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Abstract 

We extend the definition of code of an edge-colored graph, given in 
[11] and [9], to the disconnected case and prove that our code keeps 
the same property of detecting color-isomorphic graphs. 

1. Introduction 

Edge-colored graphs are a combinatorial tool for representing 
PL-manifolds. This representation theory, which started in the 70’s, makes 
use of a particular class of edge-colored graphs, called crystallizations, and 
has strict relations, in low dimensions, with other classical or more recent 
representation theories, such as Heegaard diagrams, special spines ([12]), 
face-pairing graphs ([1]). On the other hand, crystallization theory can be 



Paola Cristofori 174 

applied to any dimension n and to all compact PL n-manifolds, without 
restrictions on orientability, boundary, connectedness etc. (see [2], [10] and 
[3] for a survey about the theory). 

Representing manifolds by edge-colored graphs has the further 
advantage of allowing their encoding and manipulation by computer. The 
easiest way of representing an edge-colored graph by numerical data is a 
kind of incident matrix, which is nevertheless too redundant and dependent 
on a given labelling of the vertex-set and on a given permutation of the set 
for the coloration of the edges. 

As a consequence, this kind of encoding is not suitable for most 
problems occurring within the theory. For instance, if we want to generate 
and analyze catalogues of crystallizations, as was done in [4], [6], [8], and 
[5], then it is necessary to be able to recognize the same combinatorial 
colored structure independently from different labellings of vertex-sets and 
permutations of colors. 

In order to fulfill this aim, the concept of isomorphism of edge-colored 
graphs has been introduced in [9]; in the same paper, by extending the 
procedure introduced in [11] for the bipartite case, an algorithm is presented 
to compute a numerical code of a connected m-bipartite edge-colored graph, 
which is invariant under isomorphisms. 

In this paper, we extend furthermore both the definition of isomorphism 
of colored graphs and the algorithm for the code to the case of disconnected 
graphs. 

The algorithm has been implemented in a C++ function, which is part of 
Duke program for manipulating and studying edge-colored graphs1, as a 
representation tool for PL-manifolds. 

We point out that our concept and results, as in [9], apply to the whole 
class of edge-colored graphs, without any reference to their possible 

                                                           
1Duke program can be downloaded from the WEB page http://cdm.unimo.it/home/ 
matematica/casali.mariarita/DukeIII.htm; details about it are available at the same page.  
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topological meaning. However, in the last section of the paper we present an 
alternative definition of isomorphism for colored graphs, together with its 
application to the computation of the code, and discuss the usefulness of both 
definitions in view of their applicability to the resolution of topological 
problems. 

2. Preliminaries 

An ( )1+n -colored graph is a pair ( ),, γΓ  where Γ is a multigraph, 

whose vertices have degree n or ,1+n  and ( ) { }nE n ...,,0: =Δ→Γγ  a 

map which is injective on each pair of adjacent edges of Γ. The boundary 
(resp. internal) vertices of Γ are the vertices with degree n (resp. ).1+n  The 

( )1+n -colored graph ( )γΓ,  is called without boundary if all its vertices are 

internal, i.e., Γ is regular of degree .1+n  From now on, we assume that, in 
the case of non-empty boundary, the missing color is always n. 

For each ,nB Δ⊆  we call B-residues of ( )γΓ,  the connected components 

of the colored graph ( ( ) ( ));, 1 BVB
−γΓ=Γ  given an integer { },...,,1 nm ∈  

we call m-residue of Γ each B-residue of Γ with .# mB =  

An ( )1+n -colored graph ( )γΓ,  is said to be m-bipartite if all 

m-residues of Γ are bipartite and there exists at least one ( )1+m -residue 

which is not bipartite. 

Note that ( )1+n -bipartite means bipartite in the usual sense and that 

every ( )1+n -colored graph is at least 2-bipartite. 

In handling m-bipartite graphs we have to be careful with regard to the 
existence of the boundary; more precisely, for each ( )1+n -colored graph 

( ),, γΓ  it is useful to define an integer ( ),Γm  with ( ) ,12 +≤Γ≤ nm  as 

follows: 

( )
⎩
⎨
⎧

Γ

Γ
=Γ

boundary.nohasorbipartite-is

boundary,empty-nonhasandbipartiteis

mm

n
m  
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Definition 1. A graph-isomorphism Γ′→Γφ :  is called an isomorphism 

between the ( )1+n -colored graphs ( )γΓ,  and ( )γ′Γ′,  if there exists a 

permutation σ of nΔ  such that .φγ′=γσ  

The isomorphism problem for connected edge-colored graphs has 
already been solved in [9] by means of a numerical code, which distinguishes 
colored graphs up to isomorphisms. In the following section we will extend 
this definition to disconnected graphs and we will prove that its property of 
detecting color-isomorphic graphs is preserved. 

3. Encoding Disconnected Colored Graphs 

In the following, when the coloration of the edges of a graph is clearly 
understood, we shall often write Γ instead of ( )., γΓ  

Let ( )γΓ,  be an ( )1+n -colored graph with r connected components 

rΓΓ ...,,1  (possibly )1=r  and suppose that for each ( )iVri Γ= ,...,,1  is of 

order ;2 iq  moreover set ( ).ii mm Γ=  By a vertex-labelling of Γ we mean a 

bijective map ( ) ,: 2qIVl →Γ  where ∑ == r
i qi Iqq 1 2,  being a subset of ,Z  

not containing 0, of cardinality .2q  For sake of simplicity, for each ,2qIj ∈  

we will denote by jv  the vertex ( )Γ∈Vv  such that ( ) .jvl =  

For each ( )1+n -colored graph ( )γΓ,  and for each vertex-labelling l of 

Γ, we define a matrix ( ) ( ) ( )nq
j

c cIjal Δ∈∈=γΓ ,,, 2A  by 

⎪⎩

⎪
⎨
⎧ =

=
adjacent.-areandif

vertex,-boundaryaisandif0

cvvk

vnc
a

kj

jj
c  

Remark 1. Given two ( )1+n -colored graphs ( )γΓ,  and ( ),, γ′Γ′  let us 

suppose that they are color-isomorphic by the isomorphism φ and the color-
permutation σ, i.e., ;φγ′=γσ  then there are vertex-labellings l of Γ and 

l′  of Γ′  respectively, by means of the same set ,2qI  such that φ′= ll  
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and, consequently, ( ) ( ).,,,, ll ′γ′Γ′=γσΓ AA  Moreover, it is easy to see 

that, if Γ and Γ′  have non-empty boundary, σ fixes color n. 

For each Γ, we define the set of admissible permutations ( ),ΓH  which 

coincides with the set of all permutations of nΔ  in case ∅=Γ∂  and with 

the subset of permutations of nΔ  fixing n, in case .∅≠Γ∂  

Let us now consider a permutation ( ).Γ∈π H  For each ri ...,,1=  and 

for each ( ),ii Vr Γ∈  let π,irN  be the vertex-labelling of iΓ  described in [9]. 

π,irN  has the following properties: 

  (i) for each ( ),iVv Γ∈  ( ) ,, iri qvNq
i

≤≤− π  i.e. { ,1,1...,,2 −−= iq qI
i

 

};..., iq  

 (ii) each pair of ( )0π -adjacent vertices of iΓ  are labelled by opposite 

integers; 

(iii) the vertices of each ( ) ( ){ }1...,,0 −ππ im -residue of iΓ  belonging to 

the same bipartition class are labelled by integers having the same sign. 

The matrix ( )πγπΓ ,,, irii NA  is completely determined by the 

elements: 

,j
ca  for each { },1...,, −−∈ iqj  for each { };1...,,1 −∈ imc  

,j
ca  for each ,2 iqIj ∈  for each { }....,, nmc i∈  

Therefore, we can define the code ( )iric Γπ,  of ,iΓ  with respect to the 

permutation π and the root ,ir  as the word of length ( ) ii qmn 12 +−  in the 

alphabet { },02 ∪iqI  in the following way. 

Definition 2. Let −
ciw ,  (resp. ),

+
ciw  be the word of length iq  obtained by 

juxtaposition of the elements ,j
ca { }1...,, −−∈ iqj  (resp. ∈ja j

c ,  { })iq...,,1  
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of ( )πγπΓ ,,, irii NA  in the order induced by the columns. Define 

( ) .,,,1,,
++−−

π =Γ niminiiir wwwwc
ii  

The code ( )πΓ ,ic  of iΓ  with respect to π (or simply the π-code of )iΓ  is 

defined as the lexicographic maximum among the codes ( ),, iric Γπ  for 

( ).ii Vr Γ∈  

Let us state now a property of the roots corresponding to the π-code of a 
connected graph, which is useful in its effective computation and will justify 
our subsequent definitions. 

Proposition 1 [9]. Let ( )γΓ,  be a connected ( )1+n -colored graph, π 

be an admissible permutation of nΔ  and suppose ( ) ( )., , Γ=πΓ πrcc  Then         

r belongs to a { }10, ππ -residue of maximum length among all { }10, ππ -

residues of .Γ  

Let { }rC ΓΓ= ...,,1  be the set of the connected components of the graph 

Γ; for each ,...,,1 ri =  we denote by iλ  the maximum length of the 

{ }10, ππ -residues of .iΓ  

Let us consider, now, the following ordering “≺ ” of the set C:  

for each i, ijrj ΓΓ= ≺,...,,1  iff one of the following conditions holds: 

ji λ<λ  

ji λ=λ  and ji qq <  

jiji qq =λ=λ ,  and ( )πΓ ,ic  is lexicographically less than ( )., πΓ jc  

If ( ) ( ),,, πΓ=πΓ ji cc  then we choose indifferently the ordering ji ΓΓ ≺  

or ,ij ΓΓ ≺  since both choices have the same consequence on the following 

definitions. 
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The ordering of C defines a labelling πN  of Γ induced by the labellings 

of the iΓ ’s corresponding to their π-codes; more precisely, for each =i  

r...,,1  and for each ( ),iVv Γ∈  if v is labelled { }ii qqk ...,,1,1...,, −−∈  by 

π,irN  ( ir  being the root such that ( ) ( )),, , iri i
cc Γ=πΓ π  then ( ) ,skvN +=π  

where 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<−

>

= ∑
∑

ΓΓ

ΓΓ

otherwise.0

,0if

,0if

kq

kq

s
ij

ij

j

j

≺

≺

 

We point out that the information which allow to reconstruct ( )γπΓ,  

from ( ),,, πγπΓ NA  are encoded in the following ( )( )qmn 12 +Γ−  

elements of the matrix: 

,j
ca  for each { },1...,, −−∈ qj  for each ( ){ }1...,,1 −Γ∈ mc  

,j
ca  for each ,2qIj ∈  for each ( ){ }....,, nmc Γ∈  

From now on we call them the essential elements of ( ).,, πγπΓ NA  

We define the code ( )πΓ,c  of Γ with respect to π as the word of length 

( )( )qmn 12 +Γ−  in the alphabet { },02 ∪qI  obtained by juxtaposition of 

the essential elements of ( )πγπΓ N,,A  in the order as described in 

Definition 2. 

Finally the code ( )Γc  of Γ is defined as the lexicographic maximum of 

( )πΓ,c  among all admissible permutations π of .nΔ  

Remark 2. Note that, given iΓ  and jΓ  with ji qq =  and ,ji λ=λ  if 

,ji mm >  then .ji ΓΓ ≺  

From Proposition 1 and the definition of ( ),Γc  the following result is 

straightforward. 
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Proposition 2. Let ( )γΓ,  be an ( )1+n -colored graph and π be an 

admissible permutation of nΔ  such that ( ) ( )., πΓ=Γ cc  Then there is a 

{ }10, ππ -residue of maximum length among all { }10, σσ -residues of ,Γ  with 

σ admissible permutation of .nΔ  

It is clear from the above proposition that the computation of ( )Γc  can 

be restricted to the admissible permutations π containing a { }10, ππ -residue 

of maximum length. 

Proposition 3. Let Γ and Γ′  be ( )1+n -colored graphs. Then Γ and Γ′  

are color-isomorphic if and only if ( ) ( ).Γ′=Γ cc  

Proof. If Γ and Γ′  are color-isomorphic through the isomorphism φ and 
the permutation σ, by Remark 1 and our definition of the code, it is easy to 
see that, for each admissible permutation π and for each { },...,,1 ri =  

( ) ( )( )σπΓφ=πΓ ,, ii cc  (r being the number of connected components            

of Γ and ),Γ′  hence ( ) ( ),Γ′=Γ cc  since the orders of the connected 

components and the maximum lengths of residues are invariant under colored 
isomorphisms. 

Conversely if ( ) ( ),Γ′=Γ cc  note that, as an easy consequence of the 

definition of code, Γ and Γ′  have the same number of connected components 
and ( ) ( ).Γ′=Γ mm  

Let π (resp. )π′  be the permutation of nΔ  such that ( ) ( )πΓ=Γ ,cc  

( ) ( )( ).,.resp π′Γ′=Γ′ cc  Let ( ) ( )( )rr Γ′Γ′ΓΓ ...,,.resp...,, 11  be the r-ple of 

connected components of Γ (resp. )Γ′  with the ordering induced by ( )πΓ,c  

( )( );,.resp π′Γ′c  then for each ,...,,1 ri =  we have ( ) ( ).,, π′Γ′=πΓ ii cc  As 

a consequence, by Proposition 2.10 of [9], there exists a colored 
isomorphism iφ  between iΓ  and iΓ′  corresponding to a permutation σ such 

that .σπ=π′  The pair ( ),, σφ  where ii φ=φ Γ|  for each ,...,,1 ri =  

determines a colored isomorphism between Γ and .Γ′  
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Figure 1 (resp. Figure 2) shows, as an example, a 3-bipartite (resp.             
2-bipartite) 4-colored disconnected graph and its code2. 

Remark 3. It is obvious that if Γ and Γ′  are color-isomorphic, then there 
is a bijective correspondence between color-isomorphic connected 
components of Γ and .Γ′  The converse is not generally true. Figure 3 shows 
an example of two 3-bipartite 3-colored graphs Γ and Γ′  with two connected 
components 21, ΓΓ  and 21, Γ′Γ′  respectively. It is easy to see that for each 

ii Γ= ,2,1  is color-isomorphic to iΓ′  (i.e. their codes coincide), but 

( ) ( ).Γ′≠Γ cc  In fact the isomorphism between 1Γ  and 1Γ′  is relative to the 

permutation (012) of ,2Δ  while that between 2Γ  and 2Γ′  is relative to the 

distinct permutation (102). The existence of a color-isomorphism between Γ 
and Γ′  implies that all their connected components are color-isomorphic 
through the same permutation. 

 

Figure 1 

                                                           
2In the figures, because of the low number of vertices of the examples, we use letters 
instead of integers, in order to display the code in a more compact way: capital letters 
correspond to positive numbers, small letters to negative ones. 
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Figure 2 

 
Figure 3 

4. Colored Graphs and Manifolds Triangulations 

From Remark 3, it comes natural to define a different concept of color-
isomorphism as follows: 

Definition 3. Two ( )1+n -colored graphs Γ and Γ′  are weakly color-

isomorphic if there exists a bijective correspondence between the set of 
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connected components of Γ and the set of connected components of ,Γ′  such 
that corresponding components are color-isomorphic. 

In other words, two colored graphs are weakly color-isomorphic if they 
are isomorphic component by component (obviously this is the same as 
Definition 1 in the case of connected graphs). This definition is equivalent to 
require the existence of a bijective correspondence between the two sets 
formed by the codes of the connected components of Γ and Γ′  respectively. 

We think interesting to discuss the usefulness of each definition in view 
of the connection between colored graphs and triangulations of manifolds. 

Let K be a pseudocomplex triangulating a closed PL n-manifold M 3. K is 
called a colored triangulation of M if there is a labelling of its vertices by 
means of ,nΔ  which is injective on each simplex of K. The dual 1-skeleton 

of K is a multigraph ( )KΓ  which inherits an edge-coloration from that of K. 

( )KΓ  is said to represent M. Moreover, for each ,nc Δ∈  each { }( )cn \Δ -

residue of ( )KΓ  represents the boundary of a particular regular 

neighbourhood (called disjoint link) of a c-labelled vertex of K, which is an 
( )1−n -sphere; as a consequence ( )KΓ  can only be m-bipartite with =m  

1+n  (iff M is orientable) or .nm =  If, for each ,nc Δ∈  K has only one          

c-colored vertex, then it is called contracted. In this case, for each ,nc Δ∈  

the subgraph ( )KĉΓ  of ( )KΓ  obtained by deleting all c-colored edges, is 

connected and ( )KΓ  is called contracted, too, or a crystallization of M (see 

[2], [10] or [3] for a survey on this representation theory).  

The following statement is easily proved. 

Proposition 4. Color-isomorphic (resp. weakly color-isomorphic) 
graphs correspond to the same triangulation and represent the same 
manifold. 

                                                           
3 ( )1+n -colored graphs are a representation tool for compact PL n-manifolds; in this 
section, for simplicity, we will fix on the closed case, although definitions and results can 
be extended to the case of non-empty boundary with only slight modifications. 
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Therefore, the topological meaning of ( )1+n -colored graphs 

representing n-manifolds seems to support the preference for Definition 3, 
since, in the case of non-connected manifolds it is highly important to 
recognize the possible largest number of colored graphs representing the 
same manifold, disregarding the fact that different components correspond 
through different colorations. However the choice of the more restrictive 
Definition 1 is not only justified by its extending directly the connected one, 
but has also its topological backgrounds. 

In fact, an interesting problem in the theory of colored graphs is that of 
generating all possible ( )1+n -colored graphs with a fixed number of vertices 

representing manifolds, in order to obtain catalogues of triangulations. 

More precisely, since each n-manifold admits a crystallization, given 

,1>p  we are interested in generating the set ,1
2
+n
pC  of all contracted ( )1+n -

colored graphs without boundary Γ, with 2p vertices, representing manifolds, 
i.e. such that ĉΓ  represents a ( )1−n -sphere for each .nc Δ∈  

Let us denote by ( )r
p

r
p 22 .resp ΣΣ  the set of all connected (resp. possibly 

disconnected) r-colored graphs, with 2p vertices, representing (resp. whose 
connected components represent) ( )1−r -spheres. 

One way to solve our problem is to generate the set n
p2Σ  and complete 

each of its elements by adding the ( )1+n -colored edges in all possible way, 

so as to obtain a manifold. Again, in order to construct ,2
n

pΣ  we start by 

adding n-colored edges to each element of the set 1
2
−Σn
p  so as to obtain 

spheres4. 

                                                           
4The problem of recognizing ( )1−n -colored graphs representing spheres is dealt with 
differently depending on n. It is obviously easy for ;4=n  for ,4>n  it can be solved by 
manipulating the graph in order to obtain a contracted one (which is always possible) and 
by comparison, if there exists a catalogue of all crystallizations of ( )2−n -spheres with 
2p vertices. For instance, this happens for 5=n  and 16<p  (see [8]). 
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This process can be repeated recursively, taking as initial step 2
2 pΣ  i.e. 

the set of all graphs with 2p vertices, whose connected components are 

bicolored cycles: for each ,1...,,3 −= nr  the construction of r
p2Σ  is 

performed by adding to each element of 1
2
−Σr
p  the r-colored edges in order to 

obtain disjoint unions of spheres. 

Note that at the last step only connected graphs are required, since we 
want the final objects to be crystallizations. 

Of course, due to the large amount of possible addings of edges, all 
constructions are done by computer and, to save computational time, it               

is important to start, at each step, from the smallest essential set r
p2Σ  

( )nr <for  or .2
n

pΣ  Here essential means “assuring that no n-manifold 

admitting a contracted triangulation with 2p vertices can be left out from the 
final catalogue”. 

For this purpose, only Definition 1 assures that two disconnected color-
isomorphic r-colored graphs give rise to the same set of ( )1+r -colored 

graphs. 

Figure 4 shows that this does not happen for Definition 3; in fact, it 
presents two connected 4-colored graphs Γ  and Γ′  arising from the 3-
colored graphs Γ and Γ′  respectively of Figure 3, by adding corresponding 
sets of 4-colored edges. 

Although Γ and Γ′  are color-isomorphic by Definition 3 (but they are 
not by Definition 1), Γ  and Γ′  are not color-isomorphic, as it is clear from 

their codes. As a consequence the set 3
10Σ  must contain both Γ and .Γ′  

Catalogues 4
2 pC  for 151 ≤≤ p  have already been generated, analyzed 

and all represented 3-manifolds have been recognized (see [4], [5], [6], [8]). 

Catalogues 5
2 pC  for 101 ≤≤ p  have been generated and partial results, with 

regard to classification of the involved 4-manifolds, have already been 
obtained ([7]). 
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Figure 4 
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