CONNECTIONS ON THE FIBRE BUNDLE AND APPLICATION TO THE LAGRANGIAN MECHANICS

M. Mehdi ${ }^{1}$, F. Farah ${ }^{2}$ and A. Mortada ${ }^{1}$
${ }^{1}$ Faculty of Science
Lebanese University
Beirut, Lebanon
e-mail: mehdi@ul.edu.lb
amina_mortada2010@hotmail.com
${ }^{2}$ University of Balamand
P. O. Box: 100
Tripoli, Lebanon
e-mail: farah.farah@balamand.edu.lb

Abstract

In this paper, we use the notion of Grifone's connection over a tangent bundle in order to construct a connection over a sub-bundle. Then we characterize the solutions of non-holonomic Lagrangian mechanics and show that the geodesics of the connection constructed on the subbundle are the solutions of the non-holonomic Euler-Lagrange system. Finally, we will prove that the Hamiltonian associated to Lagrangian function is constant along the horizontal curves.

© 2013 Pushpa Publishing House
2010 Mathematics Subject Classification: Primary 58A30, 58A17; Secondary 58A15, 58A10.
Keywords and phrases: connections, distributions, Lagrangian mechanics, fibre bundle.
This work is financially supported by the Lebanese University.
Communicated by Yasuo Matsushita
Received November 1, 2011; Revised December 3, 2012

Introduction

The geometrization of the Euler-Lagrange problem in Lagrangian mechanics holonomic or non-holonomic has been developed specially with Gallissot [4], Klein [9] and Vershik and Faddeev [12]. Grifone and Mehdi [5] constructed a connection on the tangent fibre bundle projected on the submanifold with constraints. This projection required specific conditions that this constraint is ideal in the sense of Vershik. In this paper, we take the definition of Grifone's connection [7] and we use it to present an alternative approach over the tangent sub-bundle. The covariant derivative, the torsion and the curvature will be also defined but they required a Lie pre-bracket definition associated to this connection. We also characterize a connection whose geodesics are the solutions of the Euler-Lagrange problem. We finally show that the Hamiltonian associated to a given Lagrangian is preserved along the horizontal paths.

1. Notation and Preliminary Definitions

Let M be a smooth differentiable manifold of dimension n and E be a regular linear tangent sub-bundle of $T M$ over M of dimension p.

For all calculations, we adopt the following conventions:
Summations from 1 to n for Latin indices i, j, k, \ldots.
Summations from 1 to p for the Greek indices $\alpha, \beta, \gamma, \ldots$.
Summations from $p+1$ to n for the Latin indices $\bar{i}, \bar{j}, \bar{k}, \ldots$.

1.1. Basis well adapted to E

Let (U, Φ) be chart on M where z is the center and $\pi: E \rightarrow M$ be the canonical projection.

Note that we have two structures of fiber bundle over $T E$:

$$
p_{E}: T E \rightarrow E \text { and } \pi^{T}: T E \rightarrow T M ;
$$

where π^{T} is the tangent mapping of π and p_{E} is the canonical projection on E.

Let $\left(C_{1}, \ldots, C_{n}\right)$ be a local basis of the vector field on U. Without losing the generality, we can assume that $\left(C_{1}, \ldots, C_{p}\right)$ is a local basis of E over U such that

$$
C_{\alpha}(z)=\left.\frac{\partial}{\partial x^{\alpha}}\right|_{z}, \quad \alpha=1, \ldots, p .
$$

Therefore, for all $x \in U$, we write:

$$
C_{i}(x)=C_{i}^{j}(x) \frac{\partial}{\partial x^{j}}, \text { for } i, j=1, \ldots, n
$$

so that we have: $C_{\alpha}(x)=C_{\alpha}^{\beta}(x) \frac{\partial}{\partial x^{\beta}}+C_{\alpha}^{\bar{j}}(x) \frac{\partial}{\partial x^{\bar{j}}}$.
In some neighborhood of z, the matrix $\left(C_{\alpha}^{\beta}\right)$ is still invertible and we denoted by (\mathcal{C}). Thus, we define on U the following vector fields:

$$
\left.A_{\alpha}\right|_{x}=\left.\left(\left(\mathcal{C}^{-1}\right)_{\alpha}^{\beta} C_{\beta}\right)\right|_{x}=\left.\frac{\partial}{\partial x^{\alpha}}\right|_{X}+\left.B_{\alpha}^{\bar{i}} \frac{\partial}{\partial x^{\bar{i}}}\right|_{X},
$$

where $\left.B_{\alpha}^{\bar{i}}\right|_{X}=\left.\left(\left(\mathcal{C}^{-1}\right)_{\alpha}^{\beta} C_{\beta}^{\bar{i}}\right)\right|_{\chi}$.
The set $\left(A_{1}, \ldots, A_{p}\right)$ is also a basis for the vector fields E around the point z in U.

Consider now $A_{i}(x)=\left.\frac{\partial}{\partial x^{\bar{i}}}\right|_{x}$. Then $\left(A_{1}, \ldots, A_{n}\right)$ is basis field on U in $T M$.
On TM, we already have two coordinates systems:
The classical coordinate system: $\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right)$.
The adapted coordinate system: $\left(z^{1}, \ldots, z^{n}, a^{1}, \ldots, a^{n}\right)$ associated to $\left(A_{1}, \ldots, A_{n}\right)$.

Both the systems are characterized by the following relations:

$$
z^{i}=x^{i}, y^{\alpha}=a^{\alpha} \text { and } y^{\bar{i}}=a^{\bar{i}}+a^{\alpha} B_{\alpha}^{\bar{i}} .
$$

Therefore,

$$
\frac{\partial}{\partial y^{\alpha}}=\frac{\partial}{\partial a^{\alpha}}-B_{\alpha}^{\bar{i}} \frac{\partial}{\partial a^{\bar{i}}} .
$$

According to these bases, we can construct a dual basis $\left(\theta^{i}\right)$ of $\left(A_{i}\right)$ by taking:

$$
\theta^{\bar{i}}=d x^{\bar{i}}-B_{\alpha}^{\bar{i}} d x^{\alpha} \text { and } \theta^{\alpha}=d x^{\alpha}
$$

where $\left(d x^{1}, \ldots, d x^{n}\right)$ is the dual basis of $\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right)$.
Here also we have two coordinate systems in $T^{*} M$ at point (x, ξ) :
The classical coordinate system: $\left(x^{1}, \ldots, x^{n}, \xi_{1}, \ldots, \xi_{n}\right)$.
The adapted coordinate system: $\left(z^{1}, \ldots, z^{n}, \zeta_{1}, \ldots, \zeta_{n}\right)$.
It is now obvious that $\xi_{\bar{i}}=\zeta_{\bar{i}}$ and $\xi_{\alpha}=\zeta_{\alpha}-\zeta_{\bar{i}} B_{\alpha}^{\bar{i}}$.

1.2. Notation

We denote \mathcal{E} the sub-bundle of $T E$ defined by $\mathcal{E}=\left[\pi^{T}\right]^{-1}(E)$. Note that the kernel of π^{T} is equal to $\mathcal{E}^{\nu}=\mathcal{E} \cap T^{\nu} T M$.

Let J be the almost tangent structure. J is also called the vertical endomorphism defined as a tensor field of type $(1,1)$ on $T M$. By using the classical coordinates, J can be written as $J=d x^{i} \otimes \frac{\partial}{\partial y^{i}}$.

Knowing that the vector field A_{i}^{v} is the vertical lift of A_{i}, therefore, the tangent space $T_{(x, a)} E$ is generated by the vector fields $\left\{A_{i}, A_{\alpha}^{v}\right\}$. We notice that $J\left(A_{i}\right)=\frac{\partial}{\partial a^{i}}$, so we can deduce that $\mathcal{E}_{(x, a)}$ is generated by $\left\{A_{1}, \ldots, A_{p}, \frac{\partial}{\partial a^{1}}, \ldots, \frac{\partial}{\partial a^{p}}\right\}$ and then $\mathcal{E}_{(x, a)}^{v}$ is generated by $\left\{\frac{\partial}{\partial a^{1}}, \ldots, \frac{\partial}{\partial a^{p}}\right\}$.

In the classical coordinates, we have:

$$
A_{\alpha}=\frac{\partial}{\partial x^{\alpha}}+B_{\alpha}^{\bar{i}} \frac{\partial}{\partial x^{\bar{i}}}
$$

and

$$
A_{\beta}^{v}=\frac{\partial}{\partial y^{\beta}}+B_{\beta}^{\bar{i}} \frac{\partial}{\partial y^{\bar{i}}} .
$$

We also have

$$
\left[A_{\alpha}, A_{\beta}^{v}\right]=0
$$

Let us consider now (z^{i}, a^{i}) the coordinate system defined by

$$
z^{i}=x^{i}, a^{\alpha}=y^{\alpha} \text { and } a^{\bar{i}}=y^{\bar{i}}-y^{\alpha} B_{\alpha}^{\bar{i}} .
$$

It allows us to write $\left[A_{\alpha}, A_{\beta}^{\nu}\right]$ in this new coordinate system $\left(z^{i}, a^{i}\right)$ of the form

$$
\left[A_{\alpha}, A_{\beta}^{\nu}\right]=B_{\alpha}^{\bar{i}} \frac{\partial B_{\beta}^{\bar{i}}}{\partial x^{\bar{j}}} \frac{\partial}{\partial a^{\bar{j}}}
$$

Since

$$
A_{\alpha}=\frac{\partial}{\partial z^{\alpha}}+B_{\alpha}^{\bar{i}} \frac{\partial}{\partial z^{\bar{i}}}+B_{\alpha}^{\bar{i}}\left(-y^{\gamma} \frac{\partial B_{\gamma}^{\bar{j}}}{\partial x^{\bar{i}}}\right) \frac{\partial}{\partial a^{\bar{j}}} \text { and } A_{\beta}^{\nu}=\frac{\partial}{\partial a^{\beta}} .
$$

As we know the functions B_{α}^{i} are functions of $\left(x^{1}, \ldots, x^{n}\right)$ which means $\left[A_{\alpha}, A_{\beta}^{\nu}\right]=0$ at the center z of the chart (U, Φ) and therefore at any point in U. So we get the following proposition:

Proposition 1. The space \mathcal{E} is stable under the action of the almost tangent structure J, i.e., $J \mathcal{E}=\mathcal{E}^{v}$.

Further, we can denote J the restriction of J on \mathcal{E}.

The Liouville vector field on $T M$ is $C=y^{i} \frac{\partial}{\partial y^{i}}$, we can write it in adapted coordinate system by: $C=a^{i} \frac{\partial}{\partial a^{i}}$.

Moreover, at any point in E, the Liouville vector field is given by $C=a^{\alpha} \frac{\partial}{\partial a^{\alpha}}$. And at any point of $T^{*} M$, the Liouville form is given by $\omega=\xi_{i} d x^{i}$.

Remark 1. The vertical isomorphism $\xi: T^{v} T M \rightarrow T M$ is expressed in classical coordinate system by: $\left.\xi\right|_{(x, y)}\left(\frac{\partial}{\partial y^{i}}\right)=\left.\frac{\partial}{\partial x^{i}}\right|_{x}$. It induces an isomorphism between \mathcal{E}^{ν} and E, defined by $\left.\xi\right|_{(x, a)}\left(\frac{\partial}{\partial a^{\alpha}}\right)=\left.A_{\alpha}\right|_{X}$.

$$
\text { Indeed, } \frac{\partial}{\partial a^{\alpha}}=\frac{\partial}{\partial y^{\alpha}}+B_{\alpha}^{\bar{i}} \frac{\partial}{\partial y^{\bar{i}}} \text {. Therefore, }\left.\xi\right|_{(x, a)} \frac{\partial}{\partial a^{\alpha}}=\left.A_{\alpha}\right|_{x} \text {. }
$$

Definition 1. A spray on E is a vector field S on E such that $J S=C$.
In adapted coordinate system, S can be represented by:

$$
S(z, a)=\left.a^{\alpha} A_{\alpha}\right|_{(z, a)}+\left.S^{\alpha}(z, a) \frac{\partial}{\partial a^{\alpha}}\right|_{(z, a)}
$$

The semi-basic tensor Ω is a section of $\left(\otimes_{k}^{0}(T E)\right) \otimes\left(\otimes_{0}^{l}\left(T^{*} E\right)\right)$ which admits the following locally form:

$$
\Omega(x, a)=\Omega_{i_{1}, \ldots, i_{k}}^{j_{1}, \ldots, j_{l}}(x, a) d x^{i_{1}} \otimes \cdots \otimes d x^{i_{k}} \otimes \frac{\partial}{\partial a^{j_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial a^{j_{l}}} .
$$

Remark 2. A section Z of E can be seen as an application from E to E which verifies $\pi \circ Z=\pi$. In adapted coordinate system, Z can be written by $Z(z, a)=Z^{\alpha}(z, a) A_{\alpha}(z)$. We denote $\mathcal{X}(E)$ the set of sections of E.

2. Grifone Connection on the Sub-bundle \mathcal{E}

Definition 2. A connection on \mathcal{E} is an homomorphism Γ of \mathcal{E} such that

$$
J \Gamma=J \text { and } \Gamma J=-J .
$$

In adapted coordinates, we have:

$$
\begin{cases}\Gamma\left(A_{\alpha}\right)=A_{\alpha}-2 \Gamma_{\alpha}^{\beta} \frac{\partial}{\partial a^{\beta}} & \text { for } 1 \leq \alpha \leq p \tag{2.1}\\ \Gamma\left(\frac{\partial}{\partial a^{\alpha}}\right)=-\frac{\partial}{\partial a^{\alpha}} & \text { for } 1 \leq \alpha \leq p\end{cases}
$$

A connection Γ is represented by the matrix:

$$
\Gamma=\left(\begin{array}{cc}
\delta_{\alpha}^{\beta} & 0 \\
-2 \Gamma_{\alpha}^{\beta} & -\delta_{\alpha}^{\beta}
\end{array}\right)
$$

The functions Γ_{α}^{β} are called the coefficients of the connection Γ.
Proposition 2. A connection Γ on \mathcal{E} satisfies the following properties:
(1) $\Gamma^{2}=\left.I d\right|_{\mathcal{E}}$.
(2) \mathcal{E}^{ν} is the eigenspace of Γ associated to the eigenvalue -1 .
(3) Suppose \mathcal{H}_{Γ} be the eigenspace of Γ associated to the eigenvalue 1. Then \mathcal{E} splits into the direct sum:

$$
\mathcal{E}=\mathcal{E}^{\nu} \oplus \mathcal{H}_{\Gamma} .
$$

The eigenspace \mathcal{H}_{Γ} of Γ associated to the eigenvalue 1 is called the horizontal space. We denoted by h_{Γ} and v_{Γ} the horizontal and vertical projectors. They are given by:

$$
h_{\Gamma}=\frac{1}{2}\left(I d_{\mathcal{E}}+\Gamma\right) \text { and } v_{\Gamma}=\frac{1}{2}\left(I d_{\mathcal{E}}-\Gamma\right) .
$$

And locally: $h_{\Gamma}=\left(\begin{array}{cc}\delta_{\alpha}^{\beta} & 0 \\ -\Gamma_{\alpha}^{\beta} & 0\end{array}\right)$ and $v_{\Gamma}=\left(\begin{array}{cc}0 & 0 \\ \Gamma_{\alpha}^{\beta} & \delta_{\alpha}^{\beta}\end{array}\right)$.

2.1. Properties

As the traditional framework for a connection, we have the following characterization:

Proposition 3. Let Γ be a connection on \mathcal{E}, there exists only one spray S on E tangent to \mathcal{H}_{Γ}, it is called the canonical spray S of Γ.

Indeed, the horizontal projection of any spray gives us a unique spray defined by:

$$
\begin{aligned}
\left.h_{\Gamma}(S)\right|_{(x, a)} & =\left.a^{\alpha} h_{\Gamma}\left(A_{\alpha}\right)\right|_{(x, a)}+\left.S^{\alpha}(x, a) h_{\Gamma}\left(\frac{\partial}{\partial a^{\alpha}}\right)\right|_{(x, a)} \\
& =a^{\alpha}\left(A_{\alpha}-\left.\Gamma_{\alpha}^{\beta}\right|_{(x, a)}\right) \frac{\partial}{\partial a^{\beta}} .
\end{aligned}
$$

So it is obvious that $J h_{\Gamma}(S)=C$.
Definition 3. The geodesics of Γ are, by definition, the integrals curves of the canonical spray of Γ.

Proposition 4. Let Γ be a connection on \mathcal{E}. Then we have the following properties:
(1) If Υ is semi-basic (1-1) tensor on \mathcal{E}, then $\Gamma+\Upsilon$ is a connection on \mathcal{E}.
(2) Conversely, if Γ^{\prime} is a connection on \mathcal{E}, then there exists only one semi-basic (1-1) tensor field Υ such that $\Gamma^{\prime}=\Gamma+\Upsilon$ so that

$$
h_{\Gamma^{\prime}}=h_{\Gamma}+\frac{1}{2} \Upsilon \text { and } v_{\Gamma^{\prime}}=v_{\Gamma}-\frac{1}{2} \Upsilon .
$$

(3) If S is the canonical spray of Γ, then S will be the canonical spray of Γ^{\prime} if and only if $\Upsilon(S)=0$.

Proposition 5. A connection Γ defines only one vectorial form F_{Γ} on \mathcal{E} which satisfies:

$$
F_{\Gamma} J=h_{\Gamma} \text { and } F_{\Gamma} h_{\Gamma}=-J \text {, }
$$

and verifies

$$
F_{\Gamma}^{2}=-I d_{\mathcal{E}}
$$

F_{Γ} is called almost complex structure associated to Γ.

2.2. Linear connection

Inspired by the work of Grifone on "stucture presque tangente et connexion" (see [7]), we have recently embarked on the study of a general notion of connection, these connections are defined over fibre bundle.

As in the classical definition, a linear connection on \mathcal{E} is defined as the sub-bundle of \mathcal{E} transverse with \mathcal{E}^{\vee} and verifies:

For all $t \in \mathbb{R}, t \neq 0$, we have $\delta_{t_{*}}\left(\mathcal{H}_{(x, u)}\right)=\mathcal{H}_{\delta_{t}(x, u)}$, where $\delta_{t}(x, u)=$ ($x, t u$).

In this case, we deduce the following proposition:
Proposition 6. Let Γ be a connection on E. Then the following statements are equivalent:
(i) The connection Γ is linear.
(ii) For any vector field Z on E tangent to \mathcal{E}, we have

$$
[C, \Gamma] Z=[С, Г Z]-\Gamma[C, Z]=0 .
$$

(iii) In an adapted coordinate system, the coefficients of Γ are as form

$$
\begin{equation*}
\Gamma_{\alpha}^{\beta}(x, a)=a^{\gamma} \Gamma_{a \gamma}^{\beta}(x) \text { for all } \gamma=1, \ldots, p \tag{2.2}
\end{equation*}
$$

3. Lie Pre-bracket

3.1. Pre-bracket of Lie on E

When $E=T M$ therefore, $\mathcal{E}=T T M$, we can define a connection through a spray according to [7]: suppose that S is a spray on $T M$, then the connection associated to $S, \Gamma_{S}=[J, S]$, is defined by

$$
\forall X \in \mathcal{X}(T M) \quad[J, S] X=[J X, S]-J[X, S] .
$$

The connection Γ_{S} is called canonical connection associated to S. Unfortunately, if $E \neq T M$, then \mathcal{E} is no more stable by Lie bracket act. Since the previous expression is not defined on \mathcal{E}. Our main goal now is to give an additional structure on E, in order to associate a canonical connection Γ_{S} to a given S. This new structure is called the Lie new-bracket.

Definition 4. A Lie pre-bracket on E is an application:

$$
[,]_{E}: \mathcal{X}(E) \times \mathcal{X}(E) \rightarrow \mathcal{X}(E)
$$

\mathbb{R}-bilinear, antisymmetric and verify the Leibniz formula given by:

$$
\begin{equation*}
[X, f Y]_{E}=X(f) Y+f[X, Y]_{E}, \tag{3.1}
\end{equation*}
$$

for all X, Y vector fields on M that are tangent to E and for all f functions on M.

Remark 3. There is a simple and natural way to construct a Lie prebracket on E. Indeed, if we split $T M$ into the direct sum E and F, for any vector field E. Let $q: T M \rightarrow E$ be the associated canonical projection. We can define a Lie pre-bracket on E by:

$$
[X, Y]_{E}=q[X, Y],
$$

where $[X, Y$] is the classical Lie bracket on M of the vectors fields X and Y on M but its value is in E.

We renew the approach of pre-bracket done by [8] and [10]:

Let $X \in \mathcal{X}(E)$ be a vector field on M with values in E. The restriction of the inner product i_{X} on E^{*} defines a function on E^{*}. Then $d i_{X}$ is an element of $T^{*} E^{*}$. Let P be a bivector on E^{*} which means P is a section of the fibre bundle $\wedge^{2} T^{*} E^{*}$.

Obviously, we can associate to the bivector P a bracket $\{,\}_{P}$ on E defined by: $\{f, g\}_{P}=P(d f, d g)$, where f and g are functions on E^{*}. In general, this bracket does not verify the Jacobi's identity unless if P is Poisson tensor which is equivalent to say that the bracket of Schouten of P vanishes.

The given of a new lie bracket $[,]_{E}$ on E is equivalent to give a linear bivector P on E^{*} which verifies the following propositions:

$$
\begin{align*}
& i_{[X, Y]_{E}}=P\left(d i_{X}, d i_{Y}\right)=\left\{i_{X}, i_{Y}\right\}_{P}, \\
& X(f) \circ \pi^{*}=\left\{i_{X}, f \circ \pi^{*}\right\}_{P}, \tag{3.2}
\end{align*}
$$

for all X, Y tangent to E, for all functions f on M, where π^{*} is a canonical projection of E^{*} on M.

To define a Lie pre-bracket on E means to define a bracket between the vector fields A_{α}. In an adapted coordinate system, we have $i_{A_{\alpha}}=\zeta_{\alpha}$. According to (3.2), P will have the local form:

$$
\begin{equation*}
P=\frac{1}{2} C_{\alpha \beta}^{\gamma} \zeta_{\gamma} \frac{\partial}{\partial \zeta_{\alpha}} \wedge \frac{\partial}{\partial \zeta_{\beta}}+A_{\alpha} \wedge \frac{\partial}{\partial \zeta_{\alpha}} \tag{3.3}
\end{equation*}
$$

Corollary 1. There exists on E a canonical pre-bracket $[,]_{0}$ defined by

$$
\left[A_{\alpha}, A_{\beta}\right]_{0}=0 .
$$

Recall that on $T^{*} M$, we have a canonical Poisson bracket associated to the Poisson tensor π_{0}. Of all the pre-brackets on E, there is one that is intrinsic defined through:

$$
\begin{aligned}
\pi_{0}= & \frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial \xi_{i}}=\Sigma_{\beta}\left(\frac{\partial}{z^{\beta}}+\xi_{\bar{i}} \frac{\partial B_{\alpha}^{\bar{i}}}{\partial x^{\beta}} \frac{\partial}{\partial \zeta_{\alpha}}\right) \wedge \frac{\partial}{\partial \zeta_{\beta}} \\
& +\Sigma_{\bar{j}}\left(\frac{\partial}{\partial z^{\bar{j}}}+\xi_{\bar{i}} \frac{\partial B_{\alpha}^{\bar{i}}}{\partial x^{\bar{j}}} \frac{\partial}{\partial \zeta_{\alpha}}\right) \wedge B_{\alpha}^{\bar{j}} \frac{\partial}{\partial \zeta_{\alpha}} .
\end{aligned}
$$

By restrict it on E, and at the center of the chart already chosen, we obtain:

$$
\left.\pi_{0}\right|_{z}=\left.\left.\Sigma_{\beta} \frac{\partial}{z^{\beta}}\right|_{z} \wedge \frac{\partial}{\partial \zeta_{\beta}}\right|_{z}=\left.A_{\beta} \wedge \frac{\partial}{\partial \zeta_{\beta}}\right|_{z} .
$$

This bivector defines eventually the pre-bracket $[,]_{0}$ by $\left[A_{\alpha}, A_{\beta}\right]_{0}=0$ (see [3, 2]).

3.2. Lie pre-bracket on \mathcal{E}

In the sequel, we are dealing to use the Lie pre-bracket P on E. We will define now a pre-bracket on \mathcal{E} which only depends on $P([1,3,11])$.

Proposition 7. There exists a unique linear bivector Π on \mathcal{E}^{*} such that the pre-bracket $[,]_{\Pi}$ satisfies the two following properties:
(1) $[Y, Z]_{\Pi}=[Y, Z]$ for any section Z and vertical section Y in \mathcal{E}.
(2) Π is projected on P :
(i) $\left.\left[Z, Z^{\prime}\right]_{\Pi}\right|_{(x, u)}=\left.\left[p i^{T}(Z), p i^{T}\left(Z^{\prime}\right)\right]_{P}\right|_{(x)}$ for any sections Z and Z^{\prime} of \mathcal{E} and $(x, u) \in E$. We say that the sections $p i^{T}(Z)$ and $p i^{T}\left(Z^{\prime}\right)$ are, respectively, the projections of the sections Z and Z^{\prime} on E.
(ii) $\tilde{Z}(f \circ \pi)=Z(f) \circ \pi$ for any function f on M and any section \tilde{Z} of \mathcal{E} projected on the section Z of E.

We shall give the following lemma in order to give sense to the first property:

Lemma 1. For all vertical vector Y and all section Z of $\mathcal{E},[Y, Z]$ is tangent to \mathcal{E}.

Proof. The vector field $[Y, Z]$ is defined on $T E$. Moreover, \mathcal{E}^{V} is stable by the Lie bracket, so we have: $\left[A_{\alpha}, \frac{\partial}{\partial a^{\alpha}}\right]=0$, hence $[Y, Z]$ is tangent to \mathcal{E}.

3.3. Canonical connection associated to a spray

For the further study, we assume that the bivector Π on \mathcal{E}^{*} is the bivector associated to a given bivector P on E^{*}.

Proposition 8. Given a spray S on E, the form

$$
\Gamma_{S}(X)=[J, S]_{\Pi}(X)=[J X, S]-J[X, S]_{\Pi},
$$

is a connection on \mathcal{E}.
Proof. It is obvious that $[X, S]_{\Pi}$ is tangent to \mathcal{E}, and Lemma 1 implies that $[J X, S]$ is tangent to \mathcal{E} as well. Therefore, Γ_{S} is defined as an endomorphism of \mathcal{E}.

However $J^{2}=0$, we get:

$$
\begin{aligned}
& J\left(\Gamma_{S}(X)\right)=J[J X, S]=J X, \\
& \Gamma_{S}(J X)=-J[J X, S]=-J X .
\end{aligned}
$$

Proposition 9. In an adapted coordinate system, using the previous notations of (2.1), the coefficients of the connection Γ_{S} associated to $S=$ $a^{\alpha} A_{\alpha}+S^{\beta} \frac{\partial}{\partial a^{\beta}}$ are:

$$
\begin{equation*}
\Gamma_{\alpha}^{\beta}=\frac{1}{2}\left(a^{\gamma} C_{\alpha \gamma}^{\beta}-\frac{\partial S^{\beta}}{\partial a^{\alpha}}\right) \text { for } \gamma=1, \ldots, p . \tag{3.4}
\end{equation*}
$$

Proof. According to (2.1), we have $\Gamma_{S}\left(A_{\alpha}\right)=A_{\alpha}-2 \Gamma_{\alpha}^{\beta} \frac{\partial}{\partial a^{\beta}}$. To find Γ_{α}^{β}, it is sufficient to calculate $\Gamma_{S}\left(A_{\alpha}\right)$:

$$
\begin{aligned}
& {\left[J A_{\alpha}, S\right]=A_{\alpha}+\frac{\partial S^{\beta}}{\partial a^{\alpha}} \frac{\partial}{\partial a^{\beta}}} \\
& J\left[A_{\alpha}, S\right]_{\Pi}=a^{\gamma} C_{a \gamma}^{\beta} \frac{\partial}{\partial a^{\beta}}
\end{aligned}
$$

Remark 4. It is important to note that the canonical spray of the connection Γ_{S}, for a given S on E, is $h_{\Gamma_{S}}(S)=\frac{1}{2}(S+[C, S])$ which is not, in general, S.

Definition 5. A spray S is quadratic if $[C, S]=S$.
Proposition 10. The following statements are equivalent:
(i) S is quadratic,
(ii) S has the form of:

$$
S=a^{\alpha} A_{\alpha}+\frac{1}{2} a^{\gamma} a^{\lambda} S_{\gamma \lambda}^{\beta}(x) \frac{\partial}{\partial a^{\beta}},
$$

(iii) Γ_{S} is linear,
(iv) S is the canonical spray of Γ_{S}.

4. Covariant Derivative, Torsion and Curvature

4.1. Covariant derivative

Definition 6. A covariant derivative on E is a map $D: \mathcal{X}(E) \times \mathcal{X}(E) \rightarrow$ $\mathcal{X}(E)$ such that

$$
D_{f X+g Y} Z=f D_{X} Z+g D_{Y} Z, \text { where } X, Y, Z \in E \text { and } f, g \in C^{+\infty}(M) \text {. }
$$

Proposition 11. There exists an isomorphism between the set of connections on E and the set of covariant derivative on E.

Proof. For every connection Γ on E, there exists an associated covariant derivative defined by:

$$
\left.D_{X} Y\right|_{X}=\left.\xi\right|_{(x, a)}\left(v_{\Gamma}\left(Y^{T}(X)\right)\right) \quad \forall X=X^{\alpha} A_{\alpha}, Y=Y^{\beta} A_{\beta} \in E
$$

It is easy to see that

$$
\left.Y^{T}(X)\right|_{Y(x)}=\left.\left(X^{\alpha} A_{\alpha}+X^{\alpha}\left(A_{\alpha} \cdot Y^{\beta}\right) \frac{\partial}{\partial a^{\beta}}\right)\right|_{Y(x)}
$$

So, it is in \mathcal{E}. Although $v_{\Gamma}\left(Y^{T}(X)\right)=\left.\left(X^{\alpha} \Gamma_{\alpha}^{\beta}+X^{\alpha}\left(A_{\alpha} \cdot Y^{\beta}\right) \frac{\partial}{\partial a^{\beta}}\right)\right|_{Y(x)}$ is in \mathcal{E}^{v}. Using the act of $\left.\xi\right|_{(x, a)}$, the local expression of $D_{X} Y$ holds:

$$
\left.D_{X} Y\right|_{X}=\left.\left(X^{\alpha} \Gamma_{\alpha}^{\beta}(x, Y(x))+X^{\alpha} A_{\alpha} \cdot Y^{\beta}\right) A_{\beta}\right|_{X}
$$

This expression of the covariant derivative allows us to verify immediately the properties of the covariant derivative.

Conversely, if D is a covariant derivative on E, then the functions Γ_{α}^{β} of the connection are given by:

$$
\Gamma_{\alpha}^{\beta}(x, X(x))=\left(D_{A_{\alpha}} X\right)^{\beta}-A_{\alpha} \cdot X^{\beta}
$$

One can easily check that the covariant derivative associated to Γ is equal to D.

4.2. Parallel transport

Let $c:[0, T] \rightarrow M$ be a curve of class C^{2}. We denote $\chi_{c}(E)$ the set of vector fields in E along c.

Proposition 12. For any connection D on E, we can eventually associate
a derivation $D_{\dot{c}}: \chi(E) \rightarrow \chi(E)$ such that: for all $X \in \chi_{c}(E)$, we have $D_{\dot{C}} X=D_{\dot{C}} \tilde{X}$ as \tilde{X} is an extension of X on M.

Proof. It is easy to see that this derivation does not depend on the choice of the extension. Indeed, if \tilde{X}^{\prime} is another extension of X. We have $\tilde{X}^{\prime}=$ $\tilde{X}+f Z$, where $f(c(t))=0$ and Z is a vector field on M,

$$
\begin{aligned}
D_{\dot{c}}(f Z) & =\xi\left(v_{\Gamma}(f Z)^{T}(\dot{c}(T))\right) \\
& =\xi\left(v_{\Gamma}\left(\left.d f\right|_{\dot{c}(t)} Z(c(t))+\left.f\right|_{c(t)} Z^{T}(\dot{c}(t))\right)\right. \\
& =\xi\left(v_{\Gamma}\left(\frac{d(f o c(t))}{d t}\right) Z(c(t))+(f o c(t)) Z^{T}(\dot{c}(t))\right)=0 .
\end{aligned}
$$

Proposition 13. A curve c is a geodesic for the connection Γ if and only if $D_{\dot{c}} \dot{c}=0$.

Proof. Indeed, the associated spray to Γ is $S=a^{\alpha} A_{\alpha}-a^{\alpha} \Gamma_{\alpha}^{\beta}(x, a) \frac{\partial}{\partial a^{\beta}}$. As in the natural case, we can easily show that the integral curves of S are solution of the system $D_{\dot{C}} \dot{c}=0$.

4.3. Torsion and curvature of Γ

Definition 7. A weak torsion associated to Γ and to a bracket form $[,]_{\Pi}$, is the 2 vectorial form t on \mathcal{E} defined by $t=\frac{1}{2}[J, \Gamma]_{\Pi}$.

For any $X \in \mathcal{E}$ and $Y \in \mathcal{E}$, we have

$$
\begin{aligned}
{[J, \Gamma]_{\Pi}(X, Y)=} & {[J X, \Gamma Y]_{\Pi}+[\Gamma X, J Y]_{\Pi}-J[\Gamma X, Y]_{\Pi}-J[X, \Gamma Y]_{\Pi} } \\
& -\Gamma[J X, Y]_{\Pi}-\Gamma[X, J Y]_{\Pi}+J \Gamma[X, Y]_{\Pi}+\Gamma J[X, Y]_{\Pi} \\
= & {[J X, \Gamma Y]_{\Pi}+[\Gamma X, J Y]_{\Pi}-J[\Gamma X, Y]_{\Pi} } \\
& -J[X, \Gamma Y]_{\Pi}-\Gamma[J X, Y]_{\Pi}-\Gamma[X, J Y]_{\Pi} .
\end{aligned}
$$

Proposition 14. The weak torsion is skew-symmetric and semi-basic tensor.

Proof. From the definition, it is clear that t is skew-symmetric.
The torsion is also semi-basic. Indeed, let $V \in \mathcal{E}^{V}$ and $X \in \mathcal{E}$, so:

$$
\begin{aligned}
{[J, \Gamma]_{\Pi}(X, V)=} & {[J X, \Gamma V]_{\Pi}+[\Gamma X, J V]_{\Pi}-J[\Gamma X, V]_{\Pi} } \\
& -J[X, \Gamma V]_{\Pi}-\Gamma[J X, V]_{\Pi}-\Gamma[X, J V]_{\Pi} \\
= & -[J X, V]_{\Pi}-J[\Gamma X, V]_{\Pi}+J[X, V]_{\Pi}+[J X, V]_{\Pi} \\
= & 2 J\left[v_{\Gamma} X, V\right]=0 .
\end{aligned}
$$

Locally, let us consider $\left[A_{\alpha}, A_{\beta}\right]=C_{\alpha \beta}^{\gamma} \frac{\partial}{\partial a^{\gamma}}$,

$$
\begin{aligned}
{[J, \Gamma]_{\Pi}\left(A_{\alpha}, A_{\beta}\right)=} & {\left[J A_{\alpha}, \Gamma A_{\beta}\right]_{\Pi}+\left[\Gamma A_{\alpha}, J A_{\beta}\right]_{\Pi}-J\left[\Gamma A_{\alpha}, A_{\beta}\right]_{\Pi} } \\
& -J\left[A_{\alpha}, \Gamma A_{\beta}\right]_{\Pi}-\Gamma\left[J A_{\alpha}, A_{\beta}\right]_{\Pi}-\Gamma\left[A_{\alpha}, J A_{\beta}\right]_{\Pi} \\
= & {\left[\frac{\partial}{\partial a^{\alpha}}, A_{\beta}-2 \Gamma_{\beta}^{\gamma} \frac{\partial}{\partial a^{\gamma}}\right]+\left[A_{\alpha}-2 \Gamma_{\alpha}^{\gamma} \frac{\partial}{\partial a^{\gamma}}, \frac{\partial}{\partial a^{\beta}}\right] } \\
& -J\left[A_{\alpha}-2 \Gamma_{\alpha}^{\gamma} \frac{\partial}{\partial a^{\gamma}}, A_{\beta}\right]-J\left[A_{\alpha}, A_{\beta}-2 \Gamma_{\beta}^{\gamma} \frac{\partial}{\partial a^{\gamma}}\right] \\
& -\Gamma\left[\frac{\partial}{\partial a^{\alpha}}, A_{\beta}\right]-\Gamma\left[A_{\alpha}, \frac{\partial}{\partial a^{\beta}}\right] \\
= & \left(2 \frac{\partial \Gamma_{\alpha}^{\gamma}}{\partial a^{\beta}}-2 \frac{\partial \Gamma_{\beta}^{\gamma}}{\partial a^{\alpha}}-2 C_{\alpha \beta}^{\gamma}\right) \frac{\partial}{\partial a^{\gamma}} .
\end{aligned}
$$

Therefore,

$$
t\left(A_{\alpha}, A_{\beta}\right)=\left(\frac{\partial \Gamma_{\alpha}^{\gamma}}{\partial a^{\beta}}-\frac{\partial \Gamma_{\beta}^{\gamma}}{\partial a^{\alpha}}-C_{\alpha \beta}^{\gamma}\right) \frac{\partial}{\partial a^{\gamma}} .
$$

Corollary 2. As in the standard connection theory, with the linear connection Γ, one can associate the torsion determined by:
$\left.T_{\Gamma}\left(A_{\alpha}, A_{\beta}\right)\right|_{X}=\left.\xi\right|_{(x, a)} t\left(A_{\alpha}, A_{\beta}\right)=D_{A_{\alpha}} A_{\beta}-D_{A_{\beta}} A_{\alpha}-\left[A_{\alpha}, A_{\beta}\right]_{\Pi}$.
Proof. Given a linear connection Γ means $\Gamma_{\alpha}^{\beta}(x, a)=a^{\gamma} \Gamma_{\alpha \gamma}^{\beta}(x)$. Then

$$
\left.t\left(A_{\alpha}, A_{\beta}\right)\right|_{(x, a)}=\left.\left(\left.\Gamma_{\alpha \beta}^{\gamma}\right|_{X}-\left.\Gamma_{\beta \alpha}^{\gamma}\right|_{X}-C_{\alpha \beta}^{\gamma}\right)(x) \frac{\partial}{\partial a^{\gamma}}\right|_{(x, a)}
$$

Therefore, $\left.\xi\right|_{(x, a)} t\left(A_{\alpha}, A_{\beta}\right)=D_{A_{\alpha}} A_{\beta}-D_{A_{\beta}} A_{\alpha}-\left[A_{\alpha}, A_{\beta}\right]_{\Pi}$.
Definition 8. The tension of Γ is the 1 -vectorial form $H=\frac{1}{2}[C, \Gamma]_{\Pi}$.
Locally, H can be represented in an adapted basis by

$$
H=\left(\Gamma_{\alpha}^{\beta}-a^{\gamma} \frac{\partial \Gamma_{\alpha}^{\beta}}{\partial a^{\gamma}}\right) \theta^{\alpha} \otimes \frac{\partial}{\partial a^{\beta}} .
$$

The local expression of H shows that the tension is independent of the Lie pre-bracket Π.

In the linear case, the tension vanishes.
Definition 9. The strong-torsion T of Γ is given by $T=i_{S} t-H$, for an arbitrary spray S.

Locally, T can be expressed in an adapted basis by:

$$
T_{(x, a)} X=X^{\alpha}\left(a^{\gamma} \frac{\partial \Gamma_{\gamma}^{\beta}}{\partial a^{\alpha}}-\Gamma_{\alpha}^{\beta}+a^{\gamma} C_{\alpha \gamma}^{\beta}\right) \frac{\partial}{\partial a^{\beta}} .
$$

For $(x, a) \in E$ and $\left.X \in \mathcal{E}\right|_{(x, a)}$.
In the linear case, we get

$$
T_{(x, a)} X=X^{\alpha} a^{\gamma}\left(\Gamma_{\gamma \alpha}^{\beta}-\Gamma_{\alpha \gamma}^{\beta}+C_{\alpha \gamma}^{\beta}\right) \frac{\partial}{\partial a^{\beta}} .
$$

The torsion coincides as well with the image of the vertical isomorphism ξ of the strong torsion. Indeed,

$$
T(X, Y)=\left.\xi\right|_{X} T(Y)=D_{X} Y-D_{Y} X-[X, Y]_{\Pi} .
$$

Definition 10. The curvature of a connection Γ is given by $R=$ $-\frac{1}{2}[h, h]_{\Pi}$.

Proposition 15. The curvature $R=-\frac{1}{2}[h, h]_{\Pi}$ is semi-basic and skewsymmetric form.

Proof. From the definition of R we can obviously see that R is a skewsymmetric form.

The curvature is semi-basic form as well. Indeed, for $V \in \mathcal{E}^{V}$ and $X \in \mathcal{E}$, we have:

$$
\begin{aligned}
{[h, h]_{\Pi}(X, V)=} & {[h X, h V]_{\Pi}+[h X, h V]_{\Pi}-h[h X, V]_{\Pi}-h[X, h V]_{\Pi} } \\
& -h[h X, V]_{\Pi}-h[X, h V]_{\Pi}+h[X, V]_{\Pi}+h[X, V]_{\Pi} \\
= & -2 h[h X, V]+2 h[X, V]=0 .
\end{aligned}
$$

The local expression of the curvature in an adapted coordinate system is:

$$
R\left(A_{\alpha}, A_{\beta}\right)=\left(\Gamma_{\beta}^{\delta} \frac{\partial \Gamma_{\alpha}^{\gamma}}{\partial a^{\delta}}-\Gamma_{\alpha}^{\delta} \frac{\partial \Gamma_{\beta}^{\gamma}}{\partial a^{\delta}}+A_{\alpha} \cdot \Gamma_{\beta}^{\gamma}-A_{\beta} \cdot \Gamma_{\alpha}^{\gamma}-C_{\alpha \beta}^{\gamma}\right) \frac{\partial}{\partial a^{\gamma}}
$$

5. Spray Associated to a Regular Lagrangian

5.1. Legendre transformation

Definition 11. A Lagrangian L on E is a map $L: E \rightarrow \mathbb{R}$ which is C^{∞} on E, C^{0} on the zero-section, and verifies $L(0)=0$,

Based on [6], we will construct a Legendre transformation.

Lemma 2. Let $\tilde{L}: T M \rightarrow \mathbb{R}$ be a differentiable function on $T M$. Then there exists a unique differentiable map $\tilde{\Lambda}: T M \rightarrow T^{*} M$ such that

- $q_{M} \circ \tilde{\Lambda}=p_{M}$,
- $\tilde{\Lambda}$ of rank $2 n$,
- $\tilde{\Lambda}^{*} \omega=d_{J} \tilde{L}$,
where ω is the Liouville form on $T^{*} M$.
In addition, the following diagram is commutative

From [3], in order, we get the following result:
Lemma 3. Let $L: E \rightarrow \mathbb{R}$ be a Lagrangian. There exists a unique map $\Lambda: E \rightarrow T^{*} M$ such that the following diagram is commutative

Although $i_{J}\left(\left.d L\right|_{\mathcal{E}}\right)=\left.\Lambda^{*} \omega\right|_{\mathcal{E}}$, where $\left.d L\right|_{\mathcal{E}}$ and $\left.\Lambda^{*} \omega\right|_{\mathcal{E}}$ are the restrictions of $d L$ and $\Lambda^{*} \omega$ on $\mathcal{E} \subset T E$, respectively.

Proof. Take \tilde{L} as a differential extension of L on $T M$. From the previous theorem, there exists a unique map $\tilde{\Lambda}: T M \rightarrow T^{*} M$ verifying $\tilde{\Lambda}^{*} \omega=i_{J} d \tilde{L}$.

Let $\iota: E \hookrightarrow T M$ be the canonical injection. By choosing $\Lambda=\tilde{\Lambda} \circ \iota, \Lambda$ verifies the results of the lemma. Due to the local expression, Λ is unique. Indeed,

$$
\begin{aligned}
i_{J}\left(\left.d L\right|_{\mathcal{E}}\right) & =\left(\frac{\partial L}{\partial x^{i}} d x^{i}+\frac{\partial L}{\partial a^{\beta}} d a^{\beta}\right) \circ\left(d x^{\alpha} \otimes \frac{\partial}{\partial a^{\alpha}}\right) \\
& =\frac{\partial L}{\partial a^{\alpha}} d x^{\alpha} .
\end{aligned}
$$

Assume that $\Lambda\left(x^{i}, a^{\alpha}\right)=\left(x^{i}, \zeta_{i}\right)=\left(x^{i}, \Lambda_{1}(x, a), \ldots, \Lambda_{n}(x, a)\right)$. Let U be a vector field tangent to \mathcal{E} on E :

$$
\left.U\right|_{(x, a)}=X^{\alpha} A_{\alpha}+Y^{\beta} \frac{\partial}{\partial a^{\beta}} .
$$

Then

$$
\left(i_{J} d L\right)(U)=\frac{\partial L}{\partial a^{\alpha}} X^{\alpha} \text { and }\left(\Lambda^{*} \omega\right)(U)=\omega\left(\Lambda_{*} U\right)=\zeta_{\alpha} X^{\alpha} .
$$

Hence,

$$
\begin{aligned}
& \zeta_{\alpha}=\frac{\partial L}{\partial a^{\alpha}}, \\
& \zeta_{\bar{i}}=0 .
\end{aligned}
$$

Consider now Λ and $\bar{\Lambda}$ the two maps verify the results of the lemma. Therefore:

$$
\begin{aligned}
\Lambda(x, a) & =\left(x, \Lambda_{1}(x, a), \ldots, \Lambda_{n}(x, a)\right) \\
& =\left(x,\left.\frac{\partial L}{\partial a^{1}}\right|_{(x, a)}, \ldots,\left.\frac{\partial L}{\partial a^{p}}\right|_{(x, a)}, 0, \ldots, 0\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\bar{\Lambda}(x, a) & =\left(x, \bar{\Lambda}_{1}(x, a), \ldots, \bar{\Lambda}_{n}(x, a)\right) \\
& =\left(x,\left.\frac{\partial L}{\partial a^{1}}\right|_{(x, a)}, \ldots,\left.\frac{\partial L}{\partial a^{p}}\right|_{(x, a)}, 0, \ldots, 0\right)
\end{aligned}
$$

Thus, $\Lambda_{i}=\bar{\Lambda}_{i}$ and we deduce that Λ is unique.

Definition 12. The map defined in Lemma 3 is called Legendre transformation of L. The Lagrangian L on E is regular if the Legendre transformation Λ has a maximal rank.

Remark 5. The Lagrangian L is regular if and only if $\operatorname{det}\left(\frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}\right) \neq 0$, since the Jacobian matrix of Λ is given by

$$
\binom{I d}{\left(\frac{\partial^{2} L}{\partial x^{i} \partial a^{\beta}}\right.} \quad\binom{0}{\frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}} .
$$

5.2. Spray associated to L

Lemma 4. Let L be a Lagrangian on E. Let us consider the 2-form:

$$
\Omega_{L}=\Lambda^{*} d \omega
$$

The form Ω_{L} has the following properties:
(1) $\Omega_{L}(J X, Y)+\Omega_{L}(X, J Y)=0$ for any vector fields X and Y on E tangent to \mathcal{E}. In particular, the restriction of Ω_{L} on the sub-bundle \mathcal{E}^{v} vanishes.
(2) The rank of Ω_{L} is at most $2 p$. The restriction of Ω_{L} on the subbundle \mathcal{E} has a maximal rank $2 p$ if and only if L is regular.

Proof. (1) To prove the first property, it will be enough to represent locally the restriction of Ω_{L} on \mathcal{E}. The proof will be elementary. We notice first that $\Omega_{L}=\Lambda^{*} d \omega=d\left(\Lambda^{*} \omega\right)=d\left(i_{J} d L\right)$. Therefore, in an adapted coordinate system (x^{i}, a^{α}), we have:

$$
\begin{aligned}
\Omega_{L}= & \frac{\partial^{2} L}{\partial x^{i} \partial a^{\alpha}} d x^{i} \wedge d x^{\alpha}+\frac{\partial^{2} L}{\partial a^{\beta} \partial a^{\alpha}} d a^{\beta} \wedge d x^{\alpha} \\
= & \sum_{\gamma<\alpha}\left(\frac{\partial^{2} L}{\partial x^{\gamma} \partial a^{\alpha}}-\frac{\partial^{2} L}{\partial x^{\alpha} \partial a^{\gamma}}\right) d x^{\gamma} \wedge d x^{\alpha}+\frac{\partial^{2} L}{\partial x^{\bar{i}} \partial a^{\alpha}} d x^{\bar{i}} \wedge d x^{\alpha} \\
& +\frac{\partial^{2} L}{\partial a^{\beta} \partial a^{\alpha}} d a^{\beta} \wedge d x^{\alpha} \\
= & \frac{1}{2}\left(\frac{\partial^{2} L}{\partial x^{\gamma} \partial a^{\alpha}}-\frac{\partial^{2} L}{\partial x^{\alpha} \partial a^{\gamma}}\right) d x^{\gamma} \wedge d x^{\alpha}+\frac{\partial^{2} L}{\partial x^{\bar{i}} \partial a^{\alpha}} d x^{\bar{i}} \wedge d x^{\alpha} \\
& +\frac{\partial^{2} L}{\partial a^{\beta} \partial a^{\alpha}} d a^{\beta} \wedge d x^{\alpha} .
\end{aligned}
$$

By restriction into \mathcal{E}, we obtain:

$$
\left.\Omega_{L}\right|_{\mathcal{E}}=\frac{1}{2}\left(\frac{\partial^{2} L}{\partial x^{\alpha} \partial a^{\beta}}-\frac{\partial^{2} L}{\partial x^{\beta} \partial a^{\alpha}}\right) d x^{\alpha} \wedge d x^{\beta}+\frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}} d a^{\alpha} \wedge d x^{\beta} .
$$

(2) Using the local representation of Ω_{L} found in (1), its rank is at most $2 p$. Furthermore, the rank will attempt the maximal value if and only if the exterior power Ω_{L}^{p} of order p is no-zero. In an adapted coordinate system:

$$
\Omega_{L}^{p}= \pm \operatorname{det}\left(\frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}\right) d x^{1} \wedge \cdots \wedge d x^{p} \wedge d a^{1} \wedge \cdots \wedge d a^{p} .
$$

Then Ω_{L} has a rank $2 p$ if and only if $\operatorname{det}\left(\frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}\right)$ is no-zero which means L is regular.

Theorem 1. There exists a unique spray S on E tangent to \mathcal{E} and solution of the equation

$$
i_{S} \Omega_{L}=-\left.d\left(\Theta_{C} L-L\right)\right|_{\mathcal{E}}
$$

where Θ_{C} is the lie derivative with respect to Liouville vector field C on TE.
Proof. In an adapted coordinate system on E, we have:

$$
\Theta_{C} L-L=a^{\alpha} \frac{\partial L}{\partial a^{\alpha}}-L .
$$

Therefore,

$$
\left.d\left(\Theta_{C} L-L\right)\right|_{(x, a)}=\left(a^{\alpha} \frac{\partial^{2} L}{\partial a^{\beta} \partial a^{\alpha}}\right) d a^{\beta}+\left(a^{\alpha} \frac{\partial^{2} L}{\partial x^{i} \partial a^{\alpha}}-\frac{\partial L}{\partial x^{i}}\right) d x^{i} .
$$

On the other hand, a vector field S on E tangent to \mathcal{E} can be written by:

$$
S=S^{\alpha} A_{\alpha}+\bar{S}^{\alpha} \frac{\partial}{\partial a^{\alpha}} .
$$

Similarly to the proof of Lemma 1 , the restriction of Ω_{L} to \mathcal{E} can be written by

$$
\Omega_{L}=\frac{1}{2}\left(\frac{\partial^{2} L}{\partial x^{\alpha} \partial a^{\beta}}-\frac{\partial^{2} L}{\partial x^{\beta} \partial a^{\alpha}}\right) d x^{\alpha} \wedge d x^{\beta}+\frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}} d a^{\alpha} \wedge d x^{\beta} .
$$

The equation $i_{S} \Omega_{L}=-\left.d\left(\Theta_{C} L-L\right)\right|_{\mathcal{E}}$ gives:

$$
\left\{\begin{array}{l}
S^{\alpha} \frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}=a^{\alpha} \frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}, \tag{1}\\
S^{\alpha}\left(\frac{\partial^{2} L}{\partial x^{\alpha} \partial a^{\beta}}-\frac{\partial^{2} L}{\partial x^{\beta} \partial a^{\alpha}}\right)+\bar{S}^{\alpha} \frac{\partial^{2} L}{\partial a^{\beta} \partial a^{\alpha}}=\frac{\partial L}{\partial x^{\beta}}-a^{\alpha} \frac{\partial^{2} L}{\partial x^{\beta} \partial a^{\alpha}} .
\end{array}\right.
$$

Since the matrix $\left(\frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}\right)$ is invertible, (1) implies

$$
S^{\alpha}=a^{\alpha} .
$$

According to (2), we get

$$
\bar{S}^{\alpha} \frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}=\frac{\partial L}{\partial x^{\beta}}-a^{\alpha} \frac{\partial^{2} L}{\partial x^{\alpha} \partial a^{\beta}} .
$$

Therefore, S is a spray on E. Further, this spray will be denoted by S_{L}. Because Ω_{L} is symplectic on \mathcal{E} then S_{L} is unique.

6. Lagrangian Connections

Let L be a regular Lagrangian on E and Ω_{L} the associated symplectic form.

Lemma 5. We have the following properties:
(1) \mathcal{E}^{V} is a Lagrangian sub-bundle with respect to Ω_{L}.
(2) There exists a unique metric g_{L} on \mathcal{E}^{V} defined by $g_{L}\left(Y, Y^{\prime}\right)=$ $\Omega_{L}\left(Y, Z^{\prime}\right)$, where Z^{\prime} verifies $J Z^{\prime}=Y^{\prime}$.
(3) The kernel of Ω_{L} is a supplement of \mathcal{E} in TE.

Proof. (1) Let Y and Y^{\prime} be two vertical vector fields and let X be a vector field such that $J X=Y$, we have

$$
\Omega\left(Y, Y^{\prime}\right)=\Omega\left(J X, Y^{\prime}\right)=-\Omega\left(X, J Y^{\prime}\right)=0 .
$$

Then \mathcal{E}^{V} is a Lagrangian sub-bundle of \mathcal{E}.
(2) g_{L} is a Riemannian pseudo-metric on \mathcal{E}^{v} :

- g_{L} is well defined. Indeed, if Y^{\prime} is a vector field on E such that

$$
J Y=J Y^{\prime} \text {, then } \Omega_{L}\left(X, J\left(Y-Y^{\prime}\right)\right)=0 . \text { We obtain } \Omega_{L}\left(J X, Y-Y^{\prime}\right)
$$ $=0$ therefore $g_{L}(J X, J Y)=g_{L}\left(J X, J Y^{\prime}\right)$.

- g_{L} is symmetric:

$$
\begin{aligned}
g_{L}(J X, J Y) & =\Omega_{L}(J X, Y)=-\Omega_{L}(X, J Y) \\
& =\Omega_{L}(J Y, X)=g_{L}(J Y, J X) .
\end{aligned}
$$

- g_{L} is not degenerated because Ω_{L} has a maximal rank.
(3) For $\Omega_{L}: T E \rightarrow T^{*} E$, we have: $\operatorname{dim}\left(T^{*} E\right)=\operatorname{dim}\left(\operatorname{Ker} \Omega_{L}\right)+$ $\operatorname{dim}\left(\operatorname{Im} \Omega_{L}\right)$. We deduce from the property (2) of Ω_{L} that $\operatorname{dim}\left(\operatorname{Im} \Omega_{L}\right)$ $=r k\left(\Omega_{L}\right)=2 p$, then $\operatorname{dim}\left(\operatorname{Ker} \Omega_{L}\right)=n-p$ and $\operatorname{Ker}\left(\Omega_{L}\right) \cap \mathcal{E}=\{0\}$. Thus $\operatorname{Ker}\left(\Omega_{L}\right) \oplus \mathcal{E}=T E$.

Recall that the geodesics of a connection where S_{L} is its canonical spray, are the integral curves of S_{L}. Our main goal now is to find a connection which has a canonical spray S_{L}. For that purpose, we first recall the notion of the Lagrangian connections.

Definition 13. A connection Γ is called Lagrangian if the associated horizontal space is Lagrangian sub-bundle with respect to Ω_{L}.

We can easily prove that Γ is Lagrangian if and only if $i_{\Gamma}\left(\Omega_{L} \mid \mathcal{E}\right)=0$ which is equivalent to $i_{h_{\Gamma}}\left(\left.\Omega_{L}\right|_{\mathcal{E}}\right)=\left.\Omega_{L}\right|_{\mathcal{E}}$ and to $i_{v_{\Gamma}}\left(\Omega_{L} \mid \mathcal{E}\right)=\Omega_{L} \mid \mathcal{E}$.

Theorem 2. Let L be a regular Lagrangian and S be a spray. There exists a Lagrangian connection with respect to Ω_{L} such that its canonical spray is S.

Proof. Suppose that $\Gamma=[J, S]_{\Pi}+\Upsilon$ is a connection and S is its canonical spray. The connection Γ is Lagrangian if and only if

$$
i_{\Gamma}\left(\left.\Omega_{L}\right|_{\mathcal{E}}\right)=0
$$

which means

$$
\begin{equation*}
i_{[J, S]_{\Pi}}\left(\Omega_{L} \mid \mathcal{E}\right)+i_{\Upsilon}\left(\Omega_{L} \mid \mathcal{E}\right)=0 \tag{6.1}
\end{equation*}
$$

Take now the vertical vector field $U=S_{L}-S, U$. Knowing that the connection associated $S_{L}, \Gamma_{L}=\left[J, S_{L}\right]$, is Lagrangian therefore (6.1) is equivalent to

$$
i_{\Upsilon}\left(\Omega_{L} \mid \mathcal{E}\right)-i_{[J, U]_{\Pi}}\left(\Omega_{L} \mid \mathcal{E}\right)=0 .
$$

Moreover, the Lie pre-bracket $[,]_{\Pi}$ has the same value of the classical lie bracket if one of the two vector fields is vertical. Thus $[J, U]_{\Pi}=[J, U]$. By using the fact $i_{J}\left(\Omega_{L} \mid \mathcal{E}\right)=0$, and according to the Frolicher-Nijenhuis theory, we obtain

$$
i_{[J, U]}\left(\left.\Omega_{L}\right|_{\mathcal{E}}\right)=i_{J} \Theta_{U}\left(\Omega_{L} \mid \mathcal{E}\right)
$$

Consequently, for all X and Y tangent to \mathcal{E}, the previous condition will be:

$$
g_{L}(\Upsilon X, J Y)+\left(\Theta_{U} \Omega_{L}\right)(J X, Y)=g_{L}(\Upsilon Y, J X)+\left(\Theta_{U} \Omega_{L}\right)(J X, X)
$$

The problem now is to find the semi-basic symmetric 2-form, ϑ :

$$
\begin{equation*}
\vartheta(X, Y)=g_{L}(\Upsilon X, J Y)+\left(\Theta_{U} \Omega_{L}\right)(J X, Y) \tag{6.2}
\end{equation*}
$$

which verify

$$
\begin{equation*}
\vartheta(S, Y)=-g_{L}\left(S^{*}, J Y\right)+\left(\Theta_{U} \Omega_{L}\right)(C, Y), \tag{6.3}
\end{equation*}
$$

with $\Upsilon S_{L}=\Upsilon S=-S^{*}=S-[C, S]_{\Pi}=S-[C, S]$.
Let us consider the semi-basic symmetric 2 -form $\vartheta=i_{C} \Omega_{L} \odot \bar{\omega}$, where $\bar{\omega}$ is a scalar semi-basic 1 -form and \odot is the symmetric product. We will show that $\bar{\omega}$ exists and verifies the condition (6.3). Since $\vartheta(S, Y)=$ $\vartheta\left(S_{L}, Y\right)$, (6.3) is equivalent to:

$$
\begin{equation*}
g_{L}(C, C) \bar{\omega}+i_{S_{L}} \bar{\omega} i_{C} \Omega_{L}=-i_{S^{*}} \Omega_{L}+i_{C} \Theta_{U} \Omega_{L} \tag{6.4}
\end{equation*}
$$

By applying S_{L} on (6.4), we obtain

$$
\begin{equation*}
2 i_{S_{L}} \bar{\omega} g_{L}(C, C)=-g_{L}\left(S^{*}, C\right)-\left(\Theta_{U} \Omega_{L}\right)\left(S_{L}, C\right) \tag{6.5}
\end{equation*}
$$

By replacing the value of $i_{S_{L}} \bar{\omega}$ found from (6.5) in (6.4), we get

$$
\bar{\omega}=\frac{1}{g_{L}(C, C)}\left[-i_{S^{*}} \Omega_{L}+i_{C} \Theta_{U} \Omega_{L}-\frac{g_{L}\left(S^{*}, C\right)+\left(\Theta_{U} \Omega_{L}\right)\left(S_{L}, C\right)}{2 g_{L}(C, C)} i_{C} \Omega_{L}\right]
$$

Theorem 3. Let L be a regular Lagrangian on E, Γ be a Lagrangian connection on \mathcal{E}. The spray associated to Γ is S_{L} if and only if $\left.d_{h_{\Gamma}} \mathcal{H}\right|_{\mathcal{E}}=0$, where $\mathcal{H}=\Theta_{C} L-L$ is the Hamiltonian.

Proof. Since Γ is a Lagrangian connection therefore $\left.i_{h_{\Gamma}} \Omega_{L}\right|_{\mathcal{E}}=\left.\Omega_{L}\right|_{\mathcal{E}}$.

On the other hand, $d_{h_{\Gamma}} \mathcal{H}=i_{h_{\Gamma}} d \mathcal{H}$, gives us:

$$
\begin{align*}
\left.i_{h_{\Gamma}}\left(i_{S_{L}} \Omega_{L}+d \mathcal{H}\right)\right|_{\mathcal{E}} & =\left.\left(i_{S_{L}} i_{h_{\Gamma}} \Omega_{L}-i_{h_{\Gamma} S_{L}} \Omega_{L}+i_{h_{\Gamma}} d \mathcal{H}\right)\right|_{\mathcal{E}} \\
& =\left.\left(i_{S_{L}} \Omega_{L}-i_{h_{\Gamma} S_{L}} \Omega_{L}+d_{h_{\Gamma}} \mathcal{H}\right)\right|_{\mathcal{E}} \tag{6.6}
\end{align*}
$$

We notice that $i_{S_{L}} \Omega_{L}+d \mathcal{H}=0$, the writing in (6.6) the proof is done by using:

- Given a spray S_{L} of Γ, then $h_{\Gamma} S_{L}=S_{L}$ therefore $\left.d_{h_{\Gamma}} \mathcal{H}\right|_{\mathcal{E}}=0$.
- If $\left.d_{h_{\Gamma}} \mathcal{H}\right|_{\mathcal{E}}=0$, then $i_{S_{L}} \Omega_{L}-i_{h_{\Gamma} S_{L}} \Omega_{L}=0$. This implies that $i_{v_{\Gamma} S_{L}} \Omega_{L}$ $=0$ which means that $i_{v_{\Gamma} S_{L}} \Omega_{L}(Y)=0$ for all Y tangent to \mathcal{E}, but since Ω_{L} has a maximal rank on \mathcal{E} therefore $v_{\Gamma} S_{L}=0$ and $S_{L}=h_{\Gamma} S_{L}$.

7. Application

We shall give an example to illustrate the previous results. Consider the
case where $M=\mathbb{R}^{3}$ and let E be the sub-bundle of $T M=\mathbb{R}^{6}$ generated, at any point $x=\left(x^{1}, x^{2}, x^{3}\right) \in M$, by

$$
\left\{\begin{array}{l}
\left.A_{1}\right|_{x}=\left.\frac{\partial}{\partial x^{1}}\right|_{x} \\
\left.A_{2}\right|_{x}=\left.\frac{\partial}{\partial x^{2}}\right|_{x}+\left.x^{1} \frac{\partial}{\partial x^{3}}\right|_{x} \\
\left.A_{3}\right|_{x}=\left.\frac{\partial}{\partial x^{3}}\right|_{x}
\end{array}\right.
$$

where $\left.A_{i}\right|_{x}=\left.A_{i}^{j} \frac{\partial}{\partial x^{j}}\right|_{X}$ for $1 \leq i, j \leq 3$.
Recall the notation introduced in first section in this paper, we can easily verify that $\left\{A_{1}, A_{2}, A_{3}\right\}$ is an adapted basis on E.

Suppose that \mathcal{A} is the transition matrix from the adapted basis $\left\{A_{i}\right\}_{1 \leq i \leq 3}$ to the canonical basis $\left\{\frac{\partial}{\partial x^{i}}\right\}_{1 \leq i \leq 3}$. So \mathcal{A} is given by:

$$
\mathcal{A}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & x^{1} & 1
\end{array}\right)
$$

To find the dual basis $\left\{\theta^{i}\right\}_{1 \leq i \leq 3}$ of $\left\{A_{i}\right\}_{1 \leq i \leq 3}$, we need to find the transition matrix ${ }^{t} \mathcal{A}^{-1}$ matrix from the adapted dual basis $\left\{\theta^{i}\right\}_{1 \leq i \leq 3}$ to the canonical dual basis $\left\{d x^{i}\right\}_{1 \leq i \leq 3}$ which is given by:

$$
{ }^{t} \mathcal{A}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -x^{1} \\
0 & 0 & 1
\end{array}\right)
$$

Therefore,

$$
\left\{\begin{array}{l}
\left.\theta^{1}\right|_{x}=\left.d x^{1}\right|_{x}, \\
\left.\theta^{2}\right|_{x}=\left.d x^{2}\right|_{x}, \\
\left.\theta^{3}\right|_{x}=-\left.x^{1} d x^{2}\right|_{x}+\left.d x^{3}\right|_{x} .
\end{array}\right.
$$

Set up the Lagrangian:

$$
\begin{aligned}
& L: E \rightarrow \mathbb{R} \\
& \begin{aligned}
(x, a) \mapsto L(x, a)= & \left(a^{1}\right)^{2} f\left(x^{1}, x^{2}, x^{3}\right)+\left(a^{2}\right)^{2} g\left(x^{1}, x^{2}, x^{3}\right) \\
& +U\left(x^{1}, x^{2}, x^{3}\right),
\end{aligned}
\end{aligned}
$$

where f, g and U are two no-zero functions on M.
Since the $\operatorname{det}\left(\frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}\right)=4 f g \neq 0$, so L is regular.
Let Λ be the Legendre transformation associated to L :

$$
\begin{aligned}
& \Lambda: E \rightarrow T^{*} M \\
& (x, a) \mapsto \Lambda(x, a)=2 a^{1} f d x^{1}+2 a^{2} g d x^{2} .
\end{aligned}
$$

The symplectic form $\left.\Omega_{L}\right|_{\mathcal{E}}$ is given by:

$$
\begin{aligned}
\left.\Omega_{L}\right|_{\mathcal{E}}=\left.\Lambda^{*} d \omega\right|_{\mathcal{E}}= & \left(2 a^{2} \frac{\partial g}{\partial x^{1}}-2 a^{1} \frac{\partial f}{\partial x^{2}}\right) d x^{1} \wedge d x^{2} \\
& +2 f d a^{1} \wedge d x^{1}+2 g d a^{2} \wedge d x^{2} .
\end{aligned}
$$

The canonical spray S_{L} of L, is written by:

$$
S_{L}(x, a)=a^{1} A_{1}+a^{2} A_{2}+S^{1}(x, a) \frac{\partial}{\partial a^{1}}+S^{2}(x, a) \frac{\partial}{\partial a^{2}},
$$

where S^{α} is given by the expression:

$$
S^{\alpha} \frac{\partial^{2} L}{\partial a^{\alpha} \partial a^{\beta}}=\frac{\partial L}{\partial x^{\beta}}-a^{\alpha} \frac{\partial^{2} L}{\partial x^{\alpha} \partial a^{\beta}} .
$$

For $\beta=1$, 2. Then

$$
\begin{aligned}
& S^{1}=\frac{1}{2 f}\left[-\left(a^{1}\right)^{2} \frac{\partial f}{\partial x^{1}}+\left(a^{2}\right)^{2} \frac{\partial g}{\partial x^{1}}+\frac{\partial U}{\partial x^{1}}-2 a^{1} a^{2} \frac{\partial f}{\partial x^{2}}\right] \\
& S^{2}=\frac{1}{2 g}\left[+\left(a^{1}\right)^{2} \frac{\partial f}{\partial x^{2}}-\left(a^{2}\right)^{2} \frac{\partial g}{\partial x^{2}}+\frac{\partial U}{\partial x^{2}}-2 a^{1} a^{2} \frac{\partial g}{\partial x^{1}}\right] .
\end{aligned}
$$

The associated metric g_{L} of L is defined by $g_{L}(X, Y)=\Omega_{L}(X, Z)$, where $J Z=Y$. The matrix of g_{L} is given by:

$$
\left(\begin{array}{cc}
2 f & 0 \\
0 & 2 g
\end{array}\right)
$$

Since $\left[A_{1}, A_{2}\right]=\frac{\partial}{\partial x^{3}}=A_{3}, E$ is not stable with respect to the Lie bracket.
We can associate the canonical Lie pre-bracket to E verifying $\left[A_{1}, A_{2}\right]_{0}$ $=0$.

The coefficients of the connection $\Gamma_{L}=\left[J, S_{L}\right]$ are:

$$
\begin{aligned}
& \Gamma_{1}^{1}(x, a)=-\frac{1}{2} \frac{\partial S^{1}}{\partial a^{1}}=\frac{1}{2 f}\left\{a^{1} \frac{\partial f}{\partial x^{1}}+a^{2} \frac{\partial f}{\partial x^{2}}\right\}, \\
& \Gamma_{1}^{2}(x, a)=-\frac{1}{2} \frac{\partial S^{2}}{\partial a^{1}}=\frac{1}{2 g}\left\{a^{2} \frac{\partial g}{\partial x^{1}}-a^{1} \frac{\partial f}{\partial x^{2}}\right\}, \\
& \Gamma_{2}^{2}(x, a)=-\frac{1}{2} \frac{\partial S^{2}}{\partial a^{2}}=\frac{1}{2 g}\left\{a^{2} \frac{\partial g}{\partial x^{2}}+a^{1} \frac{\partial g}{\partial x^{1}}\right\}, \\
& \Gamma_{2}^{1}(x, a)=-\frac{1}{2} \frac{\partial S^{1}}{\partial a^{2}}=\frac{1}{2 f}\left\{a^{1} \frac{\partial f}{\partial x^{2}}-a^{2} \frac{\partial g}{\partial x^{1}}\right\} .
\end{aligned}
$$

On the other hand, for any vector fields $X(x)=X^{1}(x) A_{1}+X^{2}(x) A_{2}$ and $Y(x)=Y^{1}(x) A_{1}+Y^{2}(x) A_{2}$ on M tangents to E, the covariant derivative D associated to the connection Γ_{L} is characterized by:

$$
D_{X} Y=\left[X^{\alpha} \Gamma_{\alpha}^{\beta}(x, Y(x))+X^{\alpha} A_{\alpha}\left(Y^{\beta}\right)\right] A_{\beta} .
$$

In particular,

$$
D_{A_{1}} A_{2}=\frac{1}{2 f}\left\{\frac{\partial f}{\partial x^{1}}-\frac{\partial g}{\partial x^{1}}+2 \frac{\partial f}{\partial x^{2}}\right\} A_{1}+\frac{1}{2 g}\left\{\frac{\partial g}{\partial x^{2}}-\frac{\partial f}{\partial x^{2}}+2 \frac{\partial g}{\partial x^{1}}\right\} A_{2} .
$$

Finally, by using the local representation of the weak torsion $t=$ $\frac{1}{2}[J, \Gamma]_{0}$ and the tension $H=\frac{1}{2}[C, \Gamma]_{0}$, we get $t=0$ and $H=0$, and the strong torsion is also zero, since $T=i_{S} t-H$.

References

[1] J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) 24(2) (2009), 213-271.
[2] F. Farah, Etude des courbes extrémales et optimales d'un Lagrangien régulier sur une distribution, Université de Savoie, 2009.
[3] F. Farah and F. Pelletier, Etude géométrique intrinsèque des extrémales d'un Lagrangien non-holonome et optimalité, Bull. Math. Soc. Sci. Math. Roumanie, Tome 53 (101) (4) (2010), 329-361.
[4] F. Gallissot, Les formes extérieures en mécanique, Thèse, Durand, Chartres, 1954.
[5] J. Grifone and M. Mehdi, On the geometry of Lagrangian mechanics with nonholonomic constraints, J. Geometry and Physics 30 (1999), 187-203.
[6] C. Godbillon, Géométrie différentiable et mécanique analytique, Hermann, Paris, 1969.
[7] J. Grifone, Structure presque-tangente et connexions I, Ann. Inst. Fourier XXII(1) (1972), 287-334.
[8] J. Grabowski and P. Urbański, Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys. 40(2) (1997), 195-208.
[9] J. Klein, Espaces variationnels et mécanique, Thèse, Durand, Chartres, 1961.
[10] C. Marle, Algèbre et géométrie dans le monde symplectique, Structures de Poisson, Université Pierre et Marie Curie, Paris, France, Fevrier 2008.
[11] M. Popescu and P. Popescu, Geometric objects defined by almost Lies structure, Workshop on Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publications, Vol. 54, 2001, pp. 217-233.
[12] A. M. Vershik and L. D. Faddeev, Differential geometry and Lagrangian mechanics with constraints, Soviet. Phys. Dokl. 17 (1972), 34-36.

