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Abstract 

In this article, we investigate the geometry of quasi homogeneous co-

rank one finitely determined map germs from ( )0,1+nC  to ( )0,nC  

with .3,2=n  We give a complete description, in terms of the 

weights and degrees, of the invariants that are associated to all stable 
singularities which appear in the discriminant of such map germs. The 
first class of invariants which we study are the isolated singularities, 
called 0-stable singularities because they are the 0-dimensional 
singularities. First, we give a formula to compute the number of nA  

points which appear in any stable deformation of a quasi homogeneous 

co-rank one map germ from ( )0,1+nC  to ( )0,nC  with .3,2=n  To 

get such a formula, we apply the Hilbert’s syzygy theorem to 
determine the graded free resolution given by the syzygy modules of 
the associated iterated Jacobian ideal. Then we show how to obtain the 
other 0-stable singularities, these isolated singularities are formed by 
multiple points and here we use the relation among them and the 
Fitting ideals of the discriminant. For ,2=n  there exists only the 
germ of double points set and for 3=n  there are the triple points, 
named points 1,1,1A  and the normal crossing between a germ of a 

cuspidal edge and a germ of a plane, named .1,2A  For ,3=n  there 

appear also the one-dimensional singularities, which are of two types: 
germs of cuspidal edges or germs of double points curves. For these 
singularities, we show how to compute the polar multiplicities and also 
the local Euler obstruction at the origin in terms of the weights and 
degrees. 

1. Introduction 

The study of singularities of differentiable maps was initiated by 
Whitney who showed that the singularities which appear in any stable map 
from the plane to the plane are the cusps and double points. The singularities 
of the stable maps, called stable singularities, are also very important in the 
study of the non-stable maps, in special, for the class of the finitely 
determined maps, since they have the interesting property that for these 
maps, they are preserved for any stable deformation. 
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For the particular singularities which are isolated, called 0-stable 
singularities, the type and also the number of such singularities are very 
relevant because they contain information about the local geometric behavior 
of such maps. For instance, we cite the work of Gaffney and Mond in [4] 
where it is shown how to determine algebraically the number of cusps and 
double points of finitely determined map germs from the plane to the plane, 
and moreover, it is shown, in fact, that these numbers are topological 
invariants in families of such germs. We also remember here the works of 

Mond on germs of surfaces in 3C  where it is shown that the stable 
singularities are the cross-caps and the triple points and how to compute 
these numbers algebraically, see [15] and [16]. 

For the non-isolated singularities, there are some numbers which are 
associated to them, in special the polar multiplicities and the local Euler 
obstruction are very relevant to show information about the local geometric 
behavior of such maps. 

So the determination of formulae to compute these numbers became 
relevant and in this case, the class of quasi homogeneous maps is known as 
some of great interest, since for this class there are several results showing 
how to compute these numbers in terms of weights and degrees. 

An analytic map germ ( ) ( ),0,0,: pnf CC →  ( )pfff ...,,1=  is quasi-

homogeneous of type ( )pn dd ...,,;...,, 11 ωω  if there are positive numbers 

nωωω ...,,, 21  in Q  called weights, and ,...,,1 pdd  called degrees such that 

( ) i
d

ni fxxf in λ=λλ ωω ...,,11  for all ,...,,1 pi =  nx C∈  and .C∈λ  

For the class of finitely determined quasi homogeneous map germs from 
the plane to the plane, or when ,2== pn  Gaffney and Mond [5] obtained 

formulae to compute the number of cusps and double-folds that involve only 
weights and degrees. For the case 2=n  and ,3=p  Mond in [17] derived 

formulae for the number of the triple points and cross-caps, in terms of the 
weights and degrees of quasi homogeneous map germs in these dimensions. 
Marar et al. investigated in [13] the 0-stable singularities for the case when 
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the source dimension and target dimension coincide, i.e., .pn =  First, they 

described algebraically all 0-stable singularities that appear in any co-rank 
one stable map germ, showing that they are the PA  singularities, for any 

partition P  of n, according to Arnold’s notation. Then they showed how to 
compute the number of such PA  singularities for quasi homogeneous map 

germs in terms of the weights and degrees. The key tool to obtain such 
formulae is an application of the theorem of Bezout for zero-dimensional 
complete intersections. 

Our first object of interest in this article is the description of the 0-stable 
singularities that appear in the discriminant of a stable deformation of 

weighted homogeneous finitely determined map germ from ( )0,1+nC  to 

( )0,nC  with 2=n  or 3 also in the co-rank one case. 

The main difference from the case of map germs from ( )0,nC  to ( )0,nC  

is that the corresponding defining ideals of the 0-dimensional singularities 
are not complete intersections. Therefore, we cannot apply the theorem of 
Bezout. 

First, we study the mono germs, named nA  singularities, they form the 

key tool to find the other singularities since there are several relationships 
between the nA  points and the other. We show that the number of nA  points 

can be obtained as the complex dimension (as vector space) of some Cohen-

Macaulay algebras of type .J
nO  To compute such dimension, first, we apply 

the Hilbert’s syzygy theorem to obtain the free resolution given by the 
syzygy modules of the ideal J as described in [6, Section 2.5]. Then we find a 
convenient filtration in nO  from the weights given by the weighted 

homogenous germ to get the Hilbert polynomial of the associated graded 
resolution. The valuation of this polynomial in 1 gives the number. 

To describe the 0-singularities which are multi germs, we apply the 
results of Mond and Pellikaan in [18] where it is shown how the Fitting 
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ideals associated to the discriminant are related to the isolated singularities of 
map germs. 

Last, but not the least, we apply these results to study the 1-dimensional 
stable singularities which appear in the discriminant. We show how to 
compute the polar multiplicities of the singular curves of the discriminant 
only in terms of the weights and degree of the map germ. Moreover, we also 
apply these results to show how to compute the Euler obstruction at the 
origin of such singular curves in the discriminant. 

2. Stable Singularities 

In this section, we describe all stable singularities which appear in the 
discriminant of any finitely determined map germ ( )nnf ,1+∈O  with 

.3,2=n  As these dimensions are in the range of the nice dimensions of 

Mather, we know that they form a finite set of strata in the image by f of the 
critical set of f, called discriminant of f and denoted ( ) ( )( ).fff Σ=Δ  

In general, for any pair of dimensions ( ),, pn  the description of the 

stable types can be done in terms of sub-schemes of multiple points of a germ 
f, as we can see in [9] for the case pn =  or in [8] for the case .pn <  We 

remark that these constructions are done from the original construction of the 

set of multiple points for any finitely determined map germ from ( )0,nC  to 

( ),0,pC  with ,pn ≥  as described in details by Goryunov in [7]. 

We describe here these singularities for the particular cases that we are 
interested. 

For map germs from 3C  to ,2C  the discriminant ( )fΔ  is a curve in ,2C  

possible with isolated singularities (the 0-stable singularities) of two types, 
the double points set denoted 1,1A  and the cusps set, denoted .2A  

For map germs from 4C  to ,3C  the discriminant of f is a germ of surface 

in .3C  In this case, we can have in the discriminant of f the isolated stable 
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singularities, called 0-stable singularities, and also 1-dimensional stables 
singularities, the 1-stable singularities. 

Here the 0-stable singularities are of three types, the triple points set, 
denoted ,1,1,1A  the swallowtails set, denoted 3A  and the intersection of a 

germ of cuspidal edge with a germ of plane, denoted .1,2A  The 1-stable 

singularities are of two types: the double points curve, denoted 1,1A  and the 

cuspidal edge, denoted .2A  

Figure 1 shows the geometric models of the isolated stable singularities 

( )1,23, AA  and ( ).1,1,1A  

 

Figure 1. Geometric models: ( )1,23, AA  and ( ),1,1,1A  respectively. 

3. Iterated Jacobian Ideals of Points nA  

In this section, we show how to compute algebraically the isolated stable 
singularities, which appear as a mono germ, in the discriminant of any 

finitely determined co-rank one map germ from 1+nC  to nC  with .3,2=n  

These mono germs, or points nA  are described in terms of the iterated 

Jacobian ideals, these ideals were defined by Morin in [19], and the 
relationship among such numbers and the iterated Jacobian was shown in [2]. 

Let ( ) ( )0,0,: pnf CC →  be an analytic map germ and nI O⊂  be a 

finite co-length ideal generated by the system ....,,1 rgg  For each ∈t  
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{ },...,,1 n  we define the Jacobian extension of the rank t for the pair ( ),, If  

by ( ) ( ( )),...,,,...,,:, 11 rptt ggffdIIIf +=Δ  where 

( ( ))rpt ggffdI ...,,,...,, 11  

denotes the ideal generated by minors of size tt ×  from the Jacobian matrix 
of the ( ( ))....,,,...,,...,,,...,, 1111 rprp ggffdggff  

If ( )kiii ...,,1=  is a Boardman number, then we inductively define the 

iterated Jacobian ideal for i, ( )fJi  in the following manner: 

( )
{ }( )

( ( ))⎪⎩

⎪
⎨
⎧

>Δ

=Δ
=

−+−

+−

.1if,

,1if0,

11

1

...,,1

1

kfJf

kf
fJ

kk iiin

in
i  

We see in [2] that if the map germ is finitely determined and the ring 

( )fJi
nO  is Cohen-Macaulay, then the complex dimension (as vector space) of 

( )fJi
nO  gives the number of some isolated singularities, denoted ( ),fci  in 

the discriminant of f. In the cases which we are working in this article, these 
isolated singularities are the nA  singularities. 

For finitely determined co-rank one map germs from ( )0,3C  to ( ),0,2C  

we are looking for the number of points ,2A  the iterated Jacobian ideal 

associated to these points is the ideal ( )fJ 1,2  which we describe below. 

Assume that ( )zyxf ,,  is written in the form ( ) ( )( ),,,,,, zyxgxzyxf =  

first, we obtain the ideal ( )fJ2  which is generated by the minors of order 

two of the Jacobian matrix of f and one has ( ) ( )( ) ,,22 zy ggfdIfJ ==  

where wg  denotes the partial derivative of g with respect to the variable 

{ }.,, zyxw ∈  Applying the recursive process of Morin, we obtain the ideal 

( ) ( ) ( ( )) ,,,,,321,2 MggggfdIfJfJ zyzy =+=  where M denotes the 
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determinant of the matrix of order 2 given by the second partial derivatives 
of g with respect to the variables ( )., zy  From the results shown in [2], we 

obtain ( ) .,,dimdim# 3
1,2

3
2 MggfJA

zy

OO
CC ==  

For finitely determined co-rank one map germs from ( )0,4C  to ( ),0,3C  

the iterated Jacobian ideal associated to the points 3A  is the ideal ( ).1,1,2 fJ  

Write f as ( ) ( )( ),,,,,,,,, vuyxgyxvuyxf =  the Jacobian matrix of f is the 

43 ×  matrix ( ) .0010
0001

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

vuyx gggg
fd  To obtain the iterated Jacobian 

ideal ,1,1,2J  first, we get ( ) ( )( ) vu ggfdIfJ ,32 ==  and ( ) += fJJ 21,2  

( )( ) ,,,,,4 HggggfdI vuvu =  where ( )2: uvvvuu gggH −=  and 

( ) ( )( )HggfdIJfJ vu ,,,41,21,1,2 +=  

.,,,, uvvvuvuuvvuuvu HgHgHgHgHgg −−=  

From Corollary 4.4. of [2], one has 

( )fJA
1,1,2
4

3 dim# O
C=  

.,,,,dim 4
uvvvuvuuvvuuvu HgHgHgHgHgg −−

= O
C  

We remark that if the map germ f in ( )3,4O  is a suspension of a map germ 

from 3C  to ,3C  then it can be written as ( ) ( ( ) ),,,,,,,, 2vuyxgyxvuyxf +=  

therefore, the iterated Jacobian ideal 1,1,2J  is generated by { }vggg uuuuuu ,,,  

and the ring 
1,1,2

4
J
O  is isomorphic to the ring .,,

3
uuuuuu ggg

O  Therefore, for 

suspensions in these dimensions, we have .,,dim# 3
3

uuuuuu gggA O
C=  
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4. Points nA  and Free Resolutions 

The first step in the method to compute the complex dimension of any 

ring I
nO  for any finite co-length ideal I in nO  is to obtain a projective 

resolution of the ring .I
nO  The existence of such resolution is shown in the 

Hilbert’s syzygy theorem, which we recover here in a more general set-up. 

Theorem 4.1 [6, Theorem 2.4.11]. Let ( )m,A  be a local Noetherian ring 

and M be a finitely generated A-module. M has a minimal free resolution 

00 01
11

→→→→→→
αα

−

α −
MFFF

mm
mm  

of length ,nm ≤  where iF  are free R-modules. 

The construction of such free resolution is based in the description of 
morphisms iα  between the modules iF  and .1−iF  These morphisms form 

the main tool to fix the right filtration in the ring R which we need to get the 
formulae for the number of nA  points. In Appendix of this article, we show 

how to construct these morphisms in an example. 

The next step is to define an appropriate graduation for each member kF  

in the exact sequence of the free resolution in such a way that the morphisms 
are of degree zero. From this graded exact sequence, we get the Poincaré 
series (or the Hilbert Samuel polynomial) and the evaluation of this 
polynomial at 1 gives us the desired formula. 

Next, we show how to obtain such resolution and the formulae for the 
cases which we are interested. 

4.1. Points 2A  for map germs in 2,3O  

First, we show how to compute the number of points 2#A  of any finitely 

determined co-rank one weighted homogeneous map germ from ( )0,3C  to 

( ).0,2C  
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Let ( ) ( )( )vuxgxvuxf ,,,,, =  be such a germ. Then we have =2#A  

( )fJ 1,2
3dim O

C  with ( ) ( ) .,, 2
1,2 uvvvuuvu gggggfJ −⋅=  

Since ( )fJ 1,2  has a minimal system of generators with three elements in 

,3O  the minimal free resolution of ( )fJ 1,2
3dim O

C  is well known and is given 

by the following exact sequence: 

( ) .00
1,2

3
33

3

1
3

3

1
3

123
→→→→→→

πα

=

α

=

α
⊕⊕ fJii

O
OOOO  

Here π is the natural projection, the morphism 1α  is defined by the ( )31× -

matrix associated to ( ),ker π  or ( ( ) ).,, 2
1 uvvvuuvu ggggg −⋅=α  The 

morphism 2α  is defined by the 33 × -matrix associated to ( )1ker α  and 3α  

is defined by the corresponding ( )13 × -matrix of ( ).ker 2α  

To obtain the corresponding sequence of graded modules with zero 
degree morphisms, we suppose that ( )vuxg ,,  is quasi-homogeneous of type 

( ).;,, 321 dωωω  From the weights and the degree of the germ g, we have 

that each generator of the ideal ( )fJ 1,2  is weighted homogeneous and 

therefore we can write this resolution as follows: 

[ ] [ ] [ ] ( ) ,00
1,2

3
33

3

1
3

3

1
3 →→→−→−→−→

==
⊕⊕ fJABC i
i

i
i

O
OOOO  

where ,21 ω−= dA  ,32 ω−= dA  ( ),2 323 ω−ω−= dA  ,2 321 ω−ω−= dB  

,233 322 ω−ω−= dB  323 323 ω−ω−= dB  and .334 32 ω−ω−= dC  

Now, we remember that for each [ ],3 r−O  the associated Poincaré series 

is defined as: 

[ ]( )
( ) ( ) ( )

.
111 3213 ωωω−
−−−

=
ttt

ttP
r

rO  
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Since the alternating sum of the Poincaré series (or the Hilbert 
polynomial) ( )tPM  of an exact sequence of graded modules with degree zero 

morphisms is equal to 0, we conclude that the Poincaré series of ( )fJ 1,2
3O  is 

the alternate sum of the Poincaré series of each [ ]r−3O  in the sequence, 

hence 

( )
( )

( )

( ) ( ) ( )
.

111

1

321
1,2
3

3
1

3
1

ωωω
==

−−−

−⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−

=
∑∑

ttt

ttt
tP

C
i

B
i

A

fJ

ii

O  

Therefore, 

( )
( )

( )
( )

( )tPPfJA
fJ

t
fJ 1,2

3
1,2
3 11,2

3
2 lim1dim# OO

O
→

=== C  

and 

{ } ,1#
321

01
2

2
3

3
01

2
2

3
3

321
2 ωωω

+++
=+++⋅

ωωω
=

PdPdPdPPdPdPdPA  

where ,23 =P  ,44 322 ω−ω−=P  ,2.62 2
332

2
21 ω+ωω+ω=P  3

2
20 2 ωω−=P  

.2 2
32ωω−  

Example. Let ( ) ( ) ( ) ( )k
kk uuvxuxvuxFF ++=→ 223 ,:,,:0,0,: CC  

for N∈k  with .3>k  Then the map germ kF  is finitely determined and 

quasi-homogeneous of type .,1;1,2
1,1 ⎟

⎠
⎞⎜

⎝
⎛ −−− kkkk  From the above 

result, we obtain ( ) .1# 2 += kFA k  

4.2. 3A  points of suspensions in 3,4O  

To compute the number of points 3A  for co-rank one map germs from 

( )0,4C  to ( ),0,3C  we need to split our calculation in two different 

situations. 
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One is the case that the map germ is a suspension from a map germ from 

( )0,3C  to ( )0,3C  and the other is the general case, where the map germ is 

not a suspension. 

The main difference is the minimal number of generators of the ideal 

,1,1,2J  this gives rise to different minimal free resolutions of the ring .
1,1,2

4
J
O  

For suspensions, the zero set of the associated iterated Jacobian ideal 

1,1,2J  is a complete intersection formed by isolated points in .4C  When the 

germ is not a suspension, any system of generators of 1,1,2J  has at least 5 

elements, therefore the zero set is not a complete intersection. To obtain the 
corresponding minimal resolution we applied the algorithm given in [6, p. 
165]. 

To clarify this difference, first, we describe the resolution for 
suspensions. In Subsection 4.3, we describe the resolution for map germs 
which are not suspensions. 

Let ( ) ( )0,0,: 34 CC →f  be a suspension of a finitely determined co-

rank one map germ ( ) ( )0,0,: 33 CC →g  written as ( ) ( ,,,,, yxvuyxf =  

( ) ).,, 2vuyxg +  Then the associated iterated Jacobian ideal is ( ) =fJ 1,1,2  

.,,, vggg uuuuuu  

If g is quasi-homogeneous of type ( ),;,, 321 dωωω  then f is also quasi-

homogeneous with respect to the weights ( ).2,,, 321 dωωω  Now, we call 

uuuuuu gggggg === :,:,: 321  and .:4 vg =  Observe that each generator 

of 1,1,2J  is a weighted homogeneous polynomial of degrees ,: 31 ω−= dd  

,2:,3:,2: 43332
dddddd =ω−=ω−=  respectively. 

The zero set of the ideals ( )fJ 1,1,2  is a complete intersection of isolated 

points 4C  and the free resolution of ( )fJ 1,1,2
4O  is: 
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( ) .00
1,1,2
4

44
4

1
4

6

1
4

4

1
4

1234
→→→→→→→

πα

=

α

=

α

=

α
⊕⊕⊕ fJiii

O
OOOOO  

The graded resolution associated to sequence above is 

[ ] [ ] [ ]i
i

i
i

BCD −→−→−→
==
⊕⊕ 4
6

1
4

4

1
40 OOO  

[ ] ( ) ,0
1,1,2
4

44
4

1
→→→−→

=
⊕ fJAi
i

O
OO  

where 

,2,,3,2,62
7

34333213 ω−=ω−=ω−==ω−= dAdAdAdAdD  

,22
3,42,52,32 34333231 ω−=ω−=ω−=ω−= dBdBdBdB  

,63,32
3,2

3
313635 ω−=ω−=ω−= dCdBdB  

3332 52
5,32

5 ω−=ω−= dCdC  and .42
5

34 ω−= dC  

From this grading, we obtain the graded exact sequence with Hilbert 
polynomial 

( )
( )

( ) ( ) ( )

.

1111

1

2

4
1

6
1

4
1

3211,1,2
4

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−−−

+⎟
⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−

=
ωωω

=== ∑∑∑
d

D
i

C
i

B
i

A

fJ tttt

tttt
tP

iii

O  

Therefore, 

( )
( )

( )
( )

( )tPPfJ
fJ

t
fJ 1,1,2

4
1,1,2
4 11,1,2

4 lim1dim OO
O

→
==C  

 .

2!4

721327212

321

3
3

2
3

3
3

4

d
dddd

ωωω

ω−ω+ω−
=  
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Thus, 

( ) { ( ) ( ) ( )}3
3

2
3

2
3

3

321
3 61161# ω−+ω+ω−+⋅

ωωω
= dddfA  

.6116
321

3
3

2
3

2
3

3

ωωω
ω−ω+ω−

=
ddd  

As f is a suspension of g, this formula is equal than the formula of the 

number of points 3A  of the map germ ( ) ( ),0,0,: 33 CC →g  in this case 

the iterated Jacobian ideal associated to the number of points 3A  of g is 

( )gJ 1,1,1  with free resolution: 

( )( ) .00
1,1,1
3

33
3

1
3

3

1
3

123
→→→→→→

πα

=

α

=

α
⊕⊕ gJii

O
OOOO  

With graded resolution, 

[ ] [ ] [ ]
( )( ) ,00

1,1,1
3

33
3

1
3

3

1
3 →→→−→−→−→

==
⊕⊕ fJPLD i
i

i
i

O
OOOO  

where ( ) { } ( ) ,4,3,2,1,62,3 333 ω−−=∈∀ω−−=ω−= idPiidLdD ii  

{ }.3,2,1∈∀i  

Therefore, 

( )
( )( )

( )
( ) .61161dim#

321

3
3

2
3

2
3

3

1,1,1
3

3
1,1,2
3 ωωω

ω−ω+ω−
===

dddP
gJ

gA
gJ

O
O

C  

We remember that this formula is shown in [13] as a consequence of the 
theorem of Bezout. 

4.3. 3A  points of non-suspensions in 3,4O  

Now, we compute the number of points of type 3A  for map germs from 

( )0,4C  to ( )0,3C  which are not suspensions. Write any finitely determined 



Stable Singularities of Co-rank One Quasi Homogeneous Map … 203 

co-rank one map germ ( ) ( )0,0,: 34 CC →f  as ( ) ( ,,,,, yxvuyxf =  

( )).,,, vuyxg  

In this case, the system of generators obtained from the construction of 
the iterated Jacobian of ( )fJ 1,1,2  is 

{ }.,,,, uvvvuvuuvvuuvu HgHgHgHgHgg −−  

If all these generators are non-zero, then from [6, Theorem 2.5.9, p. 162], it is 
a minimal system of generators of ( ).1,1,2 fJ  Therefore, the theorem of 

Hilbert guarantees the existence of a minimal free resolution of the ring 

( )fJ 1,1,2
4O  and applying [6, Algorithm 2.5.16, p. 165], we obtain: 

( ) .00
1,1,2
4

44
5

1
4

9

1
4

7

1
4

2

1

1234
→→→→→→→

πα

=

α

=

α

=

α

=
⊕⊕⊕⊕ fJiiii

O
OOOOO  

The morphism 1α  is given by ( ),ker1 π=α  where π denotes the natural 

projection and for ,2≥i  each morphism iα  of this sequence is defined 

inductively by the matrix corresponding of the set all syzygies of the 
submodule associated to the matrix which defines the morphism .1−αi  See 

the definition of the syzygies in Appendix of this article, where we describe 
this construction for one example. 

To obtain the corresponding graded resolution, we suppose that g is 
quasi-homogeneous of type ( ).;,,, 4321 dωωωω  Then f is quasi-

homogeneous of type ( ).,,;,,, 214321 dωωωωωω  

Call ,:1 ugg =  ,:2 vgg =  ,:3 Hg =  uuvvuu HgHgg −=:4  and =:5g  

.uvvvuv HgHg −  

Therefore, each generator ig  of 1,1,2J  is weighted homogeneous with 

degrees ,: 31 ω−= dd  ,: 42 ω−= dd  ,222: 433 ω−ω−= dd  −= dd 3:4  

43 34 ω−ω  and ,433: 435 ω−ω−= dd  respectively. 
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Hence we can write this resolution as an exact sequence of graded 
modules with degree zero morphisms as follows: 

[ ] [ ] [ ]i
i

i
i

i
i

BCD −→−→−→
===
⊕⊕⊕ 4
9

1
4

7

1
4

2

1
0 OOO  

[ ] ( ) ,0
1,1,2
4

44
5

1
→→→−→

=
⊕ fJAi
i

O
OO  

here ,idAi =  { },5....,,1∈∀i  ,575 431 ω−ω−= dB  ,755 432 ω−ω−= dB  

,534 433 ω−ω−= dB  ,323 434 ω−ω−= dB  ,444 435 ω−ω−= dB  =6B  

,2 43 ω−ω−d  ,444 437 ω−ω−= dB  ,233 438 ω−ω−= dB  −= dB 49  

,55 43 ω−ω  ,455 431 ω−ω−= dC  ,334 432 ω−ω−= dC  33 45 ω−= dC  

,4 4ω−  ,856 434 ω−ω−= dC  ,766 435 ω−ω−= dC  −ω−= 36 76dC  

,6 4ω  437 586 ω−ω−= dC  and ,867 431 ω−ω−= dD  −ω−= 32 87dD  

.6 4ω  

Now, we compute the Hilbert polynomial of ( ) ,
1,1,2
4

fJ
O  given as the 

alternate sum of the other Hilbert polynomials: 

( )
( )

( ) ( ) ( ) ( )
.

1111

1

4321
1,1,2
4

2
1

7
1

9
1

5
1

ωωωω
====

−−−−

⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛−

=
∑∑∑∑

tttt

tttt
tP i

D
i

C
i

B
i

A

fJ

iiii

O  

Therefore, 

( )
( )

( )
( )

( )tPPfJA
fJ

t
fJ 1,1,2

4
1,1,2
4 11,1,2

4
3 lim1dim# OO

O
→

=== C  

,
4321

01
2

2
3

3
4

4
ωωωω

++++
=

PdPdPdPdP  

with 43
2
4

2
3323434 13963632

15,55553,16 ωω+ω+ω+ω=ω−ω−−== PPP  
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2
4

2
3

2
4343

3
44

2
3

3
314 2

9
2
9108122410824,2

15 ω−ω−ωω−ωω−ω−ωω−ω−=ω+ P  

and .2
9

2
9452424 2

434
2
3

2
4

2
3

3
434

3
30 ωω+ωω+ωω+ωω+ωω=P  

Example 4.2. Let 1F  and 2F  be map germs from ( )0,4C  to ( )0,3C  

defined, respectively, by 

( ) ( )( )vuyxGyxvuyxF ,,,,,:,,, 11 =  

with ( ) ,:,,, 32
1 uuvxvyuvuyxG +++=  

( ) ( )( )vuyxGyxvuyxF ,,,,,:,,, 22 =  

with ( ) .:,,, 33
2 vuxvyuvuyxG +++=  

Note that both the maps are quasi-homogeneous of type ( ).3;1,1,2,2  

We remark that in these examples the iterated Jacobian ideals ( )11,1,2 FJ  

and ( )21,1,2 FJ  have the same standard basis 22 ,,,, uuvvxy  which are 

needed to construct the free resolution. 

Applying the result above and substituting ,3=d  21 2 ω==ω  and 

,1 43 ω==ω  we obtain ( ) ( ).#3# 2313 FAFA ==  

Next, we resume these results in the following: 

Theorem 4.3. (1) For ( ) ( ) ( ) ( )( ),,,,,,,0,0,: 23 vuxgxvuxff =→ CC  

we have 

,#
321

01
2

2
3

3
2 ωωω

+++
=

PdPdPdPA  

where ,23 =P  ,44 322 ω−ω−=P  ,2.62 2
332

2
21 ω+ωω+ω=P  3

2
20 2 ωω−=P  

.2 2
32ωω−  
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(2) If ( ) ( ) ( ) ( ( ) )234 ,,,,,,,,0,0,: vuyxgyxvuyxff +=→ CC  is a 

suspension, then 

.6116#
321

3
3

2
3

2
3

3
3 ωωω

ω−ω+ω−
=

dddA  

(3) If ( ) ( ) ( ) ( )( )vuyxgyxvuyxff ,,,,,,,,,0,0,: 34 =→ CC  is not 

a suspension, then 

,#
4321

01
2

2
3

3
4

4
3 ωωωω

++++
=

PdPdPdPdPA  

where 43
2
4

2
3323434 13963632

15,55553,16 ωω+ω+ω+ω=ω−ω−−== PPP  

2
4

2
3

2
4343

3
44

2
3

3
314 2

9
2
9108122410824,2

15 ω−ω−ωω−ωω−ω−ωω−ω−=ω+ P  

and .2
9

2
9452424 2

434
2
3

2
4

2
3

3
434

3
30 ωω+ωω+ωω+ωω+ωω=P  

4.4. nA  points in nnO ,+  with 1>  

In the general case of finitely determined map germs from +nC  to nC  
with 1>  and ,3≥n  even in the co-rank one case, the associated zero set 

of the iterated Jacobian ideal 1...,,1+J  is not Cohen-Macaulay, so we cannot 

compute the number nA#  as the dimension of the ring .
1...,,1+

+
J

nO  

For instance, in the case of co-rank one map germs from 5C  to ,4C  the 

number of points 4A  is different from ,dim
1,1,1,2

5
J
O

C  since we see in [3, 

Corollary 2.2] that 

,4##dim 44
1,1,1,2

5 DAJ +=
O

C  

where the points 4A  are the butterflies and 4D  denotes the umbilic points. 
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5. The 0-stable Multiple Singularities and Fitting Ideals 

To compute the 0-stable singularities which are multiple points, we use 
the Fitting ideals associated to the discriminant of the germ, described by 
Mond and Pellikaan in [18]. We apply the results given recently in [14], 
where it is shown how to obtain these singularities using the Fitting ideals. 
For more details on the definition and main properties of the Fitting ideals, 
see [18]. 

5.1. Map germs from 3C  to 2C  

For any stable map germ f from 3C  to ,2C  the discriminant of f, 

( ) ( )( )fff Σ=Δ  is a curve in ,2C  possible with isolated singularities (the 

0-stable singularities) of two types, the double points set denoted 1,1A  and 

the cusps set, denoted .2A  There are two Fitting ideals associated to it, which 

are denoted by ( )f0F  and ( ).1 fF  They define in ( )fΔ  the following sets: 

1. ( )( ) ( )ffV Δ=:0F  or ( )f0F  is the defining ideal of the discriminant 

curve. 

2. ( )( ) ,21,11 AAfV ∪=F  union of the isolated singularities in the 

target. 

First, we show the following formula which relates the ideal 1F  and the 

0-stable singularities. 

Lemma 5.1. For any finitely determined map germ of co-rank one 

( ) ( )0,0,: 2CC →nf  with ,2≥n  we have 

( ) .dim##
1

0,
1,12

2

fAA
F

OC
C=+  

For the special case of map germs from the plane to the plane, this 
formula was shown by Gaffney and Mond in [4]. 
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Proof. In this case, the critical curve ( )fΣ  is reduced, then from [18, 

Theorem 5.2], we have that the zero set of the ideal ( )f1F  is determinantal, 

hence it is Cohen-Macaulay and then we have a flat deformation on the basis 
of the versal unfolding, from the law of conservation of multiplicity we 
obtain that 

( ) ( ) ( ),##dim 1,11,122
1

2 AcAcf +=
F
O

C  

where ic  means the contribution of the singularity iA  in the ideal ( ).1 fF  A 

straightforward calculation using the normal form of these singularities 
shows us that the numbers ic  are equal to 1 in these cases. ~ 

Applying the formula to compute the number of points 2A  given before 

and this we obtain a formula to compute the number of points .1,1A  

5.2. Map germs from 4C  to 3C  

Here the Fitting ideals which appear in the discriminant ( ) ( )( )fff Σ=Δ  
3C⊂  of f are ( ),0 fF  ( )f1F  and ( )f2F  and they define in ( )fΔ  the 

following sets: 

1. ( )( ) ( ),:0 ffV Δ=F  here ( )f0F  is the defining ideal of the 

discriminant. 

2. ( )( ) ( )( ) ( ( )),1,2
1 fffDffV Σ= ∪F  union of the double points curve 

and the cuspidal edges curve of f. 

3. ( )( ) ,31,1,12,12 AAAfV ∪∪=F  union of the isolated singularities in 

the target. 

Recently, it is shown in [14] that the formulae relate these ideals and the 
0-stable singularities. 

Proposition 5.2 [14, Corollary 4.1]. Let ( ) ( )0,0,: mmnf CC →+  with 

,3≥m  be a finitely determined map germ of co-rank one with only 
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singularities PA  in its discriminant. Then 

( ) ∑
=−

=
mP

P
m

m Af .#dim
1F

O
C  

Therefore, when 3=m  and ,1=n  we obtain 

 ( )
( ) .###dim 31,1,12,1

2

0,3
AAAf ++=

F

O C
C  (∗) 

and in [14, Proposition 4.3], the following formula is shown: 

 ( )
( ( ) ( ))

.
:

dim#
0

2
1,1

3
1,1,1

fAI
A

F

O
C=  (∗∗) 

The notation ( )JI :  means the quotient ideal of an ideal I by another 

ideal J in a ring A or 

( ) { }.;:: IaJAaJI ⊂∈=  

Here ( )21,1AI  denotes the defining ideal of the cuspidal curve in the 

discriminant of f. 

If f is of co-rank one, we also see in [14]: 

( ) ( ( ) ( )) ( ) .dim
:

dimdim:#
1,1,2
4

0
2

1,1

3
2

3
2,1 fJfAIfA O

F

O
F
O

CCC −−=  

 (∗∗∗) 

Example 5.3. Let ( ) ( ).,,:,,, 32 uuvxvyuyxvuyxf +++=  First, we 

obtain 3# 3 =A  using Theorem 4.3. To compute the numbers 1,1,1# A  and 

1,2#A  of f, we compute the Fitting ideals of the discriminant: 

( ) ,48443627 4224623224
0 YXYXXZYYZXZf +++++=F  

( ) 4233222
1 23,229,3 XYZXYYXXZZYZXf +++−=F  

423532322 23,229,2 XYYXXZYYZXZYX −++++  
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and 

( ) .,,,,, 222
2 ZYZXZYXYXf =F  

To get the number of triple points, we compute the defining ideal of the 

cuspidal edge, which is generated by { }3222 827,3 YZYX +−  and apply 

the formula (∗∗) above 
( ) ( )

.0
:

dim:#
1,1

2

3
1,1,1 =

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

∑ +n ffIf
A

F

O
C  

From equation (∗∗∗), we get ,1:# 2,1 =A  since ( ) .4dim
2

3 =fF
O

C  

6. Invariants of the 1-stable Singularities 

We see in [20] that there are some invariants associated to the one- 
dimensional singularities which appear in the discriminant of f that can be 
computed in terms of the number of 0-stable singularities. These invariants 
are the polar multiplicities and the Euler obstruction. We apply the results of 
[20] to show here how to compute some of these invariants in terms of the 
weights and degrees. 

6.1. The cuspidal curve ( ( ))ff 1,2Σ  

We recover the result of [20] which shows the relationship among the 

first polar multiplicity of the cuspidal curve ( ( )( ))ff n 1,2−Σ  and the number 

of nA  points. 

Proposition 6.1 [20, Corollary 4.2]. Let ( ) ( ,,,,, 214321 xxxxxxf =  

( ))4321 ,,, xxxxg  be a finitely determined, quasi-homogeneous, co-rank 

one map germ with weights ,,,, 4321 wwww  where ,21 ww <  43 ww <  and 

let d be the weighted degree of g with 1wd >  and .2wd >  

The first polar multiplicity at the origin of the cuspidal curve 

( ( )( ))ff n 1,2−Σ  denoted ( ( ( )))ffm 1,2
1 Σ  can be computed as 
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( ( ( ))) ∑∏ ∏ ∏
=ρ =ν =κ =μ μ

κ

ρν

ρ

ρ≠κ

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎠

⎞
⎜
⎝

⎛
−=Σ

4

2

4

1

4

2
3

4

2
1

1,2
1 #1

1

1

1

11 A

D
D

D
Dw

D
ffm  

with ( ) 3343211 ,2, wdDwwdDwD −=−−==  and .44 wdD −=  

Now, we use this formula and the formula given in Subsection 4.3 for the 
number of points 3A  to compute directly the first polar multiplicity 

( ( ( )))ffm 1,2
1 Σ  in terms of the weights and degrees. 

Corollary 6.2. Let ( ) ( )( )4321214321 ,,,,,,,, xxxxgxxxxxxf =  be a 

finitely determined, quasi-homogeneous, co-rank one map germ with weights 
,,,, 4321 wwww  where ,21 ww <  43 ww <  and let d be the weighted degree 

of g with 1wd >  and .2wd >  Then 

( ( ( ))) ∑ ∏ ∏=ρ =ν =κ

κ

ρν

ρ

ρ≠κ ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎠

⎞
⎜
⎝

⎛
−=Σ

4
2

4
1

4
2

1,2
1

1

11

D
Dw

D
ffm  

4321
01

2
2

3
3

4
44

2

1

1
1

1
ωωωω

++++
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⋅ ∏ =μ μ

PdPdPdPdP

D
D  

with 43
2
4

2
3323434 13963632

15,55553,16 ωω+ω+ω+ω=ω−ω−−== PPP  

2
4

2
3

2
4343

3
44

2
3

3
314 2

9
2
9108122410824,2

15 ω−ω−ωω−ωω−ω−ωω−ω−=ω+ P  

and .2
9

2
9452424 2

434
2
3

2
4

2
3

3
434

3
30 ωω+ωω+ωω+ωω+ωω=P  

We also see in [20] that the local Euler obstruction of the cuspidal curve 
of any weighted homogeneous co-rank one map germ is calculated in terms 
of the weights and degrees of f and also in terms of the number of points .3A  
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We remember that, in fact, the local Euler obstruction for varieties, 
introduced in [12] by MacPherson in a purely obstructional way, is an 
invariant that is also associated to the polar multiplicities and Tráng and 
Teissier in [11] showed that the local Euler obstruction is an alternate sum of 
the multiplicity of the local polar varieties. 

Theorem 6.3 (Tráng and Teissier [11]). Let X be a reduced analytic 

space at 10 +∈ nC  of dimension d. Then 

( ) ( ) ( )∑ −

=
−−−=

1
0

1
0 ,1

d
i i

id XmXEu  

where ( )Xmi  denotes the absolute polar multiplicity of the polar variety 

( ).XPi  

We see in [10] the formula for the Euler obstruction at the origin of 

( ( )).1,2 ff n−Σ  

Proposition 6.4 [10]. Let ( ),3,nf O∈  3>n  be a finitely determined 

map germ. Then 

( ( ( ))) ( ( )) ( ( ( ))).1# 1,2
1

1,2
3

1,2
0 ffmfAffEu nnn −−− Σ++Σμ−=Σ  

And from the second equation of the Proposition 6.1 we have the 
following formula to compute the Euler obstruction in terms of the weights 
and degrees. 

Corollary 6.5 [20]. Let ( ) ( )( )4321214321 ,,,,,,,, xxxxgxxxxxxf =  

be a finitely determined, quasi-homogeneous, co-rank one map germ with 
weights ,,,, 4321 wwww  where 4321 , wwww <<  and let d be the weighted 

degree of g with 1wd >  and .2wd >  Then 

( ( ( ))) ∑∏ ∏
=ρ =ν =κ

κ

ρν

ρ

ρ≠κ

+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎠

⎞
⎜
⎝

⎛
−=Σ

4

1

4

1

4

1

1,2
0 1

1

11

D
Dw

D
ffEu  

with ( ) .,,22, 443343211 wdDwdDdDwD −=−=ω+ω−==  
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6.2. The double points curve ( )( )fDf  

We consider now the invariants associated to the double points curve 
( )( ).fDf  

We shall use the equation ( ) ( )( ) ( ( ))fffDfV 1,2
1 Σ= ∪F  and the 

results of [10], where it is shown how the polar multiplicities are related with 
the 0-stable singularities of the discriminant. 

Now, we show how the polar multiplicities of ( ( )( ))ffDf Σ|2
1  are 

related. For this set, there are two polar multiplicities and the relation 
between them is given in terms of the Milnor number of the set 

( ( )( ))ffDf Σ|2
1  and also of the number of isolated singularities of f. 

Theorem 6.6 [10, Theorem 4.6]. Let ( ) ( )0,0, 34 CC →f  be a finitely 

determined map germ of co-rank one. Then 

( ( ( ( )( ))) ( ( ( )( ))))ffDfmffDfm Σ|−Σ| 2
1

2
02  

( ( )( )) ( ) ( ) .1#6#3#3 1,1,132,1
2
1 ++++Σ|μ−= AAAffD  

Therefore, from this formula and the formula given by Tráng and 
Teissier, we get a formula to compute the Euler obstruction in terms of all       
0-stable singularities, points ,3A  ( )2,1A  and ( )1,1,1A  and also of the Milnor 

number of the double points curve. 

Corollary 6.7. 

( ( ( )))
( ( )( )) ( ) ( ) .2

1#6#3#3 1,1,132,1
2
12

0
++++Σ|μ−

=
AAAffD

fDfEu  

7. Appendix 

The main purpose of this Appendix is to give an example which shows 
clearly how can we construct the free resolution of an ideal in terms of the 
modules of syzygies. This method is very powerful to compute such 
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resolutions and is done in terms of the standard bases of the modules. We fix 
here the notation of Section 4 which is based in the notation of [6]. 

We shall recover next the definition of the syzygies. 

Definition 7.1. Let R be an arbitrary ring. A syzygy between k elements 

khh ...,,1  of an R-module M is a k-tuple ( ) k
k Rrr ∈...,,1  satisfying ∑ =

k
i iihr1  

.0=  

The set of all syzygies between ,...,,1 khh  denoted by ( ),...,,1 khhsyz  is 

a submodule of ,kR  it is the kernel of the ring homomorphism =φ :: 1F  

MR i
k
i →ε=⊕ 1  with ,ii rε  where { }kεε ...,,1  denotes the canonical basis 

of .kR  If ,...,,1 RkhhI =  then we provide the following: 

Definition 7.2. ( ) ( ) ( ),ker:...,,: 1 φ== khhsyzIsyz  the module of syzygies 

of I with respect to the generators { }....,,1 khh  Besides we define inductively 

the kth syzygy module: ( ) ( )( ),: 1 IsyzsyzIsyz kk −=  setting ( ) .:0 IIsyz =  

The existence of such syzygies is guaranteed by the Buchberger’s 
criterion for the existence of a standard basis of ( ).Isyz  

The first step is the construction of a standard basis for the first ( ).Isyz  

If [ ],xKR =  { }0\rRf ∈  and > denotes a module ordering, then f can be 

written uniquely as ,∗α += fecxf i  with { }0\Kc ∈  and ji exex
∗αα >  for 

any non-zero term jexc
∗α∗  of .∗f  

So we define: the leading monomial by ( ) ,iexfLM α=  the leading 

coefficient by ( ) ,cfLC =  the leading term by ( ) iecxfLT α=  and the tail 

of f by ( ) ( ).: fLTfftail −=  Also, if ,rRG ⊂  then we define the leading 

submodule of G  by ( ) ( ) { } .0\: RGggLMGL ∈=  
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Now, let { }kffG ...,,1=  be a standard base of ,...,,1 kffI =  with 

{ },0\r
i Rf ∈  { }ki ...,,1∈∀  (i.e., IG ⊂  and the leading ideals coincide: 

( ) ( );GLIL =  we note that in the global case, it is also called Groebner 

base). For each ji ≠  such that if  and jf  have their leading terms in the 

same component, i.e., ( ) ,ν
α= exfLM ii  ( ) ,ν

α
= exfLM j

j  we define the 

monomial ,Rxm iji ∈= α−λ  where 

( ) ( ( ) ( ))r
j

r
ijijilcm αααα=αα=λ ,max...,,,max:,: 11  

is the least common multiple of iα  and ,jα  ( ),ii fLCc =  ( ).jj fLCc =  

Then the s-polynomial of if  and jf  is given by ( ) −= ijiji fmffspoly ,  

.jij
j
i fmc

c  We can assume that ( )ji ffspoly ,  has a standard representation: 

( )∑ −ν νν=− k ij
jij

j
i

iij fafmc
cfm 1 ,  ( ) .Ra ij ∈ν  

Now, for ji <  such that ( )ifLM  and ( )jfLM  involve the same 

component, define 

.
1
∑
−ν

νν−ε−ε=
k

ij
jij

j
i

ijiij famc
cms  

It is possible to show that ( ).Isyzsij ∈  

With these notation, the construction of a base for ( )Isyz  is described 

below. 

Theorem 7.3 ([6, Theorem 2.5.9], see also [1, Theorem 15.10]). Let =G  

{ }khh ...,,1  be a set of generators of .rRI ⊂  

Let ( ){ kjijiP ≤<≤= 1,,:  such that the leading terms of the ir  and 

jr  involve in the same }component  and let .PJ ⊂  
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Assume that ( ( ) ) 0, =| ijji GhhspolyNF  for some ,GGij ⊂  ( ) Jji ∈,  

and for ri ...,,1=  we have the equality 

{ ( ) } { ( ) } .,, PjimJjim iijiij ∈|ε=∈|ε  

Then the following statements hold: G is a standard basis of I 
(Buchberger’s criterion) and { ( ) }JjisS ij ∈|= ,:  is a standard basis of 

( ).Isyz  

Example 7.4. Let F be the finitely determined co-rank one map germ 

from ( )0,4C  to ( ) ( ) ( ).,,:,,,:0, 323 uuvxvyuyxvuyxF +++=C  Note 

that this map is quasi-homogeneous of type ( )3;1,1,2,2  and ( )FJ 1,1,2  has 

the standard base .,,,, 22 uuvvxyI =  

The first syzygy module 1M  is formed by the generators of the ideal 

,,,,, 22 uuvvxyI =  so ( ) ( ).451
22

1 O×∈= MuuvvxyM  

Numbering the elements of uvgvgxgygG ==== 4
2

321 ,,,:  and 

.2
5 ug =  We are admitting a monomial ordering > such that ( ) >1gLM  

( ) ( ) ( )( ).5432 gLMgLMgLMgLM >>>  

The respective monomials ,iijm ε  51 ≤<≤ ji  are given in the 

following table: 

 

Hence, we may choose 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }5,4,4,3,5,2,4,2,3,2,5,1,4,1,3,1,2,1:=J  



Stable Singularities of Co-rank One Quasi Homogeneous Map … 217 

and compute 

( ) ( ),0,0,0,,0, 212122,111,22,1 yxyxggspolymms −=−ε−ε=−ε−ε=  

( ) ( ),0,0,,0,0, 2
31

2
3133,111,33,1 yvyvggspolymms −=−ε−ε=−ε−ε=  

( ) ( ),0,,0,0,0, 414144,111,44,1 yuvyuvggspolymms −=−ε−ε=−ε−ε=  

( ) ( ),,0,0,0,0, 2
51

2
5155,111,55,1 yuyuggspolymms −=−ε−ε=−ε−ε=  

( ) ( ),0,0,,,00, 2
32

2
3233,222,33,2 xvxvggspolymms −=−ε−ε=−ε−ε=  

( ) ( ),0,,0,,00, 424244,222,44,2 xuvxuvggspolymms −=−ε−ε=−ε−ε=  

( ) ( ),,0,0,,00, 2
52

2
5255,222,55,2 xuxuggspolymms −=−ε−ε=−ε−ε=  

( ) ( ),0,,,0,00, 434344,333,44,3 vuvuggspolymms −=−ε−ε=−ε−ε=  

( ) ( ).,,0,0,00, 545455,444,55,4 vuvuggspolymms −=−ε−ε=−ε−ε=  

The set { }5,44,35,24,23,25,14,13,12,1 ,,,,,,,,: sssssssssS =  is an 

interreduced standard basis for ( ) .: 2MIsyz =  Therefore, by Theorem 7.3, 

the second syzygy module is generated by the columns of the matrix 

( ) ( ).

000000

00000

000000

00000

00000

495

22

22

2 O×∈

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−−

−−

−

== M

yxv

yxvu

yxu

yuuvv

uuvvx

IsyzM  

Now, numbering the generators of ( )Isyz  we call: 

( ) ( ) ( ),0,0,,,0,0,,,0,0,,,0,0,0 2
321 xvhvuhvuh −=−=−=  
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( ) ( ) ( ),0,0,0,,,,0,0,,0,0,,0,,0 6
2

54 yxhxuhxuvh −=−=−=  

( ) ( ) ( ).,0,0,0,,0,,0,0,,0,0,,0, 2
98

2
7 yuhyuvhyvh −=−=−=  

So, we see that the set M of pairs ( ),, ji  91 ≤<≤ ji  such that the 

leading monomials of the ith and jth elements of S involve the same 
components consisting of 7 elements: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }9,8,8,7,9,6,8,6,7,6,5,4,4,3=M  

and the respective monomials ,iijm ε  for ,91 ≤<≤ ji  are given in the 

following tables: 

 

We compute 

( ) ( ) ( ) 2434344,333,4
1

4,3 , ε−−ε−ε=−ε−ε= xvuhhspolymms  

( ),0,0,0,0,0,,,,0 vux −=  

( ) ( ) ( ) 1545455,444,5
1

5,4 , ε−−ε−ε=−ε−ε= xvuhhspolymms  

( ),0,0,0,0,,,0,0, vux −=  

( ) ( ) ( ) 376
2

7677,666,7
1

7,6 , ε−−ε−ε=−ε−ε= yxvhhspolymms  

( ),0,0,,,0,0,,0,0 2 xvy −=  

( ) ( ) ( ) 4868688,666,8
1

8,6 , ε−−ε−ε=−ε−ε= yxuvhhspolymms  

( ),0,,0,,0,,0,0,0 xuvy −=  
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( ) ( ) ( ) 596
2

8699,666,9
1

9,6 , ε−−ε−ε=−ε−ε= yxuhhspolymms  

( ),,0,0,,,0,0,0,0 2 xuy −=  

( ) ( ) ( ) 2878788,777,8
1

8,7 , ε−−ε−ε=−ε−ε= yvuhhspolymms  

( ),0,,,0,0,0,0,,0 vuy −=  

( ) ( ) ( ) 1989899,888,9
1

9,8 , ε−−ε−ε=−ε−ε= yvuhhspolymms  

( ).,,0,0,0,0,0,0, vuy −=  

The set ( ) { ( ) ( ) ( ) ( ) ( ) ( ) ( ) }1
9,8

1
8,7

1
9,6

1
8,6

1
7,6

1
5,4

1
4,3

1 ,,,,,,: sssssssS =  is an interreduced 

standard basis for ( )( ) ( ) .: 32 MMsyzIsyzsyz ==  Therefore, by Theorem 7.3, 

the third syzygy module is generated by the columns of the matrix 

( ) ( ).

00000
0000

00000
0000
00000
0000
00000
00000

00000

479
22

23 O×∈

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−−

−

−
−

== M

vx
uvx

ux
vuvu

vy
uvy

uy
yx

yx

MsyzM  

Now, numbering the generators of ( )( ) ( ,,,0,0,0,0: 2
1 uylIsyzsyz =  

),,0,0 x−  ( ),0,,0,,0,,0,0,02 xuvyl −=  ( ),0,0,,,0,0,,0,0 2
3 xvyl −=  

( ),0,0,0,0,0,,,,04 vuxl −=  ( ),0,,,0,0,0,0,,05 vuyl −=  ( ,0,0,6 xl =  

),0,0,0,0,, vu −  ( ),,,0,0,0,0,0,0,7 vuyl −=  we see that the set N of 

pairs ( ),, ji  71 ≤<≤ ji  such that the leading monomials of the ith and         

jth elements of ( )1S  involve the same components, consists of 2 elements: 
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( ) ( ){ }7,6,5,4=N  and the respective monomials ,71, ≤<≤ε jim iij  are 

given in the following tables: 

 

We compute 

( ) ( ) 23545455,444,5
2
5,4 , ε−ε+ε−ε=−ε−ε= vuxyllspolymms  

( ),0,0,,,,,0 xyuv −−=  

( ) ( ) 12767677,666,7
2
7,6 , ε−ε+ε−ε=−ε−ε= vuxyllspolymms  

( ).,,0,0,0,, xyuv −−=  

The set ( ) { ( ) ( ) }2
7,6

2
5,4

2 ,: ssS =  is an interreduced standard basis for 

( )( )( ) ( ) .: 43 MMsyzIsyzsyzsyz ==  Therefore, by Theorem 7.3, the fourth 

syzygy module is generated by the columns of the matrix 

( ) ( ).

0
0

0
0
0

0

42734 O×∈

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−
−

== M

x
y

x
y
u

uv
v

MsyzM  

Thus, we obtain the free resolution for ( ) ,
1,1,2
4

fJ
O  

( ) .00
1,1,2
4

44
5

1
4

9

1
4

7

1
4

2

1

4234
→→→→→→→

π

====
⊕⊕⊕⊕ fJ

M

i

M

i

M

i

M

i

O
OOOOO  
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