1], there is a homotopy equivalence localized at $p$ :

$$
\operatorname{Rat}_{p s+1}(n) \simeq \operatorname{Rat}_{p s+i}(n)(1 \leq i \leq p-1)
$$

Similarly, from results of [3], there are homotopy equivalences localized at $p$ :

$$
X_{p s}^{1}(n) \simeq X_{p s+1}^{1}(n) \text { and } X_{p s+2}^{1}(n) \simeq X_{p s+i}^{1}(n)(2 \leq i \leq p-1)
$$

Theorem $\mathrm{D}(\mathrm{i})$ is a consequence of the latter.
2. For an odd prime $p$, we know $H_{*}\left(B_{p s+2}^{1}(n) ; \mathbf{Z} / p\right)$ from Theorem D (iii) (compare Lemma 2.5). In particular, $\beta_{p s+2}^{1}(n)_{*}: H_{*}\left(B_{p s+2}^{1}(n) ; \mathbf{Z} / p\right)$ $\rightarrow H_{*}\left(B F^{1}(n) ; \mathbf{Z} / p\right)$ is injective. On the other hand, $H_{*}\left(B_{p s}^{1}(n) ; \mathbf{Z} / p\right)$ is somewhat complicated and contains unstable elements (i.e., $\beta_{p s}^{1}(n)_{*}$ is not injective).
3. For all $k, l$ and $n$, there is a map

$$
v_{k}^{l}(n): \operatorname{Rat}_{k}(n) \rightarrow B_{k}^{l}(n)
$$

so that when localized at $p$ and $1 \leq l \leq p-1, v_{\infty}^{l}(n)$ is the map $\Omega^{2} S^{2 n+1}$ $\rightarrow B F(n)$ in (1.1). It is interesting to study how different the fibre of $v_{k}^{l}(n)$ is from $S^{2 n-1}$. We discuss this briefly in Section 2 (compare Lemma 2.7).

## 2. Proofs

Note that as sets we have

$$
X_{k}^{l}(n)=\coprod_{q=0}^{l} \mathbf{C}^{q} \times \operatorname{Rat}_{k-q}(n),
$$

where $\mathbf{C}^{q} \times \operatorname{Rat}_{k-q}(n)$ corresponds to the subspace of $X_{k}^{l}(n)$ consisting of elements $\left(p_{0}(z), \ldots, p_{n}(z)\right)$ such that there are exactly $q$ roots common to all $p_{i}(z)$. Hence,

$$
X_{k}^{l}(n)=X_{k}^{l-1}(n) \coprod \mathbf{C}^{l} \times \operatorname{Rat}_{k-l}(n) .
$$

It is known that the normal bundle of $\mathbf{C}^{l} \times \operatorname{Rat}_{k-l}(n)$ in $X_{k}^{l}(n)$ is trivial (compare [3] and [4]). In $X_{k}^{l}(n)$, we pinch an open set $X_{k}^{l-1}(n)$ to a point. Then we have a map

$$
\pi_{1}: X_{k}^{l}(n) \rightarrow X_{k}^{l}(n) / X_{k}^{l-1}(n) \cong \Sigma^{2 l n}\left(\left(\mathbf{C}^{l} \times \operatorname{Rat}_{k-l}(n)\right) \vee S^{0}\right) .
$$

Let

$$
\pi_{2}: \Sigma^{2 l n} \operatorname{Rat}_{k-l}(n) \vee S^{2 l n} \rightarrow \Sigma^{2 l n} \operatorname{Rat}_{k-l}(n)
$$

be the map pinching $S^{2 l n}$ to a point. We set

$$
p_{k}^{l}(n)=\pi_{2} \circ \pi_{1}: X_{k}^{l}(n) \rightarrow \Sigma^{2 l n} \operatorname{Rat}_{k-l}(n) .
$$

Recall that there is an inclusion (compare (1.5)):

$$
i_{k-l}(n): \operatorname{Rat}_{k-l}(n) \hookrightarrow \Omega^{2} S^{2 n+1}
$$

Taking the adjoint of $i_{k-l}(n)$ and the $(2 l n-2)$-fold suspensions, we have

$$
\sum^{2 l n-2}\left(\operatorname{Ad}\left(i_{k-l}(n)\right)\right): \sum^{2 l n} \operatorname{Rat}_{k-l}(n) \rightarrow S^{2(l+1) n-1}
$$

Let $\varphi_{k}^{l}(n): X_{k}^{l}(n) \rightarrow S^{2(l+1) n-1}$ be the composition

$$
\begin{equation*}
\varphi_{k}^{l}(n)=\sum^{2 l n-2}\left(\operatorname{Ad}\left(i_{k-l}(n)\right)\right) \circ p_{k}^{l}(n) \tag{2.1}
\end{equation*}
$$

Let $f^{l}(n): S^{2(l+1) n-1} \rightarrow J^{l}(n)$ be the map which may be used to attach a cell to obtain $J^{l+1}(n)$. In particular, $f^{1}(n)$ is the Whitehead product $\left[e_{2 n}, e_{2 n}\right]$, where $e_{2 n}$ denotes the generator of $\pi_{2 n}\left(S^{2 n}\right)$ represented by the identity map. Let $h_{k}^{l}(n): X_{k}^{l}(n) \rightarrow J^{l}(n)$ be the composition

$$
h_{k}^{l}(n)=f^{l}(n) \circ \varphi_{k}^{l}(n)
$$

Recall the map $j^{l}(n)$ in (1.2). Since $j^{l}(n) \circ f^{l}(n)$ is null homotopic, so is $j^{l}(n) \circ h_{k}^{l}(n)$. Hence, there is a lifting

$$
\begin{equation*}
\tilde{h}_{k}^{l}(n): X_{k}^{l}(n) \rightarrow W^{l}(n) \tag{2.2}
\end{equation*}
$$

Recall that $H_{*}\left(\Omega^{2} S^{2 n+1} ; \mathbf{Z} / p\right)$ is given as follows. There is a (torsion free) generator ${ }^{2 n-1}, H_{2 n-1}\left(\Omega^{2} S^{2 n+1} ; \mathbf{Z} / p\right) \cong \mathbf{Z} / p$, and the following hold:
(i) For $p=2$,

$$
H_{*}\left(\Omega^{2} S^{2 n+1} ; \mathbf{Z} / 2\right) \cong \mathbf{Z} / 2\left[1_{2 n-1}, Q_{1}\left(1_{2 n-1}\right), \ldots, Q_{1} \cdots Q_{1}\left(1_{2 n-1}\right), \ldots\right]
$$

(ii) For an odd prime $p$,

$$
\begin{aligned}
& H_{*}\left(\Omega^{2} S^{2 n+1} ; \mathbf{Z} / p\right) \cong \Lambda\left(v_{2 n-1}, Q_{1}\left(v_{2 n-1}\right), \ldots, Q_{1} \cdots Q_{1}\left(v_{2 n-1}\right), \ldots\right) \\
& \otimes \mathbf{Z} / p\left[\beta Q_{1}\left(v_{2 n-1}\right), \ldots, \beta Q_{1} \cdots Q_{1}\left(v_{2 n-1}\right), \ldots\right]
\end{aligned}
$$

In (i) and (ii), $Q_{1}$ is the first Dyer-Lashof operation (it takes a class of dimension $d$ to a class of dimension $d p+p-1$ ) and $\beta$ is the $\bmod p$ Bockstein operation.

For each monomial in (i) and (ii), we define a weight function $w$ in the usual manner, that is, (1) $w\left(1_{2 n-1}\right)=1$; (2) $w\left(Q_{1}^{d}\left(1_{2 n-1}\right)\right)=w\left(\beta Q_{1}^{d}\left(1_{2 n-1}\right)\right)$ $=p^{d}$, where $Q_{1}^{d}=\underbrace{Q_{1} \cdots Q_{1}}_{d \text { times }}$; (3) $w(x * y)=w(x)+w(y)$, where $*$ is the loop sum Pontryagin product.

The structure of $H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$ is given in [4]. For simplicity, we recall only the case $l=1$ (compare also [3] and [5]).
(i) For $p=2$,

$$
H_{*}\left(W^{1}(n) ; \mathbf{Z} / 2\right) \cong \mathbf{Z} / 2\left[Q_{1}\left(1_{2 n-1}\right), \ldots, Q_{1} \cdots Q_{1}\left(1_{2 n-1}\right), \ldots\right]
$$

(ii) For an odd prime $p$, there is a (torsion free) generator $x_{4 n-1}$ $\in H_{4 n-1}\left(W^{1}(n) ; \mathbf{Z} / p\right) \cong \mathbf{Z} / p$ so that

$$
\begin{align*}
H_{*}\left(W^{1}(n) ; \mathbf{Z} / p\right) \cong & \wedge\left(x_{4 n-1}, Q_{1}\left(1_{2 n-1}\right), \ldots, Q_{1} \cdots Q_{1}\left(1_{2 n-1}\right), \ldots\right) \\
& \otimes \mathbf{Z} / p\left[\beta Q_{1}\left(\mathrm{l}_{2 n-1}\right), \ldots, \beta Q_{1} \cdots Q_{1}\left(\mathrm{t}_{2 n-1}\right), \ldots\right] \tag{2.3}
\end{align*}
$$

We set $w\left(x_{4 n-1}\right)=2$. The structure of $H_{*}\left(X_{k}^{l}(n) ; \mathbf{Z} / p\right)$ is given as follows.
Proposition 2.4 [4]. For a prime $p, H_{*}\left(X_{k}^{l}(n) ; \mathbf{Z} / p\right)$ is isomorphic to the subspace of $H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$ spanned by monomials of weight $\leq k$.

Proof of Theorem A. From the construction of the map $h_{k}^{l}(n)$ and Proposition 2.4, we see that we can choose a lifting $\widetilde{h}_{k}^{l}(n)$ in (2.2) so that $\widetilde{h}_{k}^{l}(n)_{*}: H_{*}\left(X_{k}^{l}(n) ; \mathbf{Z} / p\right) \rightarrow H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$ satisfies the properties of Theorem A (i) and (ii). Setting $\alpha_{k}^{l}(n)=\widetilde{h}_{k}^{l}(n)$, we obtain Theorem A.

Proof of Theorem B. Among elements of $H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$ which are not contained in $\operatorname{Im} \alpha_{k}^{l}(n)_{*}$, the element of least degree is given as
follows. Note that $X_{k}^{l}(n) \cong \mathbf{C}^{k(n+1)}(k \leq l)$ and $X_{l+1}^{l}(n) \cong \mathbf{C}^{l+1} \times\left(\mathbf{C}^{(l+1) n}\right)^{*}$. Hence, when $k \geq l+1$, the element of $H_{*}\left(X_{k}^{l}(n) ; \mathbf{Z} / p\right)$ of least positive degree has degree $2(l+1) n-1$. We write the element by $x_{2(l+1) n-1}$ (compare (2.3) for $l=1$ ). When $p=2, \quad x_{2(l+1) n-1}^{i}$ is non-trivial in $H_{*}\left(W^{l}(n) ; \mathbf{Z} / 2\right)$ for all $i \geq 1$ (compare [4]). Hence, the least degree element of $H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$ which is not contained in $\operatorname{Im} \alpha_{k}^{l}(n)_{*}$ occurs when $p=2$ and is of the form $x_{2(l+1) n-1}^{i}$. Since $w\left(x_{2(l+1) n-1}\right)=l+1$, we have $(l+1) i \geq k+1$, i.e., $i \geq\left[\frac{k}{l+1}\right]+1$. Hence, $\alpha_{k}^{l}(n)_{*}: H_{*}\left(X_{k}^{l}(n) ; \mathbf{Z} / p\right)$ $\rightarrow H_{*}\left(W^{l}(n) ; \mathbf{Z} / p\right)$ is an isomorphism for $* \leq\left(\left[\frac{k}{l+1}\right]+1\right)(2(l+1) n-1)-1$. From the universal coefficient theorem and the Whitehead theorem, $\alpha_{k}^{l}(n)_{*}: \pi_{*}\left(X_{k}^{l}(n)\right) \rightarrow \pi_{*}\left(W^{l}(n)\right)$ is an isomorphism for $*<\left(\left[\frac{k}{l+1}\right]+1\right)$ $(2(l+1) n-1)-1$ and an epimorphism for $*=\left(\left[\frac{k}{l+1}\right]+1\right)(2(l+1) n-1)$ -1. This completes the proof of Theorem B.

Proof of Theorem C. The map $\psi^{l}(n)$ is defined as the following composition (compare [2, p. 304]):

$$
W^{l}(n) \rightarrow W^{l}(n) \cup C W^{l-1}(n) \rightarrow \Sigma^{l}\left(S^{2 n-1}\right)^{(l+1)}
$$

Noting the map $p_{k}^{l}(n): X_{k}^{l}(n) \rightarrow \sum^{2 l n} \operatorname{Rat}_{k-l}(n)$, it is easy to show that the restriction of $\psi^{l}(n)$ to $X_{k}^{l}(n)$ is homotopic to $\varphi_{k}^{l}(n)$. Hence (i) follows. (ii) is an immediate consequence of Theorem B and the five lemma. This completes the proof of Theorem C.

Proof of Theorem D. From the structure of $H_{*}\left(W^{1}(n) ; \mathbf{Z} / p\right)$ and Proposition 2.4, each monomial in $H_{*}\left(X_{k}^{1}(n) ; \mathbf{Z} / p\right)$ has weight 0 or $2 \bmod$ $p$. Hence, localized at $p$, we have

$$
X_{p s}^{1}(n) \simeq X_{p s+1}^{1}(n) \text { and } X_{p s+2}^{1}(n) \simeq X_{p s+i}^{1}(n)(2 \leq i \leq p-1) .
$$

Now (i) is clear from the fibration of the first row of Theorem C(i).
(ii) is proved by comparing the mod 2 Serre spectral sequence for the fibrations:


For the rest of this paper we prove (iii).
Lemma 2.5. Let p be an odd prime.
(i)

$$
\begin{aligned}
H_{*}\left(B F^{1}(n) ; \mathbf{Z} / p\right) \cong & \bigwedge\left(Q_{1}\left(\mathrm{l}_{2 n-1}\right), \ldots, Q_{1} \cdots Q_{1}\left(\mathrm{l}_{2 n-1}\right), \ldots\right) \\
& \otimes \mathbf{Z} / p\left[\beta Q_{1}\left(\mathrm{l}_{2 n-1}\right), \ldots, \beta Q_{1} \cdots Q_{1}\left(1_{2 n-1}\right), \ldots\right] .
\end{aligned}
$$

(ii) $\beta_{p s+2}^{1}(n)_{*}: H_{*}\left(B_{p s+2}^{1}(n) ; \mathbf{Z} / p\right) \rightarrow H_{*}\left(B F^{1}(n) ; \mathbf{Z} / p\right)$ is injective so that $\operatorname{Im} \beta_{p s+2}^{1}(n)_{*}$ is spanned by monomials in $H_{*}\left(B F^{1}(n) ; \mathbf{Z} / p\right)$ of weight $\leq p s$.

Proof. (i) is clear from the fibration $B F^{1}(n) \rightarrow W^{1}(n) \rightarrow S^{4 n-1}$. To prove (ii), let $M_{k}$ be the subspace of $H_{*}\left(B F^{1}(n) ; \mathbf{Z} / p\right)$ spanned by monomials of weight $\leq k$. From (2.3) and Proposition 2.4, $H_{*}\left(X_{p s+2}^{1}(n) ; \mathbf{Z} / p\right)$ is isomorphic to $M_{p s} \oplus x_{4 n-1} \otimes M_{p s}$. (Recall that $w\left(x_{4 n-1}\right)=2$.) From the $\bmod p$ Serre spectral sequence for the fibration $B_{p s+2}^{1}(n) \rightarrow X_{p s+2}^{1}(n) \rightarrow S^{4 n-1}$, we have $H_{*}\left(B_{p s+2}^{1}(n) ; \mathbf{Z} / p\right) \cong M_{p s}$. Hence (ii) holds. This completes the proof of Lemma 2.5.

Since $\pi_{1} \mid X_{k}^{l-1}(n)$ is null homotopic, so is $\varphi_{k}^{l}(n) \mid X_{k}^{l-1}(n)$. Hence, the inclusion $X_{k}^{l-1}(n) \hookrightarrow X_{k}^{l}(n)$ lifts to a map $X_{k}^{l-1}(n) \rightarrow B_{k}^{l}(n)$ (compare the fibration of the first row of Theorem C(i)). Restricting to $\operatorname{Rat}_{k}(n)$, there is
a map

$$
v_{k}^{l}(n): \operatorname{Rat}_{k}(n) \rightarrow B_{k}^{l}(n)
$$

Note that when localized at $p$ and $1 \leq l \leq p-1, \quad v_{\infty}^{l}(n)$ is the map $\Omega^{2} S^{2 n+1} \rightarrow B F(n)$ in (1.1). In particular, we consider the map

$$
\begin{equation*}
v_{k}^{1}(n): \operatorname{Rat}_{k}(n) \rightarrow B_{k}^{1}(n) \tag{2.6}
\end{equation*}
$$

Let $C_{k}(n)$ be the fibre of (2.6).
Lemma 2.7. For an odd prime $p$ and $k=p s+i$ with $2 \leq i \leq p-1$,

$$
H_{*}\left(C_{k}(n) ; \mathbf{Z} / p\right) \cong H_{*}\left(S^{2 n-1} ; \mathbf{Z} / p\right)
$$

Proof. The lemma follows easily from Lemma 2.5 and the $\bmod p$ Serre spectral sequence for the fibration (2.6).

Lemma 2.7 implies that localized at $p$, there is a fibration

$$
\begin{equation*}
S^{2 n-1} \rightarrow \operatorname{Rat}_{p s+2}(n) \rightarrow B_{p s+2}^{1}(n) \tag{2.8}
\end{equation*}
$$

Let $F \rightarrow E \xrightarrow{\pi} B$ be a fibration with a retraction $\Sigma^{r} E \rightarrow \Sigma^{r} F$. Then we have a homotopy equivalence

$$
\sum^{r} E \simeq \sum^{r}(F \times B)
$$

(Compare the proof of [2, Proposition 7].) We use this for $r=2$ and apply to (2.8). A retraction $\Sigma^{2} \operatorname{Rat}_{p s+2}(n) \rightarrow S^{2 n+1}$ is constructed as the adjoint of $i_{p s+2}(n)$ in (1.5). Then

$$
\sum^{2} \operatorname{Rat}_{p s+2}(n) \simeq \sum^{2}\left(S^{2 n-1} \times B_{p s+2}^{1}(n)\right)
$$

Localized at $p$, we have $\operatorname{Rat}_{p s+1}(n) \simeq \operatorname{Rat}_{p s+2}(n)$. Hence Theorem D (iii) holds. This completes the proof of Theorem D.

## References

[1] F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 163-221.
[2] B. Gray, On the iterated suspension, Topology 27 (1988), 301-310.
[3] Y. Kamiyama, Geometric approximation of the fibre of the Freudenthal suspension, Bull. Lond. Math. Soc. 30 (1998), 635-642.
[4] Y. Kamiyama, Polynomial model for homotopy fibres associated with the James construction, Math. Z. 237 (2001), 149-180.
[5] R. J. Milgram, Unstable homotopy from the stable point of view, Lect. Notes Math., Vol. 368, Springer, Berlin, Heidelberg, New York, 1974.
[6] J. C. Moore and J. A. Neisendorfer, Equivalence of Toda-Hopf invariants, Israel J. Math. 66 (1989), 300-318.
[7] G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72.

