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Abstract

In this article, we investigate the geometry of quasi homogeneous co-
rank one finitely determined map germs from ((C”J'l, 0) to (C", 0)
with n=2,3. We give a complete description, in terms of the

weights and degrees, of the invariants that are associated to all stable
singularities which appear in the discriminant of such map germs. The
first class of invariants which we study are the isolated singularities,
called O-stable singularities because they are the O0-dimensional
singularities. First, we give a formula to compute the number of A,

points which appear in any stable deformation of a quasi homogeneous
co-rank one map germ from (C"*, 0) to (C", 0) with n =2, 3. To

get such a formula, we apply the Hilbert’s syzygy theorem to
determine the graded free resolution given by the syzygy modules of
the associated iterated Jacobian ideal. Then we show how to obtain the
other O-stable singularities, these isolated singularities are formed by
multiple points and here we use the relation among them and the
Fitting ideals of the discriminant. For n = 2, there exists only the

germ of double points set and for n = 3 there are the triple points,
named points Ajqq and the normal crossing between a germ of a

cuspidal edge and a germ of a plane, named Ay ;. For n =3, there

appear also the one-dimensional singularities, which are of two types:
germs of cuspidal edges or germs of double points curves. For these
singularities, we show how to compute the polar multiplicities and also
the local Euler obstruction at the origin in terms of the weights and
degrees.

1. Introduction

The study of singularities of differentiable maps was initiated by
Whitney who showed that the singularities which appear in any stable map
from the plane to the plane are the cusps and double points. The singularities
of the stable maps, called stable singularities, are also very important in the
study of the non-stable maps, in special, for the class of the finitely
determined maps, since they have the interesting property that for these

maps, they are preserved for any stable deformation.
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For the particular singularities which are isolated, called O-stable
singularities, the type and also the number of such singularities are very
relevant because they contain information about the local geometric behavior
of such maps. For instance, we cite the work of Gaffney and Mond in [4]
where it is shown how to determine algebraically the number of cusps and
double points of finitely determined map germs from the plane to the plane,
and moreover, it is shown, in fact, that these numbers are topological
invariants in families of such germs. We also remember here the works of

Mond on germs of surfaces in C3 where it is shown that the stable
singularities are the cross-caps and the triple points and how to compute
these numbers algebraically, see [15] and [16].

For the non-isolated singularities, there are some numbers which are
associated to them, in special the polar multiplicities and the local Euler
obstruction are very relevant to show information about the local geometric
behavior of such maps.

So the determination of formulae to compute these numbers became
relevant and in this case, the class of quasi homogeneous maps is known as
some of great interest, since for this class there are several results showing
how to compute these numbers in terms of weights and degrees.

An analytic map germ f : (C", 0) - (CP, 0), f =(fy, ..., fp)is quasi-
homogeneous of type (ay, ..., ®n; d, ..., dp) if there are positive numbers

@y, 0, ..., ©p in Q called weights, and dy, ..., d,, called degrees such that
fi(A°txg, ooy A0, ) = 2% f; foralli=1, .., p, xeC" and A e C.

For the class of finitely determined quasi homogeneous map germs from
the plane to the plane, or when n = p = 2, Gaffney and Mond [5] obtained
formulae to compute the number of cusps and double-folds that involve only
weights and degrees. For the case n =2 and p =3, Mond in [17] derived
formulae for the number of the triple points and cross-caps, in terms of the
weights and degrees of quasi homogeneous map germs in these dimensions.
Marar et al. investigated in [13] the O-stable singularities for the case when
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the source dimension and target dimension coincide, i.e., n = p. First, they
described algebraically all 0-stable singularities that appear in any co-rank
one stable map germ, showing that they are the Ap singularities, for any
partition P of n, according to Arnold’s notation. Then they showed how to
compute the number of such Ap singularities for quasi homogeneous map

germs in terms of the weights and degrees. The key tool to obtain such
formulae is an application of the theorem of Bezout for zero-dimensional
complete intersections.

Our first object of interest in this article is the description of the O-stable
singularities that appear in the discriminant of a stable deformation of

weighted homogeneous finitely determined map germ from ((C”*l, 0) to

(C", 0) with n = 2 or 3 also in the co-rank one case.

The main difference from the case of map germs from (C", 0) to (C", 0)

is that the corresponding defining ideals of the 0-dimensional singularities
are not complete intersections. Therefore, we cannot apply the theorem of
Bezout.

First, we study the mono germs, named A, singularities, they form the
key tool to find the other singularities since there are several relationships
between the A, points and the other. We show that the number of A, points
can be obtained as the complex dimension (as vector space) of some Cohen-

Macaulay algebras of type % To compute such dimension, first, we apply

the Hilbert’s syzygy theorem to obtain the free resolution given by the
syzygy modules of the ideal J as described in [6, Section 2.5]. Then we find a
convenient filtration in O, from the weights given by the weighted
homogenous germ to get the Hilbert polynomial of the associated graded
resolution. The valuation of this polynomial in 1 gives the number.

To describe the O-singularities which are multi germs, we apply the
results of Mond and Pellikaan in [18] where it is shown how the Fitting
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ideals associated to the discriminant are related to the isolated singularities of
map germs.

Last, but not the least, we apply these results to study the 1-dimensional
stable singularities which appear in the discriminant. We show how to
compute the polar multiplicities of the singular curves of the discriminant
only in terms of the weights and degree of the map germ. Moreover, we also
apply these results to show how to compute the Euler obstruction at the
origin of such singular curves in the discriminant.

2. Stable Singularities

In this section, we describe all stable singularities which appear in the
discriminant of any finitely determined map germ f € O(n+1, n) with

n =2, 3. As these dimensions are in the range of the nice dimensions of

Mather, we know that they form a finite set of strata in the image by f of the
critical set of f, called discriminant of f and denoted A(f) = f(Z(f)).

In general, for any pair of dimensions (n, p), the description of the

stable types can be done in terms of sub-schemes of multiple points of a germ
f, as we can see in [9] for the case n = p or in [8] for the case n < p. We

remark that these constructions are done from the original construction of the

set of multiple points for any finitely determined map germ from (C", 0) to

(CP, 0), with n > p, as described in details by Goryunov in [7].

We describe here these singularities for the particular cases that we are
interested.

For map germs from €3 to C?, the discriminant A(f)isacurve in c?,

possible with isolated singularities (the O-stable singularities) of two types,
the double points set denoted A 1 and the cusps set, denoted Ay.

For map germs from C* to €3, the discriminant of f is a germ of surface

in C2. In this case, we can have in the discriminant of f the isolated stable
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singularities, called 0-stable singularities, and also 1-dimensional stables
singularities, the 1-stable singularities.

Here the O-stable singularities are of three types, the triple points set,
denoted A 4, the swallowtails set, denoted Ag and the intersection of a

germ of cuspidal edge with a germ of plane, denoted Ay ;. The 1-stable
singularities are of two types: the double points curve, denoted A ; and the

cuspidal edge, denoted A,.

Figure 1 shows the geometric models of the isolated stable singularities

Ag, Apz,1) and Ay ).

Figure 1. Geometric models: Ag, A 1) and Az g 1), respectively.

3. Iterated Jacobian Ideals of Points A,

In this section, we show how to compute algebraically the isolated stable
singularities, which appear as a mono germ, in the discriminant of any

finitely determined co-rank one map germ from c"™!to C" with n = 2, 3.

These mono germs, or points A, are described in terms of the iterated

Jacobian ideals, these ideals were defined by Morin in [19], and the
relationship among such numbers and the iterated Jacobian was shown in [2].

Let f :(C", 0) > (CP, 0) be an analytic map germ and | < O, be a
finite co-length ideal generated by the system i, ..., 9,. For each te
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{1, ..., n}, we define the Jacobian extension of the rank t for the pair (f, I),
by A¢(f, 1) =1+ 1(d(fq, ..., fp, g1, - Oy )), Where

1(d(f1, o T, G o 01)

denotes the ideal generated by minors of size t xt from the Jacobian matrix
ofthe fy, .., fp, 91, . 9 (d(fy, oy Ty, 1y oy O1))-

If i = (i, ..., i) is a Boardman number, then we inductively define the

iterated Jacobian ideal for i, J;(f) in the following manner:

ity < Bl 12 10D it k=1
| Ansia(f i, i (F)) i k> 1
We see in [2] that if the map germ is finitely determined and the ring

O
Ji(f)

% gives the number of some isolated singularities, denoted c;(f), in
|

is Cohen-Macaulay, then the complex dimension (as vector space) of

the discriminant of f. In the cases which we are working in this article, these
isolated singularities are the A, singularities.

For finitely determined co-rank one map germs from (C?’, 0) to ((CZ, 0),
we are looking for the number of points Ay, the iterated Jacobian ideal

associated to these points is the ideal J, () which we describe below.

Assume that f(x, y, z) is written in the form f(x, y, z)=(x, g(x, Y, 2)),
first, we obtain the ideal J,(f) which is generated by the minors of order
two of the Jacobian matrix of f and one has J,(f) = 15(d(f)) = (gy, 9;),
where g,, denotes the partial derivative of g with respect to the variable
w e {X, y, z}. Applying the recursive process of Morin, we obtain the ideal
Jo1(F)=J3o(f) + 13(d(f, gy, 9;)) = (9y, 9;, M), where M denotes the
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determinant of the matrix of order 2 given by the second partial derivatives
of g with respect to the variables (y, z). From the results shown in [2], we

_ g O3 . O3
obtain #A, = dlmcm = dim¢ (9y, 97, M)’

For finitely determined co-rank one map germs from (C%, 0) to (C3, 0),
the iterated Jacobian ideal associated to the points Ag is the ideal J, 1 1(f).
Write fas f(x, y, u, v) = (x, y, g(x, y, u, v)), the Jacobian matrix of f is the

1 0 0 0
3x 4 matrixd(f)=| 0 1 0 0 |. Toobtain the iterated Jacobian

g Oy Ou Oy
ideal J; 1 1, first, we get Jo(f) = I3(d(f)) = (9y, 9y) and Joq1=J5(f)+
1,(d(f, gy, 9y)) = (9y. Gy, H), where H := g, 9y, — (gyy)° and
Jp11(f) =Jg,1 + 14(d(f, 9y, 9y, H))

=(Qu» 9v, H, guHy — 9w Hu, 9wHy — gwHy)-
From Corollary 4.4. of [2], one has

_di Oy
#hg = dime J2.11(F)

Oy
9u> 9v» H, 9uuHy = 9w Hu, duwHy — gwHu)”

= dlm(c <

We remark that if the map germ f in O(a,3) is a suspension of a map germ

from C2 to C3, thenitcanbewrittenas f(x, y, u, v) = (X, ¥, g(X, y, u)+v?),

therefore, the iterated Jacobian ideal J, ; 1 is generated by {gy, 9uy. Guuu- v}

and the ring JO"' is isomorphic to the ring g 903 o) Therefore, for
2,11 u» Juur Juuu

O3
(9u» uur Guuu)

suspensions in these dimensions, we have #Ag = dim¢
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4. Points A, and Free Resolutions

The first step in the method to compute the complex dimension of any

ring % for any finite co-length ideal 1 in O, is to obtain a projective

resolution of the ring % The existence of such resolution is shown in the
Hilbert’s syzygy theorem, which we recover here in a more general set-up.

Theorem 4.1 [6, Theorem 2.4.11]. Let (A, m) be a local Noetherian ring
and M be a finitely generated A-module. M has a minimal free resolution

Am Om-1 o
O->F,—>Fp1 » ->F—>M->0

of length m < n, where F are free R-modules.

The construction of such free resolution is based in the description of
morphisms o; between the modules F and F_;. These morphisms form

the main tool to fix the right filtration in the ring R which we need to get the
formulae for the number of A, points. In Appendix of this article, we show

how to construct these morphisms in an example.

The next step is to define an appropriate graduation for each member F

in the exact sequence of the free resolution in such a way that the morphisms
are of degree zero. From this graded exact sequence, we get the Poincaré
series (or the Hilbert Samuel polynomial) and the evaluation of this
polynomial at 1 gives us the desired formula.

Next, we show how to obtain such resolution and the formulae for the
cases which we are interested.

4.1. Points A, for map germsin O3 ,
First, we show how to compute the number of points #A, of any finitely

determined co-rank one weighted homogeneous map germ from (CS, 0) to

(€2, 0).
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Let f(x, u, v)=(x, g(x, u, v)) be such a germ. Then we have #A, =
. (@) . 2
dimc ﬁ with Jo 1(f) = (9u, 9y Guu - Gw — (Gu)*)-
2.1(f)
Since J; 1(f) has a minimal system of generators with three elements in

O3, the minimal free resolution of dim¢ JO—?” is well known and is given
2,1

by the following exact sequence:

3 a2 3 o O
0—>(93—>(—B(93—>6-)(93—>(93—> — 0.
-1 i J2 1(f)

Here 7 is the natural projection, the morphism oy is defined by the (1x 3)-

matrix associated to ker(w), or ag =(9y, 9y, Guu - Gw —(guv)z). The
morphism a., is defined by the 3 x 3-matrix associated to ker(a;) and o3

is defined by the corresponding (3 x 1) -matrix of ker(o).

To obtain the corresponding sequence of graded modules with zero
degree morphisms, we suppose that g(x, u, v) is quasi-homogeneous of type

(o, @9, wg; d). From the weights and the degree of the germ g, we have
that each generator of the ideal J,1(f) is weighted homogeneous and

therefore we can write this resolution as follows:

3 3 O
0> O3[-C] > @ O3[-Bj] > @ O3[-A] > 03 > 525 =0,
i=1 i=1

2,1(f)
where Ag_ =d — 02, A2 =d — 03, A3 = 2(d — M2 —(,03), Bl =2d — 0y — 03,
Bz = 3d —30)2 —20)3, B3 =3d —2(1)2 —30)3 and C = 4d —30)2 —30)3.
Now, we remember that for each O3[-r], the associated Poincaré series
is defined as:
tl’
-t a-t2)a-t°8)

P(’)3 ( )
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Since the alternating sum of the Poincaré series (or the Hilbert
polynomial) By, (t) of an exact sequence of graded modules with degree zero

morphisms is equal to 0, we conclude that the Poincaré series of Jo—ff) is
2,1
the alternate sum of the Poincaré series of each O[-r] in the sequence,
hence
_ 3 A 3 B ) _(C
P o ()= 1 (Zi:lt )+ (Zi:lt j (t)
3 .
‘]2,1(f) (1_tm1)(1_tm2)(1_tw3)
Therefore,
#hy = dime =23 =P o @) =1mP o, (1)
\]2 1( f ) _ 3 t— 3
' J2,1(f) J2(f)
and
1 3 2 Pd® + P,d? + Rd + Ry
#A2 = . {P3d + P2d + P]_d + Po} = ,
010203 0203

where P3 = 2, P2 = —40)2 — 40)3, Pl = 2(1)% + 6(1)2.(1)3 + 20)%, PO = —20)%033

- 2m2m§.

Example. Let F : (C3, 0) = (€2, 0): Fye(X, u, v) = (X, xu + uv? + uX)
for k e N with k > 3. Then the map germ F is finitely determined and

guasi-homogeneous of type (k—l,%,l; k —1, k). From the above

result, we obtain #A,(F) =k +1.
4.2. Ag points of suspensions in Oy 3

To compute the number of points Ag for co-rank one map germs from

(C* 0) to (C3 0), we need to split our calculation in two different
situations.
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One is the case that the map germ is a suspension from a map germ from
(Cs, 0) to ((C3, 0) and the other is the general case, where the map germ is
not a suspension.

The main difference is the minimal number of generators of the ideal

Oy
Jo11

J 11, this gives rise to different minimal free resolutions of the ring

For suspensions, the zero set of the associated iterated Jacobian ideal
J2 11 is a complete intersection formed by isolated points in C*. When the
germ is not a suspension, any system of generators of J, ;1 has at least 5

elements, therefore the zero set is not a complete intersection. To obtain the
corresponding minimal resolution we applied the algorithm given in [6, p.
165].

To clarify this difference, first, we describe the resolution for
suspensions. In Subsection 4.3, we describe the resolution for map germs
which are not suspensions.

Let f :(C* 0)— (C3, 0) be a suspension of a finitely determined co-
rank one map germ ¢ : ((C3, 0) > (Cs, 0) writtenas f(x, y, u, v) = (X, Y,
g(x, v, u) + v?). Then the associated iterated Jacobian ideal is Jog1(f) =
(9u+ Guus Juuu: V).

If g is quasi-homogeneous of type (o1, @y, ®3; d), then f is also quasi-
homogeneous with respect to the weights (o, ,, ®3, d/2). Now, we call
01 =0y, 92 = Oyy» 93 = Qyuy and g4 = v. Observe that each generator

of J; 14 is a weighted homogeneous polynomial of degrees dj = d — w3,

d2 =d —2(,03, d3 =d —3(,03, d4 :Zi

> respectively.

The zero set of the ideals J, 1 1(f) is a complete intersection of isolated

points C* and the free resolution of _Os is:
Jz,1,1(F)
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oy 4 a3z 6 ar 4 o s 04
050, >PO0, >POy, >P Oy 504 >—— —>0.
i=1 i=1 i=1 Jo,11(F)

The graded resolution associated to sequence above is
4 6
0 — O4[-D] - (-Bl O4[-Ci] - @1 O4[-B;]
i= i=

Oy

4
—)904[—16\']—)04 —)m—)

0,

where
7 d
DZEd—6033, A]_:E,Azzd—3033, Agzd—(Dg,A4=d—2(03,

Bl=2d—3(03, Bz=2d—5(03, B3=2d—4(,03, B4 =%d—20)3,

Bs Z%d_(D3, BGZ%d_3(D3’ C1:3d_6(’03’

C2 ng —3(,03, C3 Z%d —50)3 and C4 =%d —40)3.

From this grading, we obtain the graded exact sequence with Hilbert

polynomial
- b A 6 (Bi)_ 4G D
1 (Zi:lt )+(Zi:1t ) (Zi:lt )H
P o, (= - .
J2,11() (1_tun)(l_th)(l_tws)(l_ﬁ]
Therefore,
. O T
dlmCm—P Oy (1)—I|mP Oy (t)

J,1,1(1) Jo,1,1(1)

12d* - 7205d2 +132m5d % - 7203d

4l (1)10)2(03 %
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Thus,

1
010203

#Ag(f) = Hd3 + (-603)d? + (1103)d + (-603 )}

_d® —6m3d? +1105d - 603
w1003 '
As f is a suspension of g, this formula is equal than the formula of the
number of points Ag of the map germ g : (C3,0) = (C3, 0), in this case
the iterated Jacobian ideal associated to the number of points Ag of g is
J1.1.1(9) with free resolution:
3 3 o b 03

a3 a2
0503>P 03> 03 >03—>
i=1 i

-— 0.
] J,11)(9) -

With graded resolution,

3 3
0 03[-D] > @ O3[-Li] > @ O3[-R] > 03 > — 3 50
i=1 i=1 Ja1y(f)

where D =3d —w3, Lj =2d - (6-i)wz, Vie{, 2,3}, R =d-(4-i)os,
Viell 2 3.

Therefore,

3 _6wgd? +11w3d — 603
010203 '

#hg(g) = dime — 3 =P o (@)=
Jarn®) 5

We remember that this formula is shown in [13] as a consequence of the
theorem of Bezout.

4.3. Ag points of non-suspensions in O 3

Now, we compute the number of points of type Ag for map germs from

(<C4, 0) to (<C3, 0) which are not suspensions. Write any finitely determined
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co-rank one map germ f:(C* 0)—(C30) as f(x, y,u,v)=(x Y,
g(x, ¥, U, v)).

In this case, the system of generators obtained from the construction of
the iterated Jacobian of J; 1 1(f) is

{9u. 9v, H, guuHy — dwHu, 9w Hy — gwHu -
If all these generators are non-zero, then from [6, Theorem 2.5.9, p. 162], it is
a minimal system of generators of J,q(f). Therefore, the theorem of

Hilbert guarantees the existence of a minimal free resolution of the ring

——~4___ and applying [6, Algorithm 2.5.16, p. 165], we obtain:
Ja,1,1(F)

2 ag 7 a3 9 az 5 o T 04
0->@P0,>PO,>PO; >PO; >0y > —5 >
i1 i1 i1 i1 J2.11(F)

0.

The morphism oy is given by oy = ker(w), where = denotes the natural
projection and for i > 2, each morphism «; of this sequence is defined

inductively by the matrix corresponding of the set all syzygies of the
submodule associated to the matrix which defines the morphism o;_;. See

the definition of the syzygies in Appendix of this article, where we describe
this construction for one example.

To obtain the corresponding graded resolution, we suppose that g is
quasi-homogeneous of type (o1, ®p, w3, w4; d). Then f is quasi-

homogeneous of type (wq, wy, ®3, ©4; ®1, ®y, d).

Call g1 =0y, 92 =0y, 93:=H, 94 =9gyHy - gyHy and gs =
guwHy — 9wHy-

Therefore, each generator g; of J, 44 is weighted homogeneous with

degrees dy :=d —w3, dy =d —w4, d3:=2d - 203 - 204, ds =3d -
4wz — 3wy and dg = 3d — 3wz — 4wy, respectively.
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Hence we can write this resolution as an exact sequence of graded
modules with degree zero morphisms as follows:

2 7 9
0— I@l O4[-Di] —» I(-zBl O4[-Ci] — IC-:Bl O4[-Bi]

O4

5

0,

here Ai =dj, Vie{l, ..., 5}, B; =5d — 703 — 504, By =5d — 503 — 7oy,
B3 = 4d —3w3 — 504, By =3d — 203 — 3wy, Bg =4d — 4wz — 4oy, Bg =
2d — w3 — o4, B; =4d — 4wz — 4wy, Bg =3d —3w3 — 204, Bg =4d -
503 —5m4, C; =5d — 503 — 404, Cy = 4d — 3wz — 34, C3 =5d — 4mg
— 4wy, C4 =6d —5m3 —8wy, Cg =6d — 6wz — 7wy, Cqg=6d—T7w3 —
6wy, C7 = 6d — 8wz — 5w, and Dy = 7d — 6wz — 8wy, Dy = 7d — 8wz —
Bwy.

Now, we compute the Hilbert polynomial of given as the

-4
Jp,11(f)
alternate sum of the other Hilbert polynomials:

(50 () (L) (5)

P o, ()=
Toa(1) (1-t")L-t92) (1 -t73) (L - t™4)
Therefore,
_dim. 94 _ .
#he = dime 32,1,1(f)_P 0, W=1lmP o,

J2,1,1(F) - Jo1,1(1)

_ P4d4 + P3d3 + P2d2 + P]_d + PO
a M W23y '

with P, =16, Py = -3— 550, — 5503, P, = %% + 6303 + 63w3 + 139030,
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+ %m, P, = —2403 —10803m, — 2403 —12030,4 —108w3m] _%mg _%mg

and Py = 240)%0)4 + 24033032 + 4503%0);21 + %m§m4 + %0)30)421.

Example 4.2. Let F, and F, be map germs from (C* 0) to (C3, 0)
defined, respectively, by
F(X y, U, v) = (X Y, Gy(X, Y, u, V)

with Gi(X, y, U, V) i= yu + xv + uv? + u3,

Fa(x, ¥, U, v) = (%, y, Ga(x, ¥, U, v))

with Go(X, Yy, U, V) i= yu + xv + ud +v3,

Note that both the maps are quasi-homogeneous of type (2, 2, 1, 1; 3).

We remark that in these examples the iterated Jacobian ideals J, 1 1(Fp)

2

and J, 4 1(F,) have the same standard basis (y, x, v*, uv, u2) which are

needed to construct the free resolution.

Applying the result above and substituting d =3, ® =2 = ®, and
03 = 1= Wy, WE obtain #A3(F1) =3= #A3(F2)

Next, we resume these results in the following:

Theorem 4.3. (1) For f :(C3, 0) = (C2,0), f(x,u,Vv)=(x, g(x, u, V),

we have

_ P3d3 + P2d2 + Pld + PO

#A
010203

where P3 = 2, P2 = —4(02 - 40)3, Pl = 2(0% + 60)2.(03 + 20)%, Po = —2OJ%(DS

- Zmzco%.
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@) 1f f:(C* 0)— (C30), f(x, v, u,v)=(x, Yy, g(x, y, u)+Vv?)isa
suspension, then

d3 - 6w3d? + 1103d — 603 |
01023

#Ag =
@) If f:(C* 0)— (C30), f(x v, u v)=(x Yy, g(x v, u, v)) is not
a suspension, then

Pd* + Pdd + Pd? + Pd + Ry
W102MW3MWy '

#Ag =

where P, =16, P; = —3—55m, — 5503, P, = %(% +63m3 + 6303 +139030,

+ %am, P, = 2403 108030, — 2403 —12m30,4 —108w303 —%(Dé _%@‘21

and Py = 2403%034 + 240330)2 + 4503%03421 + %m%mﬂr + %(’3303421-

4.4. A, pointsin Oy, n with £ >1

In the general case of finitely determined map germs from c" to C"
with ¢ >1 and n > 3, even in the co-rank one case, the associated zero set

of the iterated Jacobian ideal J,.q 1 is not Cohen-Macaulay, so we cannot

.....

compute the number #A,, as the dimension of the ring JO”—”
0+1,...,1

For instance, in the case of co-rank one map germs from C° to C4, the

number of points A, is different from dim¢ 3 Os , since we see in [3,
2,1,1,1
Corollary 2.2] that
dimg Os _ #A, + #4Dy,,
Jo111

where the points A, are the butterflies and D, denotes the umbilic points.
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5. The 0-stable Multiple Singularities and Fitting Ideals

To compute the O-stable singularities which are multiple points, we use
the Fitting ideals associated to the discriminant of the germ, described by
Mond and Pellikaan in [18]. We apply the results given recently in [14],
where it is shown how to obtain these singularities using the Fitting ideals.
For more details on the definition and main properties of the Fitting ideals,
see [18].

5.1. Map germs from C3 to C?

For any stable map germ f from c® to €2, the discriminant of f,
A(f) = f(Z(f)) is a curve in C?, possible with isolated singularities (the
O-stable singularities) of two types, the double points set denoted A ; and

the cusps set, denoted A,. There are two Fitting ideals associated to it, which
are denoted by Fy(f) and Fy(f). They define in A(f) the following sets:

1. V(Fo(f)) = A(f) or Fy(f) is the defining ideal of the discriminant
curve.

2. V(Fi(f))= A1 UAy, union of the isolated singularities in the
target.

First, we show the following formula which relates the ideal 7, and the
0-stable singularities.

Lemma 5.1. For any finitely determined map germ of co-rank one
f :(C", 0) > (C?, 0) with n > 2, we have

Ocz,o

#A2 + #A‘l,l = dlm(c m

For the special case of map germs from the plane to the plane, this
formula was shown by Gaffney and Mond in [4].
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Proof. In this case, the critical curve X(f) is reduced, then from [18,
Theorem 5.2], we have that the zero set of the ideal F;(f) is determinantal,

hence it is Cohen-Macaulay and then we have a flat deformation on the basis
of the versal unfolding, from the law of conservation of multiplicity we
obtain that

) O
dimc Tzf) = Co(#Ap) + o1 1(#A 1),

where c¢; means the contribution of the singularity A in the ideal F;(f). A

straightforward calculation using the normal form of these singularities
shows us that the numbers c; are equal to 1 in these cases. O

Applying the formula to compute the number of points A, given before

and this we obtain a formula to compute the number of points A ;.

5.2. Map germs from c*toC®
Here the Fitting ideals which appear in the discriminant A(f) = f(Z(f))

< C3 of fare Fy(f), Fi(f) and F,(f) and they define in A(f) the
following sets:

1. V(Fo(f))=A(f), here Fy(f) is the defining ideal of the
discriminant.

2. V(F(f)) = f(D(f)U f(22Y(f)), union of the double points curve
and the cuspidal edges curve of f.

3. V(F,(f)) = A, UA 11U Ag, union of the isolated singularities in
the target.

Recently, it is shown in [14] that the formulae relate these ideals and the
0-stable singularities.

Proposition 5.2 [14, Corollary 4.1]. Let f : (C"*™, 0) — (C™, 0) with
m > 3, be a finitely determined map germ of co-rank one with only
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singularities Ap in its discriminant. Then

. O
dime —Mm = #Ap.
(Cfm—l(f) | PT=m P
Therefore, when m = 3 and n =1, we obtain

Ot
dim¢ (1) =#A o +H#A 1+ #HAS (*)

and in [14, Proposition 4.3], the following formula is shown:
O3
C 2. '
(1(A, 1) = Fo(f))

The notation (I : J) means the quotient ideal of an ideal | by another

#A(l,l,l) =dim (**)

ideal Jinaring A or

(1:J)={aeA alcl}.

Here I(ALl)2 denotes the defining ideal of the cuspidal curve in the

discriminant of f.

If f is of co-rank one, we also see in [14]:

o ng T 693 —di __l?é___
e T i ) T2l

(***)

Example 5.3. Let f(X, y,u, v):=(X, Yy, yu+ xv+ uv? + u3). First, we
obtain #Ag = 3 using Theorem 4.3. To compute the numbers # A 1 1 and

#Ay 1 of f, we compute the Fitting ideals of the discriminant:
Fo(f)=(272% + 36X 222 + 4v322 + 4x°® + 8X 4y 2 + ax 2y %),
Fi(f)=(3X?%z —v2z,9%xz2 + 2X3 + 2xv3, 3vz? + 2x4

+2X 22,978 4 2x Az + 2v3z, 3x° + 2x 32 — xv4)
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and
Fo(f) = (X2, XY, Y2, XZ,VvZ, Z?).

To get the number of triple points, we compute the defining ideal of the
cuspidal edge, which is generated by {3X2 ~Y2 2772 +8Y3} and apply
O3

STCRD)

From equation (#+**), we get #A , =1, since dim¢ % =4.
2

=0.

the formula (+*) above #A 1 1 = dim¢

6. Invariants of the 1-stable Singularities

We see in [20] that there are some invariants associated to the one-
dimensional singularities which appear in the discriminant of f that can be
computed in terms of the number of O-stable singularities. These invariants
are the polar multiplicities and the Euler obstruction. We apply the results of
[20] to show here how to compute some of these invariants in terms of the
weights and degrees.

6.1. The cuspidal curve f(Z21(f))

We recover the result of [20] which shows the relationship among the
first polar multiplicity of the cuspidal curve f(Z(”‘Z’l)(f)) and the number
of A, points.

Proposition 6.1 [20, Corollary 4.2]. Let f(Xq, Xo, X3, Xg) = (X1, Xo,
g(Xq, X2, X3, X4)) be a finitely determined, quasi-homogeneous, co-rank
one map germ with weights wy, Wy, W3, Wy, Where wy < wp, Wg < Wy and

let d be the weighted degree of g with d > wy and d > ws.

The first polar multiplicity at the origin of the cuspidal curve
f(E(”_Z'l)(f)) denoted my(f(Z21(f))) can be computed as
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”1 4 4 D 4 1 4 1
) — P _ -
m(re o= ST (-1 TT 5 | TT 5 |2 - #0
p=2v=1 2| po 1| F“—l
K 1

with Dy =wy, Dy =2(d —wg —wy), D3 =d —wgz and Dy =d — w,.
Now, we use this formula and the formula given in Subsection 4.3 for the
number of points Az to compute directly the first polar multiplicity
my(f (=21(1))) in terms of the weights and degrees.
Corollary 6.2. Let f(Xq, Xo, X3, X4) = (X, X2, 9(Xq, X, X3, X4)) be a

finitely determined, quasi-homogeneous, co-rank one map germ with weights
Wy, Wo, W3, Wy, Where wy < W,, W3 < w, and let d be the weighted degree

of gwith d > w and d > wy. Then

my(f(=21(f)) = 22:2 szl(\,[\),_s - 1}1_[1:2 Dp1

Sy |
K

H4 1 _P4d4+P3d3+P2d2+P1d+PO

+1
u=2| D M1 WoM30y

with Py =16, Py = -3~ 550, - 5503, Py = = w3 + 630 + 6305 + 139030,

+ %m, P, = —2403 —108w30, — 2403 —12m3m4 —108wz05 —%mz —%mﬁ

and Py = 2403wy + 24m303 + 450307 + %w%m + %(030)421.

We also see in [20] that the local Euler obstruction of the cuspidal curve
of any weighted homogeneous co-rank one map germ is calculated in terms
of the weights and degrees of f and also in terms of the number of points As.
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We remember that, in fact, the local Euler obstruction for varieties,
introduced in [12] by MacPherson in a purely obstructional way, is an
invariant that is also associated to the polar multiplicities and Trang and
Teissier in [11] showed that the local Euler obstruction is an alternate sum of
the multiplicity of the local polar varieties.

Theorem 6.3 (Trang and Teissier [11]). Let X be a reduced analytic

space at 0 C"*1 of dimension d. Then
Eup(X) = Y (D4 my (),
where m;(X) denotes the absolute polar multiplicity of the polar variety
R(X).
We see in [10] the formula for the Euler obstruction at the origin of
fE"24()).

Proposition 6.4 [10]. Let f € O(n, 3), n > 3 be a finitely determined
map germ. Then

Eug(f (2"21(1)) = #Ag - u(E"21(F))+ L+ my(f (=" 21(1)))

And from the second equation of the Proposition 6.1 we have the
following formula to compute the Euler obstruction in terms of the weights
and degrees.

Corollary 6.5 [20]. Let f(Xq, Xo, X3, X4) = (X1, X2, 9(X1, X2, X3, X4))

be a finitely determined, quasi-homogeneous, co-rank one map germ with
weights wy, Wy, Ws, Wy, where wy < w,, Wy < w, and let d be the weighted

degree of g with d > w; and d > wy. Then

- 4 4 p 4 1
Eup(F(E24 (1) = > (W—S—ljn 5 +1
p=1v=1 E;} D_P_l
K

with D1=W1, D2 =2d—2((,03+0)4), D3=d—W3, D4=d—W4.
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6.2. The double points curve f(D(f))

We consider now the invariants associated to the double points curve

£(D(f)).

We shall use the equation V(F;) = f(D(f))U f(>%(f)) and the

results of [10], where it is shown how the polar multiplicities are related with
the 0-stable singularities of the discriminant.

Now, we show how the polar multiplicities of f(D12(f |Z(f))) are

related. For this set, there are two polar multiplicities and the relation
between them is given in terms of the Milnor number of the set

f(Dlz(f |Z(f))) and also of the number of isolated singularities of f.

Theorem 6.6 [10, Theorem 4.6]. Let f(C*, 0) — (C3, 0) be a finitely
determined map germ of co-rank one. Then

2(mg(f(D?(F12(f)))) - my(f(D?(F (1))
= —u(DE(f [2(1))) + 3#Ay o) + 3#Ag + 6#Aq 1 1) +1.

Therefore, from this formula and the formula given by Trang and
Teissier, we get a formula to compute the Euler obstruction in terms of all
O-stable singularities, points Ag, Ay ) and Ay 1) and also of the Milnor

number of the double points curve.

Corollary 6.7.

EUo(f(Dz(f ))) _ _M(Dlz(f |Z(f))) + 3#A(1’22) + 3#A3 + 6#&1,111) +1.

7. Appendix

The main purpose of this Appendix is to give an example which shows
clearly how can we construct the free resolution of an ideal in terms of the
modules of syzygies. This method is very powerful to compute such
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resolutions and is done in terms of the standard bases of the modules. We fix
here the notation of Section 4 which is based in the notation of [6].

We shall recover next the definition of the syzygies.

Definition 7.1. Let R be an arbitrary ring. A syzygy between k elements
by, ..., hy of an R-module M is a k-tuple (xj, ..., ) € R¥ satisfying Z:(:l rih;
= 0.

The set of all syzygies between hy, ..., h,, denoted by syz(hy, ..., hy), is
a submodule of Rk, it is the kernel of the ring homomorphism ¢ : F =

@X, Rej > M with g > 1, where {j, ..., g} denotes the canonical basis

of R.If I = (hy, ..., hc)g. then we provide the following:

Definition 7.2. syz(l) = syz(hy, ..., hy ) = ker(¢), the module of syzygies
of | with respect to the generators {hy, ..., h, }. Besides we define inductively

the kth syzygy module: syz, (1) := syz(syzy_1(1)), setting syzy(1) == 1I.

The existence of such syzygies is guaranteed by the Buchberger’s
criterion for the existence of a standard basis of syz(1).

The first step is the construction of a standard basis for the first syz(1l).

If R = K[x], f € R"\{0} and > denotes a module ordering, then f can be
written uniquely as f = cx®g + f*, with ¢ € K\{0} and x“g > x“*ej for
any non-zero term c*x“*ej of f*.

So we define: the leading monomial by LM(f) = x%g;, the leading
coefficient by LC(f) = c, the leading term by LT(f) = cx%g; and the tail

of f by tail(f):= f — LT(f). Also, if G — R", then we define the leading
submodule of (G) by L(G) = (LM(g): g € G\{0})g.
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Now, let G = {f, ..., fx} be a standard base of | = (f;, ..., fi), with

fi e R"\{0}, Viefl ..k} (ie, G c | and the leading ideals coincide:
L(l1) = L(G); we note that in the global case, it is also called Groebner

base). For each i = j such that fj and f; have their leading terms in the
same component, i.e., LM(f;) = x%e,, LM(f;) = x“Te,, we define the
monomial mj; = x*~% ¢ R, where

A= lem(a, o) = (max(od, oclj ), oo Max(a, af))
is the least common multiple of o; and o, ¢; = LC(f;), c; = LC(f;).

Then the s-polynomial of f; and f; is given by spoly(f;, f;)=m;;f; -

Ci

amij fj. We can assume that spoly( f;, fj) has a standard representation:

C;i k i i
mij fi —ﬁmij fj = Zv_la\(,”)fv, a\(,”) e R.

Now, for i< j such that LM(f;) and LM(f;) involve the same

component, define

k
C .
sij = mjisi —C—I_miij - Za'vj fV'
J v-1
It is possible to show that s;; e syz(l).

With these notation, the construction of a base for syz(l) is described

below.

Theorem 7.3 ([6, Theorem 2.5.9], see also [1, Theorem 15.10]). Let G =

{hy, ..., e} be a set of generators of | < R".

Let P :={(i, j),1<i < j <k such that the leading terms of the r; and

rj involve in the same component} and let J < P.
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Assume that NF(spoly(h;, hj)[Gjj;) = 0 for some Gj; = G, (i, j) € J

and for i =1, ..., r we have the equality
({mije; [(Q, §) € 3}) = ({myje; [, ) € PY).

Then the following statements hold: G is a standard basis of |
(Buchberger’s criterion) and S = {s;j|(i, j) € J} is a standard basis of
syz(1).

Example 7.4. Let F be the finitely determined co-rank one map germ
from (C%, 0) to (C3, 0): F(X, y, u, V) = (X, ¥, yu + xv + uv® + u®). Note
that this map is quasi-homogeneous of type (2, 2, 1, 1; 3) and J;, 1 1(F) has

2

the standard base | = (y, x, v2, uv, u?).

The first syzygy module M; is formed by the generators of the ideal

I =y, X, v, uv, uz), so My =(y x v2 uv u2) € M1,5(0y).

Numbering the elements of G:g; =Y, g =X, g3 = V2, g4 = uv and
Os = u?. We are admitting a monomial ordering > such that LM (gy) >
LM(g2) > LM(g3) > LM(g4 > LM(gs))-

The respective monomials mjej, 1<i< j<5 are given in the

following table:

[ 2 ]3] 4[5 |

1 xey | v3e; | wvey | e
2 v2es | uves | uley
3 wues | u’es
4 ey

Hence, we may choose

J={12),13),14),15)(23),(24),(25),(3 4),(4,5)
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and compute

S1,2 = My 181 — My €2 — sPOly(Qy, 92) = Xep — yep —0=(x, -y, 0, 0, 0),
s1,3 = Mg 181 — My 363 — spoly(gy, 03) = V21 — yez — 0 = (v%, 0, -y, 0, 0),
S1,4 = My 181 — My 484 — SPOIY(gy, 94) = uver — yeq — 0 = (uv, 0, 0, -y, 0),
S15 = Mg 181 — My 565 — SPOly(gy, Os) = Uey — yes — 0 = (U2, 0, 0, 0, —y),
Sp.3 = My 967 — My 363 — Spoly(ga, 93) = vy — xez — 0 = (0, V2, —x, 0, 0),
S2,4 = My 2€p — My 484 — SPOlY(gp, 94) = Uvep — Xe4 — 0 = (0, uv, 0, —x, 0),
Sp,5 = Mg, 22 — My, 55 — SPoly(a, Us) = u%e; — Xes — 0 = (0, u%, 0, 0, —x),
$3,4 = My, 363 — Mg 484 — SPOlY(g3, 94) = Uez —veq —0=(0, 0, u, -v, 0),
S4,5 = Ms, 484 — My 585 — SPOlY(gy, gs) = Uey —Ves —0=(0, 0, 0, u, -v).

The set S = {51’2, 5113, 81,4, 51’5, 5273, 5214, 3275, 53’4, 34’5} is an
interreduced standard basis for syz(l):= M,. Therefore, by Theorem 7.3,
the second syzygy module is generated by the columns of the matrix

00 0 0 0 x V2 w u?
00v2uvu2—y000

Moa=syz(I)=| 0 u -x 0 0 0 -y 0 0 |€Msg(Oy).

Now, numbering the generators of syz(1) we call:

h =(0,0,0,u,-v) hy, = (0,0, u, —v, 0), hg = (0, v, —x, 0, 0),



218 A. J. Miranda, E. C. Rizziolli and M. J. Saia
hs = (0, v, 0, =X, 0), hs = (0, u?, 0, 0, —x), hg = (X, -y, 0, 0, 0),

h, = (v2, 0, -y, 0, 0), hg = (uv, 0, 0, -y, 0), hg = (u?, 0, 0, 0, —y).

So, we see that the set M of pairs (i, j), 1<i< j <9 such that the

leading monomials of the ith and jth elements of S involve the same
components consisting of 7 elements:

M = {3 4) (45) (6,7) (6,8), (6,9), (7, 8), (8 9);

and the respective monomials mjej, for 1<i< j <9, are given in the

following tables:

ST O R
- 6 v | uves | uleq

3 u€s }lf/fﬁ - T

1 uea 8 UEg

8] (}

We compute

sg)‘,r =My 383 — Mg 484 — SPoly(hz, hy) = uez —vey — (=X)e;

0, x,u,-v,0,0,0,0,0),

5511.)5 = M5 4&4 — My 585 — sPOly(hy, hs) = Uey —ves — (-X)&;

(x,0,0,u,-v,0,0,0,0),

o - - — spoly(hg, hy) = v2eq — xe7 — (-

Sg.7 = M7 66 — Mg 787 — spoly(hg, hy) = v7eg — Xe7 — (—-Y)e3
= (0,0, y,0,0,v?, —x0,0),

S((sl)e = mg e — Mg geg — SPOly(hg, hg) = Uveg — xeg — (—Y)ey

=(0,0,0,v,0, uv, 0, —x, 0),
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- - — spoly(hg, hg) = ueq — xeg — (-
S0 = Mg, 686 — Mg, 9€g — SPOly(hg, hg) = u“eg — xeg — (~¥)es5
=(0,0,0,0,y,u% 0,0, -x),
1
Sg,)s = Mg 7&7 — My geg — spoly(hz, hg) = ue7 —veg — (=y)ey

=(0,,0,0,0,0,u, -v,0),

55(31)9 = Mg geg — Mg ggg — SPoly(hg, hg) = Ueg — veg — (~Yy)gg

=(y,0,0,0,0,0,0,u, -v).

The set S® = {sg)ﬂr, 5511’)5, sgly)r sél‘%, sgl)g s%l‘)s, sé%} is an interreduced

standard basis for syz(syz(1)) = syz(M5) := M3. Therefore, by Theorem 7.3,
the third syzygy module is generated by the columns of the matrix

0 0 0 0 0 X y
0 0 0 y 0 0
0 0 y u 0 0 0
0 y 0 v 0 u 0
M3 =syz(My)=|y 0 0 0 0 —v 0 |eMg7(0y).
u> w vZ 0 0 0 0
0 0 —X 0 u 0 0
0 —x 0 0 -v 0 u
-x 0 0 0 0 0 -v

Now, numbering the generators of syz(syz(1)): 1} = (0, 0, 0, 0, y, u?,
0,0, -x), I, =(0,0,0,v,0,uv,0,-x,0), I3=(0,0,,0,0, v2, -x, 0, 0),
I, =(0, x,u,-v,0,0,0,0,0), I5=(0,y,0,0,0,0, u, -v, 0), lg =(x, 0, 0,
u,-v,0,0,0,0), I;=(y,0,0,0,0,0, 0, u, -v), we see that the set N of
pairs (i, j), 1<i< j <7 such that the leading monomials of the ith and

jth elements of s® involve the same components, consists of 2 elements:
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N = {(4, 5), (6, 7)} and the respective monomials mjje;j, 1<i< j<7, are

given in the following tables:

AR NES
4 | yea | 6 | yee

5 || - 7

We compute
51 % Mg, 44 — My, 585 — SPOly(lg, I5) = yeyq — Xes + Uz — Ve,
=(0, -v, u, y, -x, 0, 0),
sé,Z% = M7 ggg — Mg 787 — SPoly(lg, I7) = yeg — Xe7 + Uep — ey
=(-v,u,0,0,0, y, —x).

The set S = {52’2%, s((f%} is an interreduced standard basis for

syz(syz(syz(1))) = syz(M3) :i= My4. Therefore, by Theorem 7.3, the fourth
syzygy module is generated by the columns of the matrix

0 -V
-v u
u 0
My =syz(M3) =y 0 |e Mz (0y)
—X 0
0 vy
0 —X
Thus, we obtain the free resolution for L,
Jz,1,1(F)

My 7 M3 9 My 5 My
0—>@O4—>G—)O4—>6—)(’)4—>@(’)4—>O4—>

—* 0.
=1 ] ] ] J2,11(F)
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