F ™ JP Journal of Geometry and Topology
. Volume 13, Number 2, 2013, Pages 119-151
y q'p \ Published Online: June 2013

¢ Available online at http://pphmj.com/journals/jpgt.htm
LLLUL&E&D -
A Published by Pushpa Publishing House, Allahabad, INDIA

CONNECTIONS ON THE FIBRE BUNDLE AND
APPLICATION TO THE LAGRANGIAN MECHANICS

M. Mehdi!, F. Farah? and A. Mortada

'Faculty of Science
Lebanese University
Beirut, Lebanon
e-mail: mehdi@ul.edu.lb
amina_mortada2010@hotmail.com

2University of Balamand

P. O. Box: 100

Tripoli, Lebanon

e-mail: farah.farah@balamand.edu.lb

Abstract

In this paper, we use the notion of Grifone’s connection over a tangent
bundle in order to construct a connection over a sub-bundle. Then we
characterize the solutions of non-holonomic Lagrangian mechanics
and show that the geodesics of the connection constructed on the sub-
bundle are the solutions of the non-holonomic Euler-Lagrange system.
Finally, we will prove that the Hamiltonian associated to Lagrangian
function is constant along the horizontal curves.
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Introduction

The geometrization of the Euler-Lagrange problem in Lagrangian
mechanics holonomic or non-holonomic has been developed specially with
Gallissot [4], Klein [9] and Vershik and Faddeev [12]. Grifone and Mehdi [5]
constructed a connection on the tangent fibre bundle projected on the sub-
manifold with constraints. This projection required specific conditions that
this constraint is ideal in the sense of Vershik. In this paper, we take the
definition of Grifone’s connection [7] and we use it to present an alternative
approach over the tangent sub-bundle. The covariant derivative, the torsion
and the curvature will be also defined but they required a Lie pre-bracket
definition associated to this connection. We also characterize a connection
whose geodesics are the solutions of the Euler-Lagrange problem. We finally
show that the Hamiltonian associated to a given Lagrangian is preserved
along the horizontal paths.

1. Notation and Preliminary Definitions
Let M be a smooth differentiable manifold of dimension n and E be a
regular linear tangent sub-bundle of TM over M of dimension p.
For all calculations, we adopt the following conventions:
Summations from 1 to n for Latin indices i, j, k, ....

Summations from 1 to p for the Greek indices a, B, v, ....

Summations from p + 1 to n for the Latin indices i, j, k, ....
1.1. Basis well adapted to E

Let (U, ®) be chart on M where z is the center and = : E — M be the
canonical projection.

Note that we have two structures of fiber bundle over TE:

pe :TE > E and n' : TE - TM;

where n is the tangent mapping of = and pg is the canonical projection
onE.
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Let (Cq, ..., Cy) be alocal basis of the vector field on U. Without losing
the generality, we can assume that (Cy, ..., C) is a local basis of E over U
such that
0
C,(2)=—1, a=1..,p
* 6X°‘ 7

Therefore, for all x e U, we write:
c A 0 _—
i(x)=Ci(x)—, for i, j=1..,n
ox!
. _ By i (x) 2
so that we have: C, (x) = C{(X)—« + Cgq(X)—.
oxP ox!
In some neighborhood of z, the matrix (Cg) is still invertible and we

denoted by (C). Thus, we define on U the following vector fields:

—((c71HyB :i
Al = (€], = -]

+B&ir
aXI X

where B, |, = (CHECh)],.

The set (A, ..., Ap) is also a basis for the vector fields E around the

point z in U.

Consider now A (x) = i
ox!

. Then (A, ..., A,) is basis field on U in TM.

X

On TM, we already have two coordinates systems:

The classical coordinate system: (x*, ..., x", y%, ..., y").
The adapted coordinate system: (zl, AL al, a”) associated to
(AL e Ay).

Both the systems are characterized by the following relations:

' =x',y*=a% and y' =a' +a“B,.
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Therefore,

0 _ 0 gl o

ay(l aa(x aal

According to these bases, we can construct a dual basis (e‘) of (A) by

taking:
o' = dx' — Bl dx* and 0% = dx?,
where (dxl, ..., dx") is the dual basis of (il Lj
X ox"

Here also we have two coordinate systems in T*M at point (x, &):
The classical coordinate system: (xl, oy X, E1y s Ep)-
The adapted coordinate system: (zl, AL C1y wor Cp)-

It is now obvious that & = ; and &, = C,, — C;B(i;.
1.2. Notation

We denote £ the sub-bundle of TE defined by &€ = [x' ] "}(E). Note that
the kernel of =" isequalto €Y = ENTYTM.

Let J be the almost tangent structure. J is also called the vertical
endomorphism defined as a tensor field of type (1, 1) on TM. By using the

classical coordinates, J can be written as J = dx! ® i|

oy

Knowing that the vector field A’ is the vertical lift of A, therefore,

the tangent space T(y 4)E is generated by the vector fields (A, ALY We

notice that J(A) = il so we can deduce that &y a) is generated by
oa ’

0 0 v 0 0
; g, aa_p} and then S(X,a) is generated by {g aa_P}

{Al, o Ay
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In the classical coordinates, we have:

0 i 0
ho =G BT
and
Af;’zi+Bfi
b oy
We also have
(A, As]=0.

Let us consider now (zi, ai) the coordinate system defined by
2 =x', a% = y* and al = yi —~ y“Bf;.

It allows us to write [A,, At\gl] in this new coordinate system (z', ai) of the

form

Since

A, 2, B(i;i.—-i- B&{—yyﬁji and Ay = —.
or* oz' ox' |oal oaP
As we know the functions fo are functions of (xl, .., X") which means
[Ay, A{{] =0 at the center z of the chart (U, ®) and therefore at any point
in U. So we get the following proposition:
Proposition 1. The space £ is stable under the action of the almost
tangent structure J, i.e., JE = &Y.

Further, we can denote J the restriction of Jon £.
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The Liouville vector field on TM is C = yi il we can write it in
oy
adapted coordinate system by: C = a 81
a

Moreover, at any point in E, the Liouville vector field is given by

C= a“i&. And at any point of T*M, the Liouville form is given by
oa

W= Z‘,idXi.

Remark 1. The vertical isomorphism &: TYTM — TM s expressed in

i =£‘ It induces an
ayl Xl X

isomorphism between &Y and E, defined by §|(x a)( J Aa Iy

classical coordinate system by: §|(X y){

Indeed, 0 = o

0
oy + B} ay_ Therefore, £|, 2) 2q0 = Ay |y

Definition 1. A spray on E is a vector field S on E such that JS = C.
In adapted coordinate system, S can be represented by:

S(z, a)=a” Aa|(za)+S (z, a)—
(z, a)

The semi-basic tensor Q is a section of (®2 (TE) ® (®'0 (T *E)) which admits

the following locally form:

Q(x, a):Qijll ----- JI(x a)dxt ® - ® dx'k ® —Z— O ®.0-9_

v aajl aah

Remark 2. A section Z of E can be seen as an application from E to E
which verifies ©o Z = . In adapted coordinate system, Z can be written by

Z(z,a)=Z%(z, a) A, (z). We denote X(E) the set of sections of E.



Lagrangian Mechanics 125

2. Grifone Connection on the Sub-bundle &

Definition 2. A connection on £ is an homomorphism I" of £ such that
Jr=J and I'J =-J.

In adapted coordinates, we have:

9

T'(A,) = A, — 2T} 5 forl1<a < p,
ca @.1)
F(ijz—i forl<a < p.
oa* oa”

A connection T is represented by the matrix:

r= o0 o
—orB &P

The functions Fg are called the coefficients of the connection I".
Proposition 2. A connection T" on £ satisfies the following properties:
1) r?=1d|,.

(2) &Y is the eigenspace of I' associated to the eigenvalue —1.

(3) Suppose H be the eigenspace of I" associated to the eigenvalue 1.
Then & splits into the direct sum:

E=E"®Hr.

The eigenspace H of I' associated to the eigenvalue 1 is called the

horizontal space. We denoted by hr and v the horizontal and vertical
projectors. They are given by:

hF=%U%+F)MMVF=%U%—F)
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And locally: b <[ 3 ) ang ° 0
na locally: = ana vy = .
Y- P oo SN oA

2.1. Properties

As the traditional framework for a connection, we have the following
characterization:

Proposition 3. Let I be a connection on &, there exists only one spray S
on E tangent to H, itis called the canonical spray S of I.

Indeed, the horizontal projection of any spray gives us a unique spray
defined by:

he(S)lix,a) = @%hr(Ay) [y a) + S* (X, a)hr(ij

aa“ (x,a)

N _1B 0
=a (A(x ra |(x,a))aaB .

So it is obvious that Jhp-(S) = C.

Definition 3. The geodesics of T are, by definition, the integrals curves
of the canonical spray of I

Proposition 4. Let T be a connection on £. Then we have the following
properties:

(1) If Y is semi-basic (1-1) tensor on &, then I' + T is a connection on

(2) Conversely, if T" is a connection on &, then there exists only one
semi-basic (1-1) tensor field T suchthat T =T + Y so that

hl"/ = hr‘ +%T and Vl"/ = Vl" —%T

(3) If S is the canonical spray of T", then S will be the canonical spray of
[ if and only if T(S) = 0.
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Proposition 5. A connection I" defines only one vectorial form F on &

which satisfies:
Frd =hp and Frhp =-J,
and verifies
F2 = —ld,.
Fr is called almost complex structure associated to I".

2.2. Linear connection

Inspired by the work of Grifone on “stucture presque tangente et
connexion” (see [7]), we have recently embarked on the study of a general
notion of connection, these connections are defined over fibre bundle.

As in the classical definition, a linear connection on £ is defined as the

sub-bundle of £ transverse with £¥ and verifies:

Forall t e R, t # 0, we have & (H(x,u)) = Hs,(x,u)» Where 8;(x, u) =
(x, tu).

In this case, we deduce the following proposition:

Proposition 6. Let I" be a connection on E. Then the following statements
are equivalent:

(i) The connection T is linear.

(ii) For any vector field Z on E tangent to &, we have
[C,T]z =[C, TZ]-TIC, Z]=0.
(iii) In an adapted coordinate system, the coefficients of I" are as form

rB(x, a) = ayrgy(x) forall y=1, .., p. (2.2)
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3. Lie Pre-bracket

3.1. Pre-bracket of Lie on E

When E = TM therefore, £ = TTM, we can define a connection through
a spray according to [7]: suppose that S is a spray on TM, then the connection
associated to S, I's = [J, S], is defined by

VX e X(TM) [J, S]X =[JX, S]- J[X, S]

The connection TIg is called canonical connection associated to S.
Unfortunately, if E = TM, then £ is no more stable by Lie bracket act.
Since the previous expression is not defined on £. Our main goal now is to
give an additional structure on E, in order to associate a canonical connection
I's to agiven S. This new structure is called the Lie new-bracket.

Definition 4. A Lie pre-bracket on E is an application:
[,]g : X(E)x X(E) - X(E),
R -bilinear, antisymmetric and verify the Leibniz formula given by:
[X, fY]e = X(F)Y + f[X, Y]g, (3.1)

for all X, Y vector fields on M that are tangent to E and for all f functions on
M.

Remark 3. There is a simple and natural way to construct a Lie pre-
bracket on E. Indeed, if we split TM into the direct sum E and F, for any
vector field E. Let g: TM — E be the associated canonical projection. We

can define a Lie pre-bracket on E by:
[X,Y]g =alX, Y],

where [X, Y] is the classical Lie bracket on M of the vectors fields X and Y
on M but its value is in E.

We renew the approach of pre-bracket done by [8] and [10]:
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Let X e X(E) be a vector field on M with values in E. The restriction of
the inner product iy on E* defines a function on E*. Then diy is an element
of T*E”. Let P be a bivector on E* which means P is a section of the fibre
bundle A2 T*E*,

Obviously, we can associate to the bivector P a bracket {, j, on E

defined by: {f, g}p = P(df, dg), where f and g are functions on E™. In

general, this bracket does not verify the Jacobi’s identity unless if P is
Poisson tensor which is equivalent to say that the bracket of Schouten of P
vanishes.

The given of a new lie bracket [, ]z on E is equivalent to give a linear
bivector P on E™ which verifies the following propositions:

iix v)e = Pdix, diy) = {ix, iy jp.,
X(f)on" = {iy, fOTE*}P, (3.2)

for all X, Y tangent to E, for all functions f on M, where =™ is a canonical

projection of E* on M.

To define a Lie pre-bracket on E means to define a bracket between the
vector fields A,. In an adapted coordinate system, we have i A, = Co-

According to (3.2), P will have the local form:
_leve 0, 0 9
P= 2CaBCY . A 55 + A, A : (3.3

Corollary 1. There exists on E a canonical pre-bracket [, ], defined by

[Av Aglp = 0.

Recall that on T*M, we have a canonical Poisson bracket associated to
the Poisson tensor mg. Of all the pre-brackets on E, there is one that is
intrinsic defined through:
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ST R N (.- I O
N P T N

P Bl 5 © B
+Y — 4 ABJ —.
J[azJ - oxJ 5%} * 0L

By restrict it on E, and at the center of the chart already chosen, we obtain:

0

0 0
7o |z = ZBZ_B

f%i=%%@

z
This bivector defines eventually the pre-bracket [, ] by [A,, Agly =0 (see
[3, 2]).

3.2. Lie pre-bracketon &

In the sequel, we are dealing to use the Lie pre-bracket P on E. We will
define now a pre-bracket on £ which only depends on P ([1, 3, 11]).

Proposition 7. There exists a unique linear bivector IT on £ such that
the pre-bracket [, ];; satisfies the two following properties:

(1) [Y, Z];; =[Y, Z] for any section Z and vertical section Y in £.
(2) 11 is projected on P:
() [Z, 2] |(qu) = [pi" (2), piT(Z')]P |(X) for any sections Z and Z'

of £ and (x, u) e E. We say that the sections pi' (Z) and pi' (Z') are,
respectively, the projections of the sections Zand Z’ on E.

(i) Z(f om) = Z(f)o = for any function f on M and any section Z of
& projected on the section Z of E.

We shall give the following lemma in order to give sense to the first
property:
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Lemma 1. For all vertical vector Y and all section Z of &, [Y, Z] is
tangent to &.

Proof. The vector field [Y, Z] is defined on TE. Moreover, £V is stable
by the Lie bracket, so we have: [Aa, aa%} =0, hence [Y, Z] is tangent to
E. O
3.3. Canonical connection associated to a spray

For the further study, we assume that the bivector IT on £ is the

bivector associated to a given bivector P on E™.
Proposition 8. Given a spray S on E, the form
I[s(X)=[J, S]H(X) = [JX, S]-J[X, S]H,
IS a connection on &.

Proof. It is obvious that [X, S];; is tangent to £, and Lemma 1 implies

that [JX, S] is tangent to &£ as well. Therefore, I's is defined as an
endomorphism of &.

However J2 = 0, we get:
J([g(X)) = J[IX, S] = JX,
I[g(IX) =-J[IX, S] = -JX. O

Proposition 9. In an adapted coordinate system, using the previous

notations of (2.1), the coefficients of the connection I's associated to S =
0
a%A, +SP—Z are:
oaP

p
P - %(avcﬁ _%J for y=1,.., p. (3.4)
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o

Proof. According to (2.1), we have T's(A,) = A, — 2I'P 5 To find
oa
T8 itis sufficient to calculate T (A, ):
[JA,, S]= A, + P o
' oa® oaP’
I[Ay, Sl = achyi. 0
oaP

Remark 4. It is important to note that the canonical spray of the
connection I, foragivenSonE, is hr (S) = %(S +[C, S]) which is not,
in general, S.

Definition 5. A spray S is quadratic if [C, S] = S.

Proposition 10. The following statements are equivalent:

(i) S is quadratic,

(ii) S has the form of:
_ 0 1 ovareB () 0
S=a"A, + 5a'a Syx(x)aaﬁ,
(iif) Tg is linear,
(iv) S is the canonical spray of If.

4, Covariant Derivative, Torsion and Curvature

4.1. Covariant derivative

Definition 6. A covariant derivative on Eisamap D : X(E) x X(E) —
X(E) such that

Dix1gvZ = fDxZ + gDy Z, where X,Y,Z € E and f, g e C™(M).



Lagrangian Mechanics 133

Proposition 11. There exists an isomorphism between the set of
connections on E and the set of covariant derivative on E.

Proof. For every connection I on E, there exists an associated covariant
derivative defined by:

DxY Iy = &l ayVr(Y (X)) VX = XA, Y =YPAg e E.

It is easy to see that

T _ o o Bi
Y (x)‘Y(X)_(x A, + X (ALY )aaﬁj

Y(x).

So, it is in £ Although vp-(YT (X)) = (x“rg " x“(Aa.YB)iJ is

oaP

Y(x)

in £¥. Using the act of §|(X a)’ the local expression of Dy Y holds:

DxY |, = (XOTH(x, Y(x) + X %A, YP)Ag ‘X.

This expression of the covariant derivative allows us to verify immediately
the properties of the covariant derivative.

Conversely, if D is a covariant derivative on E, then the functions l“g of
the connection are given by:

TH(x, X(x)) = (Dp, X)P - A, .XP.

One can easily check that the covariant derivative associated to I' is
equal to D. 0

4.2. Parallel transport

Let c¢:[0, T]— M be a curve of class C2. We denote 1c(E) the set
of vector fields in E along c.

Proposition 12. For any connection D on E, we can eventually associate
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a derivation D¢ : x(E) — x(E) such that: for all X e y.(E), we have

DX = DC)Z as X is an extension of X on M.

Proof. It is easy to see that this derivation does not depend on the choice
of the extension. Indeed, if X’ is another extension of X. We have X' =
X + fZ, where f(c(t)) = 0 and Z is a vector field on M,

De(fZ) = &vr(fZ)T (¢(T)))

= E(vr(df legey Z(e() + flogey 2T (E(1)))

—g[v r(d”"c(”)jzm(t)) +(foo)Z" )| 0. O

Proposition 13. A curve c is a geodesic for the connection T if and only
if D¢ = 0.
Proof. Indeed, the associated spray to Cis S = a*A, — ao‘rg(x, a)%.
oa

As in the natural case, we can easily show that the integral curves of S are
solution of the system DxC = 0. O

4.3. Torsion and curvature of T’
Definition 7. A weak torsion associated to I' and to a bracket form

[, ], is the 2 vectorial form ton £ defined by t = %[J, Tl
Forany X e £ and Y e £, we have
[3, Tl (X, Y) = [3X, [Y]; + [TX, 3Y]; - I[TX, Y] - I[X, TY]
—T[3X, Y] - TIX, 3Y ]y + 30X, Y] + TI[X, Y]
= [3X, TY ]y + X, IY ]y = I[TX, Y]

—J[X, TY ]y - TIX, Y] - TX, 3Y ]y
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Proposition 14. The weak torsion is skew-symmetric and semi-basic

tensor.

Proof. From the definition, it is clear that t is skew-symmetric.
The torsion is also semi-basic. Indeed, let V € €Y and X e &, so:
[J, Tl (X, V) = [3X, TV]y +[TX, V] - I[TX, V]
—J[X, TV]y - T[IX, V] - TIX, V]
= —[IX, V] = I[CX, V] + I[X, V] + [IX, V],
= 2J[vpX,V]=0.

0

: _¢cv. 9
Locally, let us consider [A,, Ag]=Clg o

[J, F]H(Aa, Aﬁ) = [‘]Aow rAﬁ]r{ + [FAq, JAﬁ]r[ - J[FAQ, Aﬁ]r[
- I[A,, TAgln —TDIA,, Al — TTA, IAs]n

0 0 0 0
_[2 _zrv_}[ —2rY—,—}
[6a°‘ g P 2aY Ao *sa’ " oaP

—J[Aa —ZF&%' %}—J[Aw Ap _zrg%}

e )

Therefore,
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Corollary 2. As in the standard connection theory, with the linear
connection T', one can associate the torsion determined by:

Te(Aus Ap) |y = €l o)t Ap) = D As — DA = [Au Agliy

Proof. Given a linear connection I" means Fg(x, a) = ayl“gy(x). Then

0
t(Ay, Aﬁ) |(X,a) = (ngg |x _Fga |x - C&B)(X)Q (X’a)-
Therefore, & |, ,)t(Ay. Ag) = Da Ag — D Ay —[Ay, Agly. 0

Definition 8. The tension of T is the 1-vectorial form H = %[C, Iy

Locally, H can be represented in an adapted basis by

B
H= Fg—aya& 0% e -2
oa’ oaP

The local expression of H shows that the tension is independent of the
Lie pre-bracket TI.

In the linear case, the tension vanishes.

Definition 9. The strong-torsion T of I" is given by T = igt — H, for an
arbitrary spray S.

Locally, T can be expressed in an adapted basis by:

orp o
= X% v Y 1B Teh
T(Xya)x X (a aC I +a CO‘Y} aaB .
For (x,a)e E and X € & |(X’a).

In the linear case, we get

0
Tix,a)X = X' (Th, -8, + cgy)aa—ﬁ.
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The torsion coincides as well with the image of the vertical isomorphism
& of the strong torsion. Indeed,

T(X,Y)=&|x T(Y) = DxY =Dy X —[X, Y];.

Definition 10. The curvature of a connection T" is given by R =

- 21h, hlyy.

Proposition 15. The curvature R = —%[h, h];; is semi-basic and skew-
symmetric form.

Proof. From the definition of R we can obviously see that R is a skew-
symmetric form.

The curvature is semi-basic form as well. Indeed, for V e &' and
X e &, we have:

[h, h]; (X, V) =[hX, hV]; +[hX, hV]; = h[hX, V] = h[X, hV ]
— h[hX, V]; = h[X, hV]; + h[X, V]; + h[X, V]
= —2h[hX, V]+ 2h[X,V]=0
The local expression of the curvature in an adapted coordinate system is:

R(A,, Ay) = gﬂ—rf’@r + AT - AgT - i. O

oa’

5. Spray Associated to a Regular Lagrangian
5.1. Legendre transformation

Definition 11. A Lagrangian Lon Eisamap L : E - R which is C”

on E, c? on the zero-section, and verifies L(0) = 0

Based on [6], we will construct a Legendre transformation.
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Lemma 2. Let L : TM — R be a differentiable function on TM. Then

there exists a unique differentiable map A:TM — T*M such that

[ ) qM o A = pM’
e A of rank 2n,
sk
e Ao = dJ L,
where o is the Liouville form on T*M.
In addition, the following diagram is commutative

™M —2 T\

M
From [3], in order, we get the following result:

Lemma 3. Let L : E — R be a Lagrangian. There exists a unique map

A E > T*"M such that the following diagram is commutative

E -2+ 7y

M

Although ij(dL|g) = A"w|e, where dL|¢ and A*ol|c are the restrictions of

dL and A*w on &£ < TE, respectively.

Proof. Take L as a differential extension of L on TM. From the previous

theorem, there exists a unique map A:TM - T*M verifying Ao = i dL.
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Let v: E = TM be the canonical injection. By choosing A = Ao, A

verifies the results of the lemma. Due to the local expression, A is unique.
Indeed,

. oL i oL . o 0
ij(dL] )=(—.dx +——da Jo(dx ®—)
e ox! oaP oa®

Assume that A(xi, a%) = (xi, i) = (xi, Aq1(X, @), ..., Ap(x, @)). Let U
be a vector field tangentto £ on E:

0
Ulpeay = XA +YP =2

oaP '
Then
. oL a * o
(idL)(U) = a—ax and (AM'o)(U) = o(AU) =, X
a
Hence,
oL
T
¢ =0.

Consider now A and A the two maps verify the results of the lemma.
Therefore:

A(x, @) = (%, Aq(X, @), ..., Ap(X, @)

oL oL
= [x, g —_ , 0, ..., 0].
(x,a)

" a), P
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Similarly,
A(x, @) = (x, A(x, @), ..., Ay(x, @)
; ( al LAl o oj.
oa (x,a) oaP (x,a)
Thus, A; = A; and we deduce that A is unique. O

Definition 12. The map defined in Lemma 3 is called Legendre
transformation of L. The Lagrangian L on E is regular if the Legendre
transformation A has a maximal rank.

2
Remark 5. The Lagrangian L is regular if and only if det( oL j # 0,
0a%oaP

since the Jacobian matrix of A is given by
Id 0

[ 82L J [ 82L J.
ox'oaP 2a%oaP

5.2. Spray associated to L

Lemma 4. Let L be a Lagrangian on E. Let us consider the 2-form:
Q = A'do.
The form Q, has the following properties:

Q) QLIX,Y)+QL(X,JY)=0 for any vector fields X and Y on E
tangent to £. In particular, the restriction of Q; on the sub-bundle &Y

vanishes.

(2) The rank of Q, is at most 2p. The restriction of Q| on the sub-
bundle £ has a maximal rank 2p if and only if L is regular.
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Proof. (1) To prove the first property, it will be enough to represent
locally the restriction of Q; on &. The proof will be elementary. We

notice first that Q; = A"de = d(A*®) = d(i;dL). Therefore, in an adapted

coordinate system (xi, a®), we have:

2 _ 2
Q = 0L gxi ndx® + —9 5 gaP A dx®
ox'oa® oa”oa®
2 2 2 -
=Z oL __ oL dx’ A dx® + arl‘ dx' A dx®
v<a| ox¥oa®  ox%oa’ ox'oa®
2
oL daP A dx®
daPoa®
2 2 2 -
I B PN WAL NI
2| ox¥pa*  ox%pa’ ox'oa®
2
oL daP A dx®.
daPoa®
By restriction into £, we obtain:
2 2 2
Qg =l( oL ot de“ T L PN
2 ox%aP  oxPoa® o0a%*oa

(2) Using the local representation of 2| found in (1), its rank is at most
2p. Furthermore, the rank will attempt the maximal value if and only if the

exterior power Q,‘_) of order p is no-zero. In an adapted coordinate system:

2
af = idet{Ljdxl A ndxP adal A-e A dal,
0a®oaP
. . o%L ). .
Then Q| has arank 2p if and only if det is no-zero which means
oa*oaP

L is regular. O



142 M. Mehdi, F. Farah and A. Mortada

Theorem 1. There exists a unique spray S on E tangent to £ and
solution of the equation

isQ =-d(OcL-L)[g;
where O¢ is the lie derivative with respect to Liouville vector field C on TE.

Proof. In an adapted coordinate system on E, we have:

oL

OcL-L=a*-% —L
oa”
Therefore,
oL %L oL ).
d(@)CL—L)|(X a) = a® daP +|a* < - |dx".
! daPoa® x'ea®  ox'

On the other hand, a vector field S on E tangent to £ can be written by:
szs%h+§“ll.
oa*
Similarly to the proof of Lemma 1, the restriction of 0| to £ can be written

by

2 2 2
1f oL oL dxo‘/\dxﬁ+a—|‘da°‘/\dxﬁ.

Q == -
- 2(5Xa5aﬁ 8xﬁ8a°‘J oa®oaP

The equation isQ| = -d(O¢cL - L)|¢ gives:

2 2
g oL _a® o0°L ' )
da%oal da%oaP
sa( ’L L J4_§a L _ oL L 2
x%oaP  axPaa® oaPoa®  oxP oxPaa®
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2

Since the matrix ( j is invertible, (1) implies

oa%oaP
S% =a%,
According to (2), we get

go 0L _ oL o 0L
da%oaP  oxP x%oaP

Therefore, S is a spray on E. Further, this spray will be denoted by S .

Because Q, issymplecticon £ then S| is unique. O

6. Lagrangian Connections

Let L be a regular Lagrangian on E and Q the associated symplectic
form.

Lemma 5. We have the following properties:

(1) &' is a Lagrangian sub-bundle with respect to Q, .

(2) There exists a unique metric g, on &' defined by g, (Y,Y') =
Q (Y, Z'), where Z' verifies JZ' =Y".

(3) The kernel of Q| is a supplement of £ in TE.

Proof. (1) Let Y and Y’ be two vertical vector fields and let X be a vector
field such that JX =Y, we have

QY,Y)=0Q(IX,Y")=-Q(X, JY")=0.
Then &Y is a Lagrangian sub-bundle of &.
(2) g, is a Riemannian pseudo-metric on £":

e g, is well defined. Indeed, if Y’ is a vector field on E such that
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JY = JY', then Q (X, J(Y —Y')) = 0. We obtain Q| (JX,Y —-Y')
= 0 therefore g (IX, JY) = g (IX, JY').
e g, is symmetric:
gL (IX, IY) = (IX,Y) = - (X, IY)
=Q (JY, X) = g,_QY, IX).
e g, is not degenerated because Q; has a maximal rank.
(3) For Q| :TE ->T"E, we have: dim(T"E)=dim(KerQ )+
dim(ImQ, ). We deduce from the property (2) of Q, that dim(ImQ)

= rk(Q ) = 2p, then dim(Ker Q) =n - p and Ker(Q )N E = {0}. Thus
Ker(QQ )@ & =TE. O

Recall that the geodesics of a connection where S| is its canonical
spray, are the integral curves of S . Our main goal now is to find a
connection which has a canonical spray S, . For that purpose, we first recall
the notion of the Lagrangian connections.

Definition 13. A connection T is called Lagrangian if the associated
horizontal space is Lagrangian sub-bundle with respect to Q, .

We can easily prove that ' is Lagrangian if and only if ir(Q |¢)=0
which is equivalent to i (Q |¢) = Q| and to iy (Q [¢) = Q¢

Theorem 2. Let L be a regular Lagrangian and S be a spray. There
exists a Lagrangian connection with respect to Q; such that its canonical
spray is S.

Proof. Suppose that T' =[J, S]; + T is a connection and S is its

canonical spray. The connection I' is Lagrangian if and only if

ir(QLlg)=0
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which means
ir3,s1; (Qule) +ir(Qrlg) = 0. (6.1)

Take now the vertical vector field U =S, — S, U. Knowing that the
connection associated S, I =[J, S_ ], is Lagrangian therefore (6.1) is
equivalent to

ir(QLle) —if3,uy, (Qulg) = 0.

Moreover, the Lie pre-bracket [, ];; has the same value of the classical
lie bracket if one of the two vector fields is vertical. Thus [J, U]; =[J, U].
By using the fact i;(Q |¢) =0, and according to the Frolicher-Nijenhuis
theory, we obtain

ig,ul(QLle) =130y (QLlg).

Consequently, for all X and Y tangent to &£, the previous condition will

be:
gL (X, IY)+ (O QL) (IX, Y) = g (T, IX)+ (OyQL ) (IX, X).
The problem now is to find the semi-basic symmetric 2-form, 9:
(X, Y) =g (TX, IY)+(©,Q,)(IX,Y) (6.2)
which verify
9(S,Y) = gL (8", )+ (©yQ)(C, Y), (6.3)

with TS, =TS = -8* =S —[C, S]; =S —[C, S].

Let us consider the semi-basic symmetric 2-form 9 = icQ| © ®, where
© is a scalar semi-basic 1-form and ® is the symmetric product. We will

show that ® exists and verifies the condition (6.3). Since 9(S,Y) =
9(S.,Y), (6.3) is equivalent to:

gL(C, C)E + iSLangL = _is*QL + iC®U Q. (64)
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By applying S| on (6.4), we obtain
2is, ®g (C, C) = -g.(S", C) = (®yQ)(SL, C). (6.5)

By replacing the value of iSLE found from (6.5) in (6.4), we get

1 : _9L(87.C)+(0yQ)(S. ),
[ _—gL(C, C) IS*QL + IC®UQL ZgL(C, C) ICQL

O

Theorem 3. Let L be a regular Lagrangian on E, T" be a Lagrangian
connection on £. The spray associated to I"is S| if and only if dhrH|5 =0,

where ‘H = O¢L — L is the Hamiltonian.
Proof. Since T is a Lagrangian connection therefore thQL le = QL e
On the other hand, dhr’H = ihrdH, gives us:
in. (is, QL + dH)lg = (is ih QL —in.s, QL + in dH)le
= (is, QL — .5, QL +dp H)le - (6.6)

We notice that isLQL + dH = 0, the writing in (6.6) the proof is done
by using:

e Givenaspray S| of I, then hp-S; =S, therefore dy H|s = 0.

o If dp Hle =0, thenis Q| —iy.s € = 0. This implies that iy s Q|
= 0 which means that iy.s Q (Y) =0 for all Y tangent to &, but since Q.

has a maximal rank on & therefore vpS| =0 and S| = hpS. O

7. Application

We shall give an example to illustrate the previous results. Consider the
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case where M = R and let E be the sub-bundle of TM = R® generated, at

any point x = (xl, X2, x3) e M, by

0
Al|x=_1
OoX

X

0
Ao lx=—
X X2

X

0
Aglx=—5
X o3

for1<i, j<3.
X

where A |y= Aiji.
oxJ

Recall the notation introduced in first section in this paper, we can easily
verify that {A;, Ay, Ag} is an adapted basis on E.

Suppose that A is the transition matrix from the adapted basis {A };_; 3

to the canonical basis {i} . So A is given by:
1<i<3

ox!
1 0 0
A=l0 1 o0
0 x 1

To find the dual basis {ei}1siS3 of {A};<j<3, We need to find the transition
matrix 'A™! matrix from the adapted dual basis {ei}1siS3 to the canonical

dual basis {dx'},;_5 which is given by:

tAl-lo 1 x|
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Therefore,
o = x|y,
0% | = dx® |y,
93|X= —xdx? Ix + dx3|x.
Set up the Lagrangian:
L:E—>R
(x,a) > L(x, a) = (@) 1 (4, x2, x3) + (@%)?g(x, %2, x3)
+UOE X2, x3),
where f, g and U are two no-zero functions on M.

a%L
da%aaP

Since the det( j =41fg = 0, so L isregular.

Let A be the Legendre transformation associated to L:
AE->T™M
(x, a) = A(x, a) = 2a' fdx* + 2a2gdx>.
The symplectic form Q| |¢ is given by:

Qg = A'dolg = (2a28—g - 2all}a|xl A dx?

oxt ox°
+2fdal A dxt + 2gda2 A dx2.

The canonical spray S, of L, is written by:

SL(x,a)= alAl + a2A2 +SY(x, a)i1 +S2(x, a)iz,
oa oa

where S% is given by the expression:
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qu L _ L g L
ca“oaP  oxP ox%oaP

For B =1, 2. Then
st = i[—(al)2 a—fl + (a2)2 a_gl + a—Ul — 2a'a? a—fz}
2f OX ox-  0OX OX

1 1,2 of 22 0g  oU 1.2 09
52 =—{+(a) — —(@%) =+ —= —2aa” = |
29 x> x% ox2 oxt

The associated metric g, of L is defined by g, (X,Y)=Q (X, Z),

where JZ =Y. The matrix of g, is given by:

Since [A;, A =

2f 0
0 2g)

o__ A3, E is not stable with respect to the Lie bracket.

ax3

We can associate the canonical Lie pre-bracket to E verifying [Ay, A ],

The coefficients of the connection I = [J, S|_] are:

1
]—‘]:!'(X, a)__lﬁzi ali_}_azi ,
2 pal 2f oxt x>
2y ayo 105 _ 1 [o209 g of
lixa) 2 sal 29 {a OX ? x2)’
2
FZZ(X, a):—iﬁzi azé_g+ala_g,
2 522 29 OX OX
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On the other hand, for any vector fields X(x) = Xl(x)Al + XZ(X)AZ

Y(x) = YL(x) A, + Y2(x) Ay on M tangents to E, the covariant derivative

D associated to the connection I'| is characterized by:

Dy Y = [XTE(x, Y(x))+ X “A,(YP)]Ag.

In particular,

1 [of ag af} 1{89 of 69}
DoA, =L Ot A9 ot L, 1]og o 0910,
AT Zf{axl Py SER TR P Ry f

Finally, by using the local representation of the weak torsion t =

%[J, I'], and the tension H = %[C, ']y, wegett=0and H =0, and the

stro

ng torsion is also zero, since T =igt — H.
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