GEOMETRIC CONSTRUCTION OF A CLASSIFYING SPACE FOR THE FIBRE OF THE DOUBLE SUSPENSION

YASUHIKO KAMIYAMA

Department of Mathematics, University of the Ryukyus Nishihara-Cho, Okinawa 903-0213, Japan e-mail: kamiyama@sci.u-ryukyu.ac.jp

Abstract

Let F(n) be the homotopy theoretic fibre of the double suspension $E^2: S^{2n-1} \to \Omega^2 S^{2n+1}$. It is known that there is a fibration $S^{2n-1} \to \Omega^2 S^{2n+1} \to BF(n)$ such that $\Omega BF(n) = F(n)$. In this paper, we construct BF(n) in terms of (n + 1)-tuples of polynomials.

1. Introduction

Let F(n) be the homotopy theoretic fibre of the double suspension $E^2: S^{2n-1} \to \Omega^2 S^{2n+1}$. In [2], Gray constructed a fibration

$$S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1} \to BF(n) \tag{1.1}$$

such that $\Omega BF(n) = F(n)$. For n = 1, we can set $BF(1) = \Omega^2 S^3 \langle 3 \rangle$ (where $S^3 \langle 3 \rangle$ denotes the 3-connected cover of S^3), since $\Omega^2 S^3 \simeq S^1 \times \Omega^2 S^3 \langle 3 \rangle$. In order to construct BF(n) for all n, let $J^l(n)$ denote the

Received October 21, 2003

© 2004 Pushpa Publishing House

²⁰⁰⁰ Mathematics Subject Classification: 55P35.

Key words and phrases: double suspension, rational function.

l-th stage of the James construction which builds ΩS^{2n+1} , and let $W^{l}(n)$ be the homotopy theoretic fibre of the inclusion

$$j^{l}(n): J^{l}(n) \hookrightarrow J(n) \cong \Omega S^{2n+1}.$$
 (1.2)

For a certain map

$$\psi^{l}(n): W^{l}(n) \to S^{2(l+1)n-1},$$
(1.3)

we denote the fibre of $\psi^{l}(n)$ by $BF^{l}(n)$. Let p be a prime. It is shown in [2] that if $1 \leq l$, $l' \leq p-1$, then we have a homotopy equivalence localized at $p: BF^{l}(n) \cong BF^{l'}(n)$. Then, localized at p, we define BF(n)in (1.1) to be $BF^{l}(n)$ for $1 \leq l \leq p-1$. Thus for the construction of BF(n), it is important to construct a map $\psi^{l}(n)$ in (1.3). An alternate but equivalent construction of $\psi^{l}(n)$ is given in [6].

The purpose of this paper is to construct the map $\psi^l(n)$ in terms of (n+1)-tuples of polynomials. More precisely, we define a finite dimensional space $X_k^l(n)$ and a map

$$\varphi_k^l(n): X_k^l(n) \to S^{2(l+1)n-1}$$
 (1.4)

integrally so that if we form the direct limit $k \to \infty$, then we obtain $\psi^l(n)$. Thus if we denote the fibre of $\varphi^l_k(n)$ by $B^l_k(n)$, then we have $B^l_{\infty}(n) \simeq BF^l(n)$. Hence, $B^l_k(n)$ is a certain refinement of $BF^l(n)$.

Let $\operatorname{Rat}_k(n)$ denote the space of based holomorphic maps of degree k from the Riemannian sphere S^2 to the complex projective space $\mathbb{C}P^n$. The basepoint condition we assume is that $f(\infty) = [1, ..., 1]$. Such holomorphic maps are given by rational functions:

$$\begin{split} \operatorname{Rat}_k(n) &= \{(p_0(z), \, ..., \, p_n(z)): \operatorname{each} \, p_i(z) \text{ is monic, degree-}k \text{ polynomial} \\ & \text{and such that there are no roots common to all } p_i(z)\}. \end{split}$$

There is an inclusion

$$i_k(n) : \operatorname{Rat}_k(n) \hookrightarrow \Omega_k^2 \mathbb{C} P^n \cong \Omega^2 S^{2n+1}.$$
 (1.5)

Segal [7] proved that $i_k(n)$ is a homotopy equivalence up to dimension k(2n-1) (i.e., $i_k(n)$ induces isomorphisms in homotopy groups in dimensions less than k(2n-1), and an epimorphism in dimension k(2n-1)).

Later, the stable homotopy type of $\operatorname{Rat}_k(n)$ was described in [1] in terms of Snaith's stable summands of $\Omega^2 S^{2n+1}$. The Segal theorem is sharp only for n = 1 as it follows from results of [1] that $i_k(n)$ is a homotopy equivalence up to dimension (k+1)(2n-1)-1.

We generalize the definition of $\operatorname{Rat}_k(n)$ as follows. We set

$$X_k^l(n) = \{(p_0(z), ..., p_n(z)) : \text{ each } p_i(z) \text{ is a monic, degree-}k \text{ polynomial} \\ \text{ and such that there are at most } l \text{ roots common to all } p_i(z)\}.$$

In [3] for l = 1 and in [4] for general l, the stable homotopy type of $X_k^l(n)$ was described in terms of stable summands of $W^l(n)$, where $W^l(n)$ is defined in (1.2). But a stability theorem as in [7] is not known. Far from it: we do not know an unstable map $X_k^l(n) \to W^l(n)$ which is a generalization of $i_k(n)$ for l = 0 (compare (1.5)). Our first result is then:

Theorem A. For $l \ge 1$, there is a map

$$\alpha_k^l(n): X_k^l(n) \to W^l(n)$$

which satisfies the following properties: For a prime p and the homomorphism $\alpha_k^l(n)_* : H_*(X_k^l(n); \mathbb{Z}/p) \to H_*(W^l(n); \mathbb{Z}/p),$

(i) $\alpha_k^l(n)_*$ is injective.

(ii) Im $\alpha_k^l(n)_*$ is spanned by monomials in $H_*(W^l(n); \mathbb{Z}/p)$ of weight $\leq k$.

From Theorem A, we obtain:

Theorem B. For $l \ge 1$, $\alpha_k^l(n)$ is a homotopy equivalence up to dimension $\left(\left[\frac{k}{l+1}\right]+1\right)(2(l+1)n-1)-1$, where $\left[\frac{k}{l+1}\right]$ is as usual the largest integer $\le \frac{k}{l+1}$.

Remarks.

1. We construct the map $\alpha_k^l(n)$ in Section 2. The construction essentially uses the fact that

$$X_k^l(n)/X_k^{l-1}(n) \simeq \Sigma^{2ln} (\operatorname{Rat}_{k-l}(n) \vee S^0).$$

Note that $\alpha_k^l(n)$ is defined integrally.

2. The structures of $H_*(X_k^l(n); \mathbb{Z}/p)$ and $H_*(W^l(n); \mathbb{Z}/p)$ were determined in [3] for l = 1 and in [4] for general l. We recall them in Section 2.

In Section 2 we construct a map $\varphi_k^l(n): X_k^l(n) \to S^{2(l+1)n-1}$ integrally (compare (2.1)). Let $B_k^l(n)$ be the fibre of $\varphi_k^l(n)$.

Theorem C. Let $l \ge 1$.

(i) We have the following homotopy commutative diagram:

where $\beta_k^l(n)$ is the restriction of $\alpha_k^l(n)$ to the fibres.

(ii) $\beta_k^l(n)$ is a homotopy equivalence up to dimension $\left(\left[\frac{k}{l+1}\right]+1\right)$ (2(l+1)n-1)-2. Since we can use $BF^{1}(n)$ as BF(n) in (1.1) integrally, we study $B_{k}^{1}(n)$ in detail.

Theorem D.

(i) Let p be a prime and we write k = ps + i, where $0 \le i \le p - 1$. Then there are homotopy equivalences localized at p:

$$B_{ps}^{1}(n) \simeq B_{ps+1}^{1}(n) \quad and \quad B_{ps+2}^{1}(n) \simeq B_{ps+i}^{1}(n) \ (2 \le i \le p-1),$$

where we consider the latter only for odd primes p.

(ii) We have

$$H_*(B^1_{2s}(n); \mathbb{Z}/2) \cong H_*(X^1_{2s}(n); \mathbb{Z}/2) \otimes H_*(\Omega S^{4n-1}; \mathbb{Z}/2).$$

(iii) For an odd prime p and $s \ge 0$, there is a homotopy equivalence localized at p:

$$\Sigma^2 \operatorname{Rat}_{ps+1}(n) \simeq \Sigma^2(S^{2n-1} \times B^1_{ps+2}(n)).$$

Remarks.

1. From results of [1], there is a homotopy equivalence localized at *p*:

$$\operatorname{Rat}_{ps+1}(n) \simeq \operatorname{Rat}_{ps+i}(n) \ (1 \le i \le p-1).$$

Similarly, from results of [3], there are homotopy equivalences localized at *p*:

$$X_{ps}^{1}(n) \simeq X_{ps+1}^{1}(n)$$
 and $X_{ps+2}^{1}(n) \simeq X_{ps+i}^{1}(n) \ (2 \le i \le p-1).$

Theorem D(i) is a consequence of the latter.

2. For an odd prime p, we know $H_*(B_{ps+2}^1(n); \mathbb{Z}/p)$ from Theorem D (iii) (compare Lemma 2.5). In particular, $\beta_{ps+2}^1(n)_* : H_*(B_{ps+2}^1(n); \mathbb{Z}/p)$ $\rightarrow H_*(BF^1(n); \mathbb{Z}/p)$ is injective. On the other hand, $H_*(B_{ps}^1(n); \mathbb{Z}/p)$ is somewhat complicated and contains unstable elements (i.e., $\beta_{ps}^1(n)_*$ is not injective). 3. For all k, l and n, there is a map

$$\mathbf{v}_k^l(n) : \operatorname{Rat}_k(n) \to B_k^l(n)$$

so that when localized at p and $1 \le l \le p-1$, $v_{\infty}^{l}(n)$ is the map $\Omega^{2}S^{2n+1}$ $\rightarrow BF(n)$ in (1.1). It is interesting to study how different the fibre of $\mathbf{v}_k^l(n)$ is from $S^{2n-1}.$ We discuss this briefly in Section 2 (compare Lemma 2.7).

2. Proofs

Note that as sets we have

$$X_k^l(n) = \prod_{q=0}^l \mathbf{C}^q \times \operatorname{Rat}_{k-q}(n),$$

where $\mathbf{C}^q imes \operatorname{Rat}_{k-q}(n)$ corresponds to the subspace of $X^l_k(n)$ consisting of elements $(p_0(z), ..., p_n(z))$ such that there are exactly q roots common to all $p_i(z)$. Hence,

$$X_k^l(n) = X_k^{l-1}(n) \coprod \mathbf{C}^l \times \operatorname{Rat}_{k-l}(n).$$

It is known that the normal bundle of $\mathbf{C}^l \times \operatorname{Rat}_{k-l}(n)$ in $X_k^l(n)$ is trivial (compare [3] and [4]). In $X_k^l(n)$, we pinch an open set $X_k^{l-1}(n)$ to a point. Then we have a map

$$\pi_1: X_k^l(n) \to X_k^l(n) / X_k^{l-1}(n) \cong \Sigma^{2ln}((\mathbf{C}^l \times \operatorname{Rat}_{k-l}(n)) \vee S^0).$$

Let

$$\pi_2: \Sigma^{2ln} \operatorname{Rat}_{k-l}(n) \vee S^{2ln} \to \Sigma^{2ln} \operatorname{Rat}_{k-l}(n)$$

be the map pinching S^{2ln} to a point. We set

$$p_k^l(n) = \pi_2 \circ \pi_1 : X_k^l(n) \to \Sigma^{2ln} \operatorname{Rat}_{k-l}(n).$$

~ 7

Recall that there is an inclusion (compare (1.5)):

$$i_{k-l}(n) : \operatorname{Rat}_{k-l}(n) \hookrightarrow \Omega^2 S^{2n+1}$$

Taking the adjoint of $i_{k-l}(n)$ and the (2ln-2)-fold suspensions, we have

$$\Sigma^{2ln-2}(\operatorname{Ad}(i_{k-l}(n))):\Sigma^{2ln}\operatorname{Rat}_{k-l}(n)\to S^{2(l+1)n-1}.$$

Let $\phi_k^l(n): X_k^l(n) \to S^{2(l+1)n-1}$ be the composition

$$\varphi_k^l(n) = \sum^{2ln-2} (\operatorname{Ad}(i_{k-l}(n))) \circ p_k^l(n).$$
(2.1)

Let $f^{l}(n): S^{2(l+1)n-1} \to J^{l}(n)$ be the map which may be used to attach a cell to obtain $J^{l+1}(n)$. In particular, $f^{1}(n)$ is the Whitehead product $[e_{2n}, e_{2n}]$, where e_{2n} denotes the generator of $\pi_{2n}(S^{2n})$ represented by the identity map. Let $h_{k}^{l}(n): X_{k}^{l}(n) \to J^{l}(n)$ be the composition

$$h_k^l(n) = f^l(n) \circ \varphi_k^l(n).$$

Recall the map $j^{l}(n)$ in (1.2). Since $j^{l}(n) \circ f^{l}(n)$ is null homotopic, so is $j^{l}(n) \circ h_{k}^{l}(n)$. Hence, there is a lifting

$$\widetilde{h}_k^l(n): X_k^l(n) \to W^l(n).$$
(2.2)

Recall that $H_*(\Omega^2 S^{2n+1}; \mathbf{Z}/p)$ is given as follows. There is a (torsion free) generator $\iota_{2n-1} \in H_{2n-1}(\Omega^2 S^{2n+1}; \mathbf{Z}/p) \cong \mathbf{Z}/p$, and the following hold:

(i) For p = 2, $H_*(\Omega^2 S^{2n+1}; \mathbb{Z}/2) \cong \mathbb{Z}/2[\iota_{2n-1}, Q_1(\iota_{2n-1}), ..., Q_1 \cdots Q_1(\iota_{2n-1}), ...].$

(ii) For an odd prime p,

$$\begin{aligned} H_*(\Omega^2 S^{2n+1}; \, \mathbf{Z}/p) &\cong \bigwedge (\mathfrak{l}_{2n-1}, \, Q_1(\mathfrak{l}_{2n-1}), \, ..., \, Q_1 \cdots Q_1(\mathfrak{l}_{2n-1}), \, ...) \\ &\otimes \mathbf{Z}/p \left[\beta Q_1(\mathfrak{l}_{2n-1}), \, ..., \, \beta Q_1 \cdots Q_1(\mathfrak{l}_{2n-1}), \, ...\right] \end{aligned}$$

YASUHIKO KAMIYAMA

In (i) and (ii), Q_1 is the first Dyer-Lashof operation (it takes a class of dimension d to a class of dimension dp + p - 1) and β is the mod p Bockstein operation.

For each monomial in (i) and (ii), we define a weight function w in the usual manner, that is, (1) $w(\iota_{2n-1}) = 1$; (2) $w(Q_1^d(\iota_{2n-1})) = w(\beta Q_1^d(\iota_{2n-1})) = p^d$, where $Q_1^d = \underbrace{Q_1 \cdots Q_1}_{d \text{ times}}$; (3) w(x * y) = w(x) + w(y), where * is the

loop sum Pontryagin product.

The structure of $H_*(W^l(n); \mathbb{Z}/p)$ is given in [4]. For simplicity, we recall only the case l = 1 (compare also [3] and [5]).

(i) For p = 2,

$$H_*(W^1(n); \mathbb{Z}/2) \cong \mathbb{Z}/2 [Q_1(\iota_{2n-1}), ..., Q_1 \cdots Q_1(\iota_{2n-1}), ...].$$

(ii) For an odd prime p, there is a (torsion free) generator $x_{4n-1} \in H_{4n-1}(W^1(n); \mathbb{Z}/p) \cong \mathbb{Z}/p$ so that

$$H_{*}(W^{1}(n); \mathbb{Z}/p) \cong \bigwedge (x_{4n-1}, Q_{1}(\iota_{2n-1}), ..., Q_{1} \cdots Q_{1}(\iota_{2n-1}), ...) \\ \otimes \mathbb{Z}/p \left[\beta Q_{1}(\iota_{2n-1}), ..., \beta Q_{1} \cdots Q_{1}(\iota_{2n-1}), ...\right].$$
(2.3)

We set $w(x_{4n-1}) = 2$. The structure of $H_*(X_k^l(n); \mathbb{Z}/p)$ is given as follows.

Proposition 2.4 [4]. For a prime p, $H_*(X_k^l(n); \mathbb{Z}/p)$ is isomorphic to the subspace of $H_*(W^l(n); \mathbb{Z}/p)$ spanned by monomials of weight $\leq k$.

Proof of Theorem A. From the construction of the map $h_k^l(n)$ and Proposition 2.4, we see that we can choose a lifting $\tilde{h}_k^l(n)$ in (2.2) so that $\tilde{h}_k^l(n)_* : H_*(X_k^l(n); \mathbb{Z}/p) \to H_*(W^l(n); \mathbb{Z}/p)$ satisfies the properties of Theorem A (i) and (ii). Setting $\alpha_k^l(n) = \tilde{h}_k^l(n)$, we obtain Theorem A.

Proof of Theorem B. Among elements of $H_*(W^l(n); \mathbb{Z}/p)$ which are not contained in $\operatorname{Im} \alpha_k^l(n)_*$, the element of least degree is given as

follows. Note that $X_k^l(n) \equiv \mathbf{C}^{k(n+1)}$ $(k \leq l)$ and $X_{l+1}^l(n) \equiv \mathbf{C}^{l+1} \times (\mathbf{C}^{(l+1)n})^*$. Hence, when $k \geq l+1$, the element of $H_*(X_k^l(n); \mathbf{Z}/p)$ of least positive degree has degree 2(l+1)n-1. We write the element by $x_{2(l+1)n-1}$ (compare (2.3) for l = 1). When p = 2, $x_{2(l+1)n-1}^i$ is non-trivial in $H_*(W^l(n); \mathbf{Z}/2)$ for all $i \geq 1$ (compare [4]). Hence, the least degree element of $H_*(W^l(n); \mathbf{Z}/p)$ which is not contained in $\operatorname{Im} \alpha_k^l(n)_*$ occurs when p = 2 and is of the form $x_{2(l+1)n-1}^i$. Since $w(x_{2(l+1)n-1}) = l+1$, we have $(l+1)i \geq k+1$, i.e., $i \geq \left\lfloor \frac{k}{l+1} \right\rfloor + 1$. Hence, $\alpha_k^l(n)_* : H_*(X_k^l(n); \mathbf{Z}/p) \to H_*(W^l(n); \mathbf{Z}/p)$ is an isomorphism for $* \leq \left(\left\lfloor \frac{k}{l+1} \right\rfloor + 1 \right) (2(l+1)n-1)-1$. From the universal coefficient theorem and the Whitehead theorem, $\alpha_k^l(n)_* : \pi_*(X_k^l(n)) \to \pi_*(W^l(n))$ is an isomorphism for $* < \left(\left\lfloor \frac{k}{l+1} \right\rfloor + 1 \right) (2(l+1)n-1) - 1$. This completes the proof of Theorem B.

Proof of Theorem C. The map $\psi^{l}(n)$ is defined as the following composition (compare [2, p. 304]):

$$W^{l}(n) \to W^{l}(n) \cup CW^{l-1}(n) \to \Sigma^{l}(S^{2n-1})^{(l+1)}.$$

Noting the map $p_k^l(n): X_k^l(n) \to \Sigma^{2ln} \operatorname{Rat}_{k-l}(n)$, it is easy to show that the restriction of $\psi^l(n)$ to $X_k^l(n)$ is homotopic to $\varphi_k^l(n)$. Hence (i) follows. (ii) is an immediate consequence of Theorem B and the five lemma. This completes the proof of Theorem C.

Proof of Theorem D. From the structure of $H_*(W^1(n); \mathbb{Z}/p)$ and Proposition 2.4, each monomial in $H_*(X_k^1(n); \mathbb{Z}/p)$ has weight 0 or 2 mod p. Hence, localized at p, we have

$$X_{ps}^{1}(n) \cong X_{ps+1}^{1}(n)$$
 and $X_{ps+2}^{1}(n) \cong X_{ps+i}^{1}(n) \ (2 \le i \le p-1).$

Now (i) is clear from the fibration of the first row of Theorem C(i).

(ii) is proved by comparing the mod 2 Serre spectral sequence for the fibrations:

For the rest of this paper we prove (iii).

Lemma 2.5. Let p be an odd prime.

(i)

$$H_*(BF^1(n); \mathbb{Z}/p) \cong \bigwedge (Q_1(\iota_{2n-1}), ..., Q_1 \cdots Q_1(\iota_{2n-1}), ...)$$
$$\otimes \mathbb{Z}/p \left[\beta Q_1(\iota_{2n-1}), ..., \beta Q_1 \cdots Q_1(\iota_{2n-1}), ...\right]$$

(ii) $\beta_{ps+2}^1(n)_* : H_*(B_{ps+2}^1(n); \mathbb{Z}/p) \to H_*(BF^1(n); \mathbb{Z}/p)$ is injective so that $\operatorname{Im} \beta_{ps+2}^1(n)_*$ is spanned by monomials in $H_*(BF^1(n); \mathbb{Z}/p)$ of weight $\leq ps$.

Proof. (i) is clear from the fibration $BF^1(n) \to W^1(n) \to S^{4n-1}$. To prove (ii), let M_k be the subspace of $H_*(BF^1(n); \mathbb{Z}/p)$ spanned by monomials of weight $\leq k$. From (2.3) and Proposition 2.4, $H_*(X_{ps+2}^1(n); \mathbb{Z}/p)$ is isomorphic to $M_{ps} \oplus x_{4n-1} \otimes M_{ps}$. (Recall that $w(x_{4n-1}) = 2$.) From the mod p Serre spectral sequence for the fibration $B_{ps+2}^1(n) \to X_{ps+2}^1(n) \to S^{4n-1}$, we have $H_*(B_{ps+2}^1(n); \mathbb{Z}/p) \cong M_{ps}$. Hence (ii) holds. This completes the proof of Lemma 2.5.

Since $\pi_1 | X_k^{l-1}(n)$ is null homotopic, so is $\varphi_k^l(n) | X_k^{l-1}(n)$. Hence, the inclusion $X_k^{l-1}(n) \hookrightarrow X_k^l(n)$ lifts to a map $X_k^{l-1}(n) \to B_k^l(n)$ (compare the fibration of the first row of Theorem C(i)). Restricting to $\operatorname{Rat}_k(n)$, there is

a map

$$\mathbf{v}_k^l(n): \operatorname{Rat}_k(n) \to B_k^l(n).$$

Note that when localized at p and $1 \le l \le p-1$, $v_{\infty}^{l}(n)$ is the map $\Omega^{2}S^{2n+1} \to BF(n)$ in (1.1). In particular, we consider the map

$$\mathbf{v}_k^1(n) : \operatorname{Rat}_k(n) \to B_k^1(n). \tag{2.6}$$

Let $C_k(n)$ be the fibre of (2.6).

Lemma 2.7. For an odd prime p and k = ps + i with $2 \le i \le p - 1$,

$$H_*(C_k(n); \mathbf{Z}/p) \cong H_*(S^{2n-1}; \mathbf{Z}/p).$$

Proof. The lemma follows easily from Lemma 2.5 and the mod p Serre spectral sequence for the fibration (2.6).

Lemma 2.7 implies that localized at p, there is a fibration

$$S^{2n-1} \to \operatorname{Rat}_{ps+2}(n) \to B^{1}_{ps+2}(n).$$
 (2.8)

Let $F \to E \xrightarrow{\pi} B$ be a fibration with a retraction $\Sigma^r E \to \Sigma^r F$. Then we have a homotopy equivalence

$$\Sigma^r E \simeq \Sigma^r (F \times B).$$

(Compare the proof of [2, Proposition 7].) We use this for r = 2 and apply to (2.8). A retraction $\Sigma^2 \operatorname{Rat}_{ps+2}(n) \to S^{2n+1}$ is constructed as the adjoint of $i_{ps+2}(n)$ in (1.5). Then

$$\Sigma^2 \operatorname{Rat}_{ps+2}(n) \simeq \Sigma^2(S^{2n-1} \times B^1_{ps+2}(n)).$$

Localized at p, we have $\operatorname{Rat}_{ps+1}(n) \simeq \operatorname{Rat}_{ps+2}(n)$. Hence Theorem D(iii) holds. This completes the proof of Theorem D.

References

 F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 163-221.

YASUHIKO KAMIYAMA

- [2] B. Gray, On the iterated suspension, Topology 27 (1988), 301-310.
- [3] Y. Kamiyama, Geometric approximation of the fibre of the Freudenthal suspension, Bull. Lond. Math. Soc. 30 (1998), 635-642.
- [4] Y. Kamiyama, Polynomial model for homotopy fibres associated with the James construction, Math. Z. 237 (2001), 149-180.
- [5] R. J. Milgram, Unstable homotopy from the stable point of view, Lect. Notes Math., Vol. 368, Springer, Berlin, Heidelberg, New York, 1974.
- [6] J. C. Moore and J. A. Neisendorfer, Equivalence of Toda-Hopf invariants, Israel J. Math. 66 (1989), 300-318.
- [7] G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72.

MMM. Pohnicom

34