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Abstract 

In this paper, we use the notion of Grifone’s connection over a tangent 
bundle in order to construct a connection over a sub-bundle. Then we 
characterize the solutions of non-holonomic Lagrangian mechanics 
and show that the geodesics of the connection constructed on the sub-
bundle are the solutions of the non-holonomic Euler-Lagrange system. 
Finally, we will prove that the Hamiltonian associated to Lagrangian 
function is constant along the horizontal curves. 
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Introduction 

The geometrization of the Euler-Lagrange problem in Lagrangian 
mechanics holonomic or non-holonomic has been developed specially with 
Gallissot [4], Klein [9] and Vershik and Faddeev [12]. Grifone and Mehdi [5] 
constructed a connection on the tangent fibre bundle projected on the sub-
manifold with constraints. This projection required specific conditions that 
this constraint is ideal in the sense of Vershik. In this paper, we take the 
definition of Grifone’s connection [7] and we use it to present an alternative 
approach over the tangent sub-bundle. The covariant derivative, the torsion 
and the curvature will be also defined but they required a Lie pre-bracket 
definition associated to this connection. We also characterize a connection 
whose geodesics are the solutions of the Euler-Lagrange problem. We finally 
show that the Hamiltonian associated to a given Lagrangian is preserved 
along the horizontal paths. 

1. Notation and Preliminary Definitions 

Let M be a smooth differentiable manifold of dimension n and E be a 
regular linear tangent sub-bundle of TM over M of dimension p. 

For all calculations, we adopt the following conventions: 

Summations from 1 to n for Latin indices ....,,, kji  

Summations from 1 to p for the Greek indices ....,,, γβα  

Summations from 1+p  to n for the Latin indices ....,,, kji  

1.1. Basis well adapted to E 

Let ( )Φ,U  be chart on M where z is the center and ME →π :  be the 
canonical projection. 

Note that we have two structures of fiber bundle over TE: 

ETEpE →:   and  ;: TMTET →π  

where Tπ  is the tangent mapping of π and Ep  is the canonical projection         
on E. 
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Let ( )nCC ...,,1  be a local basis of the vector field on U. Without losing 

the generality, we can assume that ( )pCC ...,,1  is a local basis of E over U 

such that 

( ) ....,,1, p
x

zC
z

=α
∂

∂=
αα  

Therefore, for all ,Ux ∈  we write: 

( ) ( ) ,j
j

ii
x

xCxC
∂

∂=   for  nji ...,,1, =  

so that we have: ( ) ( ) ( ) .
j

j

x
xC

x
xCxC

∂

∂+
∂

∂= αβ
β
αα  

In some neighborhood of z, the matrix ( )βαC  is still invertible and we 

denoted by ( ).C  Thus, we define on U the following vector fields: 

(( ) ) ,1

x
i

i

xxx x
B

x
CA

∂

∂+
∂

∂== ααβ
β
α

−
α C  

where (( ) ) .1
x

i
x

i CB β
β
α

−
α = C  

The set ( )pAA ...,,1  is also a basis for the vector fields E around the 

point z in U. 

Consider now ( ) .
x

ii
x

xA
∂

∂=  Then ( )nAA ...,,1  is basis field on U in TM. 

On TM, we already have two coordinates systems: 

The classical coordinate system: ( )....,,,...,, 11 nn yyxx  

The adapted coordinate system: ( )nn aazz ...,,,...,, 11  associated to 

( )....,,1 nAA  

Both the systems are characterized by the following relations: 

αα == ayxz ii ,   and  .iii Baay α
α+=  
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Therefore, 

.
i

i

a
B

ay ∂

∂−
∂

∂=
∂

∂
ααα

 

According to these bases, we can construct a dual basis ( )iθ  of ( )iA  by 

taking: 

α
α−=θ dxBdx iii   and  ,αα =θ dx  

where ( )ndxdx ...,,1  is the dual basis of ....,,1 ⎟
⎠
⎞

⎜
⎝
⎛

∂

∂

∂

∂
nxx

 

Here also we have two coordinate systems in MT ∗  at point ( ):, ξx  

The classical coordinate system: ( )....,,,...,, 1
1

n
nxx ξξ  

The adapted coordinate system: ( )....,,,...,, 1
1

n
nzz ζζ  

It is now obvious that ii ζ=ξ  and .i
i Bααα ζ−ζ=ξ  

1.2. Notation 

We denote E  the sub-bundle of TE defined by [ ] ( ).1 ET −π=E  Note that 

the kernel of Tπ  is equal to .TMT vv ∩EE =  

Let J be the almost tangent structure. J is also called the vertical 
endomorphism defined as a tensor field of type ( )1,1  on TM. By using the 

classical coordinates, J can be written as .i
i

y
dxJ

∂

∂⊗=  

Knowing that the vector field v
iA  is the vertical lift of ,iA  therefore,           

the tangent space ( )ET ax,  is generated by the vector fields { }., v
i AA α  We 

notice that ( ) ,ii
a

AJ
∂
∂=  so we can deduce that ( )ax,E  is generated by 

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂

∂

∂
pp

aa
AA ...,,,...,, 11  and then ( )

v
ax,E  is generated by ....,,1 ⎭

⎬
⎫

⎩
⎨
⎧

∂

∂

∂

∂
paa
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In the classical coordinates, we have: 

i
i

x
B

x
A

∂

∂+
∂
∂= ααα  

and 

.
i

iv

y
B

y
A

∂

∂+
∂

∂= βββ  

We also have 

[ ] .0, =βα
vAA  

Let us consider now ( )ii az ,  the coordinate system defined by 

αα == yaxz ii ,   and  .iii Byya α
α−=  

It allows us to write [ ]vAA βα ,  in this new coordinate system ( )ii az ,  of the 

form 

[ ] .,
jj

i
iv

ax

B
BAA

∂

∂

∂

∂
= β

αβα  

Since 

ji

j
i

i
i

ax

B
yB

z
B

z
A

∂

∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
−+

∂

∂+
∂

∂= γγ
αααα   and  .ββ

∂
∂=
a

Av  

As we know the functions iBα  are functions of ( )nxx ...,,1  which means 

[ ] 0, =βα
vAA  at the center z of the chart ( )Φ,U  and therefore at any point 

in U. So we get the following proposition: 

Proposition 1. The space E  is stable under the action of the almost 

tangent structure J, i.e., .vJ EE =  

Further, we can denote J the restriction of J on .E  
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The Liouville vector field on TM is ,i
i

y
yC

∂
∂=  we can write it in 

adapted coordinate system by: .i
i

a
aC

∂
∂=  

Moreover, at any point in E, the Liouville vector field is given by 

.
α

α

∂

∂=
a

aC  And at any point of ,MT ∗  the Liouville form is given by 

.i
idxξ=ω  

Remark 1. The vertical isomorphism TMTMT v →ξ :  is expressed in 

classical coordinate system by: ( ) .,
x

iiyx xy ∂

∂=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂ξ  It induces an 

isomorphism between vE  and E, defined by ( ) ., xax A
a

αα
=⎟

⎠
⎞

⎜
⎝
⎛
∂

∂ξ  

Indeed, .
i

i

y
B

ya ∂

∂+
∂

∂=
∂

∂
ααα

 Therefore, ( ) ., xax A
a

αα
=

∂

∂ξ  

Definition 1. A spray on E is a vector field S on E such that .CJS =  

In adapted coordinate system, S can be represented by: 

( ) ( ) ( )
( )

.,,
,

,
az

az a
azSAaazS

α
α

α
α

∂

∂+=  

The semi-basic tensor Ω is a section of ( ( )) ( ( ))ETTE l
k

∗⊗⊗⊗ 0
0  which admits 

the following locally form: 

( ) ( ) .,,
1

11
1

...,,
...,, l

kl
k jj

iijj
ii aa

dxdxaxax
∂

∂⊗⊗
∂

∂⊗⊗⊗Ω=Ω  

Remark 2. A section Z of E can be seen as an application from E to E 
which verifies .π=π Z  In adapted coordinate system, Z can be written by 

( ) ( ) ( ).,, zAazZazZ α
α=  We denote ( )EX  the set of sections of E. 
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2. Grifone Connection on the Sub-bundle E  

Definition 2. A connection on E  is an homomorphism Γ of E  such that 

JJ =Γ   and  .JJ −=Γ  

In adapted coordinates, we have: 

 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤α≤
∂

∂−=⎟
⎠
⎞

⎜
⎝
⎛
∂

∂Γ

≤α≤
∂

∂Γ−=Γ

αα

β
β
ααα

.1for

,1for2

p
aa

p
a

AA

 (2.1) 

A connection Γ is represented by the matrix: 

.
2

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

δ−Γ−

δ
=Γ

β
α

β
α

β
α  

The functions β
αΓ  are called the coefficients of the connection Γ. 

Proposition 2. A connection Γ on E  satisfies the following properties: 

(1) .2
EId=Γ  

(2) vE  is the eigenspace of Γ associated to the eigenvalue –1. 

(3) Suppose ΓH  be the eigenspace of Γ associated to the eigenvalue 1. 

Then E  splits into the direct sum: 

.Γ⊕= HEE v  

The eigenspace ΓH  of Γ associated to the eigenvalue 1 is called the 

horizontal space. We denoted by Γh  and Γv  the horizontal and vertical 

projectors. They are given by: 

( )Γ+=Γ EIdh 2
1   and  ( ).2

1 Γ−=Γ EIdv  
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And locally: ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Γ−

δ
=

β
α

β
α

Γ
0
0h  and .

00
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δΓ

= β
α

β
α

Γv  

2.1. Properties 

As the traditional framework for a connection, we have the following 
characterization: 

Proposition 3. Let Γ be a connection on ,E  there exists only one spray S 

on E tangent to ,ΓH  it is called the canonical spray S of Γ. 

Indeed, the horizontal projection of any spray gives us a unique spray 
defined by: 

( ) ( ) ( ) ( ) ( )
( )ax

axax a
haxSAhaSh

,
,, , ⎟

⎠
⎞

⎜
⎝
⎛
∂

∂+=
αΓ

α
αΓ

α
Γ  

( ( ) ) ., β
β
αα

α

∂

∂Γ−=
a

Aa ax  

So it is obvious that ( ) .CSJh =Γ  

Definition 3. The geodesics of Γ are, by definition, the integrals curves 
of the canonical spray of Γ. 

Proposition 4. Let Γ be a connection on .E  Then we have the following 
properties: 

(1) If ϒ  is semi-basic (1-1) tensor on ,E  then ϒ+Γ  is a connection on 
.E  

(2) Conversely, if Γ′  is a connection on ,E  then there exists only one 

semi-basic (1-1) tensor field ϒ  such that ϒ+Γ=Γ′  so that 

ϒ2
1+= ΓΓ′ hh   and  .2

1 ϒ−= ΓΓ′ vv  

(3) If S is the canonical spray of Γ, then S will be the canonical spray of 
Γ′  if and only if ( ) .0=Sϒ  
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Proposition 5. A connection Γ defines only one vectorial form ΓF  on E  

which satisfies: 

ΓΓ = hJF   and  ,JhF −=ΓΓ  

and verifies 

.2
EIdF −=Γ  

ΓF  is called almost complex structure associated to Γ. 

2.2. Linear connection 

Inspired by the work of Grifone on “stucture presque tangente et 
connexion” (see [7]), we have recently embarked on the study of a general 
notion of connection, these connections are defined over fibre bundle. 

As in the classical definition, a linear connection on E  is defined as the 

sub-bundle of E  transverse with vE  and verifies: 

For all ,0, ≠∈ tt R  we have ( ( ) ) ( ) ,,, uxuxt tδ=δ
∗

HH  where ( ) =δ uxt ,  

( )., tux  

In this case, we deduce the following proposition: 

Proposition 6. Let Γ be a connection on E. Then the following statements 
are equivalent: 

  (i) The connection Γ is linear. 

 (ii) For any vector field Z on E tangent to ,E  we have 

[ ] [ ] [ ] .0,,, =Γ−Γ=Γ ZCZCZC  

(iii) In an adapted coordinate system, the coefficients of Γ are as form 

 ( ) ( )xaax a
β
γ

γβ
α Γ=Γ ,   for all  ....,,1 p=γ  (2.2) 
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3. Lie Pre-bracket 

3.1. Pre-bracket of Lie on E 

When TME =  therefore, ,TTM=E  we can define a connection through 
a spray according to [7]: suppose that S is a spray on TM, then the connection 
associated to S, [ ],, SJS =Γ  is defined by 

( ) [ ] [ ] [ ].,,, SXJSJXXSJTMX −=∈∀ X  

The connection SΓ  is called canonical connection associated to S. 

Unfortunately, if ,TME ≠  then E  is no more stable by Lie bracket act. 
Since the previous expression is not defined on .E  Our main goal now is to 
give an additional structure on E, in order to associate a canonical connection 

SΓ  to a given S. This new structure is called the Lie new-bracket. 

Definition 4. A Lie pre-bracket on E is an application: 

[ ] ( ) ( ) ( ),:, EEEE XXX →×  

R -bilinear, antisymmetric and verify the Leibniz formula given by: 

 [ ] ( ) [ ] ,,, EE YXfYfXYfX +=  (3.1) 

for all X, Y vector fields on M that are tangent to E and for all f functions on 
M. 

Remark 3. There is a simple and natural way to construct a Lie pre-
bracket on E. Indeed, if we split TM into the direct sum E and F, for any 
vector field E. Let ETMq →:  be the associated canonical projection. We 

can define a Lie pre-bracket on E by: 

[ ] [ ],,, YXqYX E =  

where [ ]YX ,  is the classical Lie bracket on M of the vectors fields X and Y 

on M but its value is in E. 

We renew the approach of pre-bracket done by [8] and [10]: 
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Let ( )EX X∈  be a vector field on M with values in E. The restriction of 

the inner product Xi  on ∗E  defines a function on .∗E  Then Xdi  is an element 

of .∗∗ET  Let P be a bivector on ∗E  which means P is a section of the fibre 

bundle .2 ∗∗∧ ET  

Obviously, we can associate to the bivector P a bracket { }P,  on E 

defined by: { } ( ),,, dgdfPgf P =  where f and g are functions on .∗E  In 

general, this bracket does not verify the Jacobi’s identity unless if P is 
Poisson tensor which is equivalent to say that the bracket of Schouten of P 
vanishes. 

The given of a new lie bracket [ ]E,  on E is equivalent to give a linear 

bivector P on ∗E  which verifies the following propositions: 

[ ] ( ) { } ,,,, PYXYXYX iididiPi
E

==  

( ) { } ,, PX fifX ∗∗ π=π  (3.2) 

for all X, Y tangent to E, for all functions f on M, where ∗π  is a canonical 

projection of ∗E  on M. 

To define a Lie pre-bracket on E means to define a bracket between the 
vector fields .αA  In an adapted coordinate system, we have .αζ=

αAi  

According to (3.2), P will have the local form: 

 .2
1

α
α

βα
γ

γ
αβ ζ∂

∂∧+
ζ∂
∂∧

ζ∂
∂ζ= ACP  (3.3) 

Corollary 1. There exists on E a canonical pre-bracket [ ]0,  defined by 

[ ] .0, 0 =βα AA  

Recall that on ,MT ∗  we have a canonical Poisson bracket associated to 

the Poisson tensor .0π  Of all the pre-brackets on E, there is one that is 

intrinsic defined through: 
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βαβ
α

ββ ζ∂
∂∧⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ζ∂
∂

∂

∂
ξ+∂Σ=

ξ∂
∂∧

∂

∂=π
x
B

zx

i

i
ii0  

.
α

α
α

α
ζ∂
∂∧⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
ζ∂
∂

∂

∂
ξ+

∂

∂Σ+ j
j

i

ijj B
x

B

z
 

By restrict it on E, and at the center of the chart already chosen, we obtain: 

.0
zzz

z A
z β

β
βββ ζ∂

∂∧=
ζ∂
∂∧∂Σ=π  

This bivector defines eventually the pre-bracket [ ]0,  by [ ] 0, 0 =βα AA  (see 

[3, 2]). 

3.2. Lie pre-bracket on E  

In the sequel, we are dealing to use the Lie pre-bracket P on E. We will 
define now a pre-bracket on E  which only depends on P ([1, 3, 11]). 

Proposition 7. There exists a unique linear bivector Π  on ∗E  such that 
the pre-bracket [ ]Π,  satisfies the two following properties: 

(1) [ ] [ ]ZYZY ,, =Π  for any section Z and vertical section Y in .E  

(2) Π  is projected on P: 

(i) [ ] ( ) [ ( ) ( )] ( )xP
TT

ux ZpiZpiZZ ′=′ Π ,, ,  for any sections Z and Z ′  

of E  and ( ) ., Eux ∈  We say that the sections ( )ZpiT  and ( )ZpiT ′  are, 

respectively, the projections of the sections Z and Z ′  on E. 

(ii) ( ) ( ) π=π fZfZ~  for any function f on M and any section Z~  of 

E  projected on the section Z of E. 

We shall give the following lemma in order to give sense to the first 
property: 
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Lemma 1. For all vertical vector Y and all section Z of ,E  [ ]ZY ,  is 

tangent to .E  

Proof. The vector field [ ]ZY ,  is defined on TE. Moreover, vE  is stable 

by the Lie bracket, so we have: ,0, =⎥⎦
⎤

⎢⎣
⎡

∂

∂
αα

a
A  hence [ ]ZY ,  is tangent to 

.E  ~ 

3.3. Canonical connection associated to a spray 

For the further study, we assume that the bivector Π  on ∗E  is the 

bivector associated to a given bivector P on .∗E  

Proposition 8. Given a spray S on E, the form 

( ) [ ] ( ) [ ] [ ] ,,,, ΠΠ −==Γ SXJSJXXSJXS  

is a connection on .E  

Proof. It is obvious that [ ]ΠSX ,  is tangent to ,E  and Lemma 1 implies 

that [ ]SJX ,  is tangent to E  as well. Therefore, SΓ  is defined as an 

endomorphism of .E  

However ,02 =J  we get: 

( )( ) [ ] ,, JXSJXJXJ S ==Γ  

( ) [ ] ., JXSJXJJXS −=−=Γ  ~ 

Proposition 9. In an adapted coordinate system, using the previous 
notations of (2.1), the coefficients of the connection SΓ  associated to =S  

β
β

α
α

∂

∂+
a

SAa  are: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂−=Γ
α

β
β
αγ

γβ
α

a
SCa2

1   for  ....,,1 p=γ  (3.4) 
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Proof. According to (2.1), we have ( ) .2
β

β
ααα
∂

∂Γ−=Γ
a

AAS  To find 

,βαΓ  it is sufficient to calculate ( ):αΓ AS  

[ ] ,, βα

β

αα
∂
∂

∂
∂+=

aa
SASJA  

[ ] ., β
β
γ

γ
Πα

∂
∂=
a

CaSAJ a  ~ 

Remark 4. It is important to note that the canonical spray of the 

connection ,SΓ  for a given S on E, is ( ) [ ]( )SCSSh
S

,2
1 +=Γ  which is not, 

in general, S. 

Definition 5. A spray S is quadratic if [ ] ., SSC =  

Proposition 10. The following statements are equivalent: 

  (i) S is quadratic, 

 (ii) S has the form of: 

( ) ,2
1

β
β
γλ

λγ
α

α

∂
∂+=
a

xSaaAaS  

(iii) SΓ  is linear, 

(iv) S is the canonical spray of .SΓ  

4. Covariant Derivative, Torsion and Curvature 

4.1. Covariant derivative 

Definition 6. A covariant derivative on E is a map ( ) ( ) →× EED XX:  

( )EX  such that 

,ZgDZfDZD YXgYfX +=+  where EZYX ∈,,  and ( )., MCgf +∞∈  
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Proposition 11. There exists an isomorphism between the set of 
connections on E and the set of covariant derivative on E. 

Proof. For every connection Γ on E, there exists an associated covariant 
derivative defined by: 

( )( ( ( ))) .,, EAYYAXXXYvYD T
axxX ∈==∀ξ= β

β
α

α
Γ  

It is easy to see that 

( )
( )

( )
( )

..
xYxY

T

a
YAXAXXY ⎟

⎠
⎞

⎜
⎝
⎛

∂

∂+=
β

β
α

α
α

α  

So, it is in .E  Although ( ( )) ( )
( )xY

T

a
YAXXXYv ⎟

⎠
⎞

⎜
⎝
⎛

∂

∂+Γ=
β

β
α

αβ
α

α
Γ .  is 

in .vE  Using the act of ( ),, axξ  the local expression of YDX  holds: 

( ( )( ) ) ..,
xxX AYAXxYxXYD β

β
α

αβ
α

α +Γ=  

This expression of the covariant derivative allows us to verify immediately 
the properties of the covariant derivative. 

Conversely, if D is a covariant derivative on E, then the functions β
αΓ  of 

the connection are given by: 

( )( ) ( ) .., β
α

ββ
α −=Γ

α
XAXDxXx A  

One can easily check that the covariant derivative associated to Γ is 
equal to D. ~ 

4.2. Parallel transport 

Let [ ] MTc →,0:  be a curve of class .2C  We denote ( )Ecχ  the set 

of vector fields in E along c. 

Proposition 12. For any connection D on E, we can eventually associate 
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a derivation ( ) ( )EEDc χ→χ:  such that: for all ( ),EX cχ∈  we have 

XDXD cc
~

=  as X~  is an extension of X on M. 

Proof. It is easy to see that this derivation does not depend on the choice 

of the extension. Indeed, if X ′~  is another extension of X. We have =′X~  

,~ ZfX +  where ( )( ) 0=tcf  and Z is a vector field on M, 

 ( ) ( ( ) ( )( ))TcZfvZfD T
c Γξ=  

( ( ( ) ( )( ) ( ) ( )( ))tcZftcZdfv T
tctc |+|ξ= Γ  

( )( ) ( )( ) ( )( ) ( )( ) .0=⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ξ= Γ tcZtfoctcZdt

tfocdv T  ~ 

Proposition 13. A curve c is a geodesic for the connection Γ if and only 
if .0=cDc  

Proof. Indeed, the associated spray to Γ is ( ) .,
β

β
α

α
α

α

∂

∂Γ−=
a

axaAaS  

As in the natural case, we can easily show that the integral curves of S are 
solution of the system .0=cDc  ~ 

4.3. Torsion and curvature of Γ 

Definition 7. A weak torsion associated to Γ and to a bracket form 

[ ] ,, Π  is the 2 vectorial form t on E  defined by [ ] .,2
1

ΠΓ= Jt  

For any E∈X  and ,E∈Y  we have 

 [ ] ( ) [ ] [ ] [ ] [ ]ΠΠΠΠΠ Γ−Γ−Γ+Γ=Γ YXJYXJJYXYJXYXJ ,,,,,,  

 [ ] [ ] [ ] [ ]ΠΠΠΠ Γ+Γ+Γ−Γ− YXJYXJJYXYJX ,,,,  

[ ] [ ] [ ]ΠΠΠ Γ−Γ+Γ= YXJJYXYJX ,,,  

 [ ] [ ] [ ] .,,, ΠΠΠ Γ−Γ−Γ− JYXYJXYXJ  
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Proposition 14. The weak torsion is skew-symmetric and semi-basic 
tensor. 

Proof. From the definition, it is clear that t is skew-symmetric. 

The torsion is also semi-basic. Indeed, let vV E∈  and ,E∈X  so: 

[ ] ( ) [ ] [ ] [ ]ΠΠΠΠ Γ−Γ+Γ=Γ VXJJVXVJXVXJ ,,,,,  

[ ] [ ] [ ]ΠΠΠ Γ−Γ−Γ− JVXVJXVXJ ,,,  

[ ] [ ] [ ] [ ]ΠΠΠΠ ++Γ−−= VJXVXJVXJVJX ,,,,  

[ ] .0,2 == Γ VXvJ  

Locally, let us consider [ ] ,, γ
γ
αββα

∂
∂=
a

CAA  

[ ] ( ) [ ] [ ] [ ]ΠβαΠβαΠβαβαΠ Γ−Γ+Γ=Γ AAJJAAAJAAAJ ,,,,,  

[ ] [ ] [ ]ΠβαΠβαΠβα Γ−Γ−Γ− JAAAJAAAJ ,,,  

⎥⎦
⎤

⎢⎣
⎡

∂
∂

∂
∂Γ−+⎥⎦

⎤
⎢⎣
⎡

∂
∂Γ−

∂
∂= βγ

γ
ααγ

γ
ββα aa

A
a

A
a

,22,  

⎥⎦
⎤

⎢⎣
⎡

∂
∂Γ−−⎥⎦

⎤
⎢⎣
⎡

∂
∂Γ−− γ

γ
ββαβγ

γ
αα

a
AAJA

a
AJ 2,,2  

⎥⎦
⎤

⎢⎣
⎡

∂
∂Γ−⎥⎦

⎤
⎢⎣
⎡
∂
∂Γ− βαβα a

AA
a

,,  

.222 γ
γ
αβα

γ
β

β

γ
α

∂
∂

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∂

Γ∂
−

∂

Γ∂
=

a
C

aa
 

Therefore, 

 ( ) .,
γ

γ
αβα

γ
β

β

γ
α

βα
∂

∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∂

Γ∂
−

∂

Γ∂
=

a
C

aa
AAt  ~ 
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Corollary 2. As in the standard connection theory, with the linear 
connection Γ, one can associate the torsion determined by: 

( ) ( ) ( ) [ ] .,,, , ΠβααββαβαΓ −−=ξ=
βα

AAADADAAtAAT AAaxx  

Proof. Given a linear connection Γ means ( ) ( )., xaax β
αγ

γβ
α Γ=Γ  Then 

( ) ( ) ( ) ( )
( )

.,
,

,
ax

xxax a
xCAAt

γ
γ
αβ

γ
βα

γ
αββα

∂

∂−Γ−Γ=  

Therefore, ( ) ( ) [ ] .,,, Πβααββα −−=ξ
βα

AAADADAAt AAax  ~ 

Definition 8. The tension of Γ is the 1-vectorial form [ ] .,2
1

ΠΓ= CH  

Locally, H can be represented in an adapted basis by 

.β
α

γ

β
αγβ

α
∂
∂⊗θ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

Γ∂
−Γ=

aa
aH  

The local expression of H shows that the tension is independent of the 
Lie pre-bracket .Π  

In the linear case, the tension vanishes. 

Definition 9. The strong-torsion T of Γ is given by ,HtiT S −=  for an 

arbitrary spray S. 

Locally, T can be expressed in an adapted basis by: 

( ) ., β
β
αγ

γβ
αα

β
γγα

∂

∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+Γ−

∂

Γ∂
=

a
Ca

a
aXXT ax  

For ( ) Eax ∈,  and ( )., axX E∈  

In the linear case, we get 

( ) ( ) ., β
β
αγ

β
αγ

β
γα

γα

∂

∂+Γ−Γ=
a

CaXXT ax  
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The torsion coincides as well with the image of the vertical isomorphism 
ξ of the strong torsion. Indeed, 

( ) ( ) [ ] .,, Π−−=ξ= YXXDYDYTYXT YXX  

Definition 10. The curvature of a connection Γ is given by =R  

[ ] .,2
1

Π− hh  

Proposition 15. The curvature [ ]Π−= hhR ,2
1  is semi-basic and skew-

symmetric form. 

Proof. From the definition of R we can obviously see that R is a skew-
symmetric form. 

The curvature is semi-basic form as well. Indeed, for vV E∈  and 
,E∈X  we have: 

[ ] ( ) [ ] [ ] [ ] [ ]ΠΠΠΠΠ −−+= hVXhVhXhhVhXhVhXVXhh ,,,,,,  

[ ] [ ] [ ] [ ]ΠΠΠΠ ++−− VXhVXhhVXhVhXh ,,,,  

[ ] [ ] .0,2,2 =+−= VXhVhXh  

The local expression of the curvature in an adapted coordinate system is: 

 ( ) ...,
γ

γ
αβ

γ
αβ

γ
βαδ

γ
βδ

αδ

γ
αδ

ββα
∂

∂
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−Γ−Γ+

∂

Γ∂
Γ−

∂

Γ∂
Γ=

a
CAA

aa
AAR  ~ 

5. Spray Associated to a Regular Lagrangian 

5.1. Legendre transformation 

Definition 11. A Lagrangian L on E is a map R→EL :  which is ∞C  

on E, 0C  on the zero-section, and verifies ( ) ,00 =L  

Based on [6], we will construct a Legendre transformation. 
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Lemma 2. Let R→TML :~  be a differentiable function on TM. Then 

there exists a unique differentiable map MTTM ∗→Λ :~  such that 

• ,~
MM pq =Λ  

• Λ~  of rank 2n, 

• ,~~ LdJ=ωΛ∗  

where ω is the Liouville form on .MT ∗  

In addition, the following diagram is commutative 

 

From [3], in order, we get the following result: 

Lemma 3. Let R→EL :  be a Lagrangian. There exists a unique map 

MTE ∗→Λ :  such that the following diagram is commutative 

 

Although ( ) ,EE |ωΛ=| ∗dLiJ  where E|dL  and E|ωΛ∗  are the restrictions of 

dL and ωΛ∗  on ,TE⊂E  respectively. 

Proof. Take L~  as a differential extension of L on TM. From the previous 

theorem, there exists a unique map MTTM ∗→Λ :~  verifying .~~ LdiJ=ωΛ∗  
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Let TME :ι  be the canonical injection. By choosing ΛΛ=Λ ,~ ι  

verifies the results of the lemma. Due to the local expression, Λ is unique. 
Indeed, 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂

∂⊗⎟
⎠
⎞

⎜
⎝
⎛

∂

∂+
∂

∂=|
α

αβ
β a

dxda
a
Ldx

x
LdLi i
iJ E  

 .αα∂
∂= dx
a
L  

Assume that ( ) ( ) ( ( ) ( )).,...,,,,,, 1 axaxxxax n
i

i
ii ΛΛ=ζ=Λ α  Let U 

be a vector field tangent to E  on E: 

( ) ., β
β

α
α

∂

∂+=
a

YAXU ax  

Then 

( ) ( ) α
α∂

∂= X
a
LUdLiJ   and  ( ) ( ) ( ) .αα∗

∗ ζ=Λω=ωΛ XUU  

Hence, 

,
αα

∂

∂=ζ
a
L  

.0=ζi  

Consider now Λ and Λ  the two maps verify the results of the lemma. 
Therefore: 

( ) ( ) ( )( )axaxxax n ,...,,,,, 1 ΛΛ=Λ  

 
( ) ( )

.0...,,0,...,,,
,,

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

∂

∂=
ax

p
ax a

L
a
Lx  
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Similarly, 

( ) ( ( ) ( ))axaxxax n ,...,,,,, 1 ΛΛ=Λ  

 
( ) ( )

.0...,,0,...,,,
,,

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

∂

∂=
ax

p
ax a

L
a
Lx  

Thus, ii Λ=Λ  and we deduce that Λ is unique. ~ 

Definition 12. The map defined in Lemma 3 is called Legendre 
transformation of L. The Lagrangian L on E is regular if the Legendre 
transformation Λ has a maximal rank. 

Remark 5. The Lagrangian L is regular if and only if ,0det
2

≠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂
∂

βα aa
L  

since the Jacobian matrix of Λ is given by 

.
0
22

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂
βαβ aa

L
ax
L

Id

i
 

5.2. Spray associated to L 

Lemma 4. Let L be a Lagrangian on E. Let us consider the 2-form: 

.ωΛ=Ω ∗dL  

The form LΩ  has the following properties: 

(1) ( ) ( ) 0,, =Ω+Ω JYXYJX LL  for any vector fields X and Y on E 

tangent to .E  In particular, the restriction of LΩ  on the sub-bundle vE  

vanishes. 

(2) The rank of LΩ  is at most 2p. The restriction of LΩ  on the sub-

bundle E  has a maximal rank 2p if and only if L is regular. 
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Proof. (1) To prove the first property, it will be enough to represent 
locally the restriction of LΩ  on .E  The proof will be elementary. We           

notice first that ( ) ( ).dLiddd JL =ωΛ=ωΛ=Ω ∗∗  Therefore, in an adapted 

coordinate system ( ),, αaxi  we have: 

αβ
αβ

α
α ∧

∂∂
∂+∧

∂∂
∂=Ω dxda

aa
Ldxdx

ax
L i

iL
22

 

 ∑ α<γ
α

α
αγ

γααγ ∧
∂∂

∂+∧⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂
∂−

∂∂
∂= dxdx

ax
Ldxdx

ax
L

ax
L i

i

222
 

αβ
αβ

∧
∂∂

∂+ dxda
aa
L2

 

 α
α

αγ
γααγ ∧

∂∂

∂+∧⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂
∂−

∂∂
∂= dxdx

ax
Ldxdx

ax
L

ax
L i

i

222

2
1  

.
2

αβ
αβ ∧

∂∂
∂+ dxda

aa
L  

By restriction into ,E  we obtain: 

.2
1 222

βα
βα

βα
αββα

∧
∂∂

∂+∧⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂−
∂∂

∂=Ω dxda
aa

Ldxdx
ax
L

ax
L

L E  

(2) Using the local representation of LΩ  found in (1), its rank is at most 

2p. Furthermore, the rank will attempt the maximal value if and only if the 

exterior power p
LΩ  of order p is no-zero. In an adapted coordinate system: 

.det 11
2

ppp
L dadadxdx

aa
L ∧∧∧∧∧⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂±=Ω
βα

 

Then LΩ  has a rank 2p if and only if ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂
βα aa

L2
det  is no-zero which means 

L is regular. ~ 
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Theorem 1. There exists a unique spray S on E tangent to E  and 
solution of the equation 

( ) ;ELLdi CLS −Θ−=Ω  

where CΘ  is the lie derivative with respect to Liouville vector field C on TE. 

Proof. In an adapted coordinate system on E, we have: 

.L
a
LaLLC −

∂

∂=−Θ
α

α  

Therefore, 

( ) ( ) .
22

,
i

iiaxC dx
x
L

ax
Lada

aa
LaLLd ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂−
∂∂

∂+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂=−Θ
α

αβ
αβ

α  

On the other hand, a vector field S on E tangent to E  can be written by: 

.
α

α
α

α

∂

∂+=
a

SASS  

Similarly to the proof of Lemma 1, the restriction of LΩ  to E  can be written 

by 

.2
1 222

βα
βα

βα
αββα

∧
∂∂

∂+∧⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂−
∂∂

∂=Ω dxda
aa

Ldxdx
ax
L

ax
L

L  

The equation ( ) ELLdi CLS −Θ−=Ω  gives: 

       

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∂∂

∂−
∂

∂=
∂∂

∂+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂−
∂∂

∂

∂∂

∂=
∂∂

∂

αβ
α

βαβ
α

αββα
α

βα
α

βα
α

)2(.

)1(,

2222

22

ax
La

x
L

aa
LS

ax
L

ax
LS

aa
La

aa
LS
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Since the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂
∂

βα aa
L2

 is invertible, (1) implies 

.αα = aS  

According to (2), we get 

.
22

βα
α

ββα
α

∂∂

∂−
∂

∂=
∂∂

∂

ax
La

x
L

aa
LS  

Therefore, S is a spray on E. Further, this spray will be denoted by .LS  

Because LΩ  is symplectic on E  then LS  is unique. ~ 

6. Lagrangian Connections 

Let L be a regular Lagrangian on E and LΩ  the associated symplectic 

form. 

Lemma 5. We have the following properties: 

(1) vE  is a Lagrangian sub-bundle with respect to .LΩ  

(2) There exists a unique metric Lg  on vE  defined by ( ) =′YYgL ,  

( ),, ZYL ′Ω  where Z ′  verifies .YZJ ′=′  

(3) The kernel of LΩ  is a supplement of E  in TE. 

Proof. (1) Let Y and Y ′  be two vertical vector fields and let X be a vector 
field such that ,YJX =  we have 

( ) ( ) ( ) .0,,, =′Ω−=′Ω=′Ω YJXYJXYY  

Then vE  is a Lagrangian sub-bundle of .E  

(2) Lg  is a Riemannian pseudo-metric on :vE  

• Lg  is well defined. Indeed, if Y ′  is a vector field on E such that 
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,YJJY ′=  then ( )( ) .0, =′−Ω YYJXL  We obtain ( )YYJXL ′−Ω ,  

0=  therefore ( ) ( ).,, YJJXgJYJXg LL ′=  

• Lg  is symmetric: 

( ) ( ) ( )JYXYJXJYJXg LLL ,,, Ω−=Ω=  

( ) ( ).,, JXJYgXJY LL =Ω=  

• Lg  is not degenerated because LΩ  has a maximal rank. 

(3) For ,: ETTEL
∗→Ω  we have: ( ) ( ) +Ω=∗

LKerET dimdim  

( ).Imdim LΩ  We deduce from the property (2) of LΩ  that ( )LΩImdim  

( ) ,2 prk L =Ω=  then ( ) pnKer L −=Ωdim  and ( ) { }.0=Ω E∩LKer  Thus 

( ) .TEKer L =⊕Ω E  ~ 

Recall that the geodesics of a connection where LS  is its canonical 

spray, are the integral curves of .LS  Our main goal now is to find a 

connection which has a canonical spray .LS  For that purpose, we first recall 

the notion of the Lagrangian connections. 

Definition 13. A connection Γ is called Lagrangian if the associated 
horizontal space is Lagrangian sub-bundle with respect to .LΩ  

We can easily prove that Γ is Lagrangian if and only if ( ) 0=|ΩΓ ELi  

which is equivalent to ( ) EE |Ω=|Ω
Γ LLhi  and to ( ) .EE |Ω=|Ω

Γ LLvi  

Theorem 2. Let L be a regular Lagrangian and S be a spray. There 
exists a Lagrangian connection with respect to LΩ  such that its canonical 

spray is S. 

Proof. Suppose that [ ] ϒ+=Γ ΠSJ ,  is a connection and S is its 

canonical spray. The connection Γ is Lagrangian if and only if 

( ) 0=|ΩΓ ELi  
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which means 

 [ ] ( ) ( ) .0, =|Ω+|Ω
Π EE LLSJ ii ϒ  (6.1) 

Take now the vertical vector field ., USSU L −=  Knowing that the 

connection associated [ ],,, LLL SJS =Γ  is Lagrangian therefore (6.1) is 

equivalent to 

( ) [ ] ( ) .0, =|Ω−|Ω
Π EE LUJL iiϒ  

Moreover, the Lie pre-bracket [ ]Π,  has the same value of the classical 

lie bracket if one of the two vector fields is vertical. Thus [ ] [ ].,, UJUJ =Π  

By using the fact ( ) ,0=|Ω ELJi  and according to the Frolicher-Nijenhuis 

theory, we obtain 

[ ]( ) ( )., EE |ΩΘ=|Ω LUJLUJ ii  

Consequently, for all X and Y tangent to ,E  the previous condition will 
be: 

( ) ( ) ( ) ( ) ( ) ( ).,,,, XJXJXYgYJXJYXg LULLUL ΩΘ+=ΩΘ+ ϒϒ  

The problem now is to find the semi-basic symmetric 2-form, :ϑ  

 ( ) ( ) ( ) ( )YJXJYXgYX LUL ,,, ΩΘ+=ϑ ϒ  (6.2) 

which verify 

 ( ) ( ) ( ) ( ),,,, YCJYSgYS LUL ΩΘ+−=ϑ ∗  (6.3) 

with [ ] [ ].,, SCSSCSSSSL −=−=−== Π
∗ϒϒ  

Let us consider the semi-basic symmetric 2-form ,ωΩ=ϑ LCi  where 

ω  is a scalar semi-basic 1-form and  is the symmetric product. We will 
show that ω  exists and verifies the condition (6.3). Since ( ) =ϑ YS,  

( ),, YSLϑ  (6.3) is equivalent to: 

 ( ) ., LUCLSLCSL iiiiCCg
L

ΩΘ+Ω−=Ωω+ω ∗  (6.4) 
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By applying LS  on (6.4), we obtain 

 ( ) ( ) ( ) ( ).,,,2 CSCSgCCgi LLULLSL
ΩΘ−−=ω ∗  (6.5) 

By replacing the value of ωLSi  found from (6.5) in (6.4), we get 

( )
( ) ( )( )

( ) .,2
,,

,
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω

ΩΘ+
−ΩΘ+Ω−=ω

∗
∗ LC

L
LLUL

LUCLSL
iCCg

CSCSgiiCCg  

 ~ 

Theorem 3. Let L be a regular Lagrangian on E, Γ be a Lagrangian 
connection on .E  The spray associated to Γ is LS  if and only if ,0=|

Γ EHhd  

where LLC −Θ=H  is the Hamiltonian. 

Proof. Since Γ is a Lagrangian connection therefore .EE |Ω=|Ω
Γ LLhi  

On the other hand, ,HH did hh ΓΓ
=  gives us: 

( ) ( ) EE HH |+Ω−Ω=|+Ω
ΓΓΓΓ

diiiidii hLShLhSLSh LLL
 

( ) .EH |+Ω−Ω=
ΓΓ hLShLS dii

LL
 (6.6) 

We notice that ,0=+Ω Hdi LSL  the writing in (6.6) the proof is done 

by using: 

• Given a spray LS  of Γ, then LL SSh =Γ  therefore .0=|
Γ EHhd  

• If ,0=|
Γ EHhd  then .0=Ω−Ω

Γ LShLS LL ii  This implies that LSv L
i Ω
Γ

 

0=  which means that ( ) 0=Ω
Γ

Yi LSv L  for all Y tangent to ,E  but since LΩ  

has a maximal rank on E  therefore 0=Γ LSv  and .LL ShS Γ=  ~ 

7. Application 

We shall give an example to illustrate the previous results. Consider the 
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case where 3R=M  and let E be the sub-bundle of 6R=TM  generated, at 

any point ( ) ,,, 321 Mxxxx ∈=  by 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

∂

∂=|

∂

∂+
∂

∂=|

∂

∂=|

,

,

,

33

3
1

22

11

x
x

xx
x

x
x

x
A

x
x

x
A

x
A

 

where 
x

j
j

ixi
x

AA
∂

∂=|  for .3,1 ≤≤ ji  

Recall the notation introduced in first section in this paper, we can easily 
verify that { }321 ,, AAA  is an adapted basis on E. 

Suppose that A  is the transition matrix from the adapted basis { } 31 ≤≤iiA  

to the canonical basis .
31 ≤≤⎭

⎬
⎫

⎩
⎨
⎧
∂

∂

i
ix

 So A  is given by: 

.
10
010
001

1 ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

x
A  

To find the dual basis { } 31 ≤≤θ i
i  of { } ,31 ≤≤iiA  we need to find the transition 

matrix 1−At  matrix from the adapted dual basis { } 31 ≤≤θ i
i  to the canonical 

dual basis { } 31 ≤≤i
idx  which is given by: 

.
100

10
001

11

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=− xtA  
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Therefore, 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

|+|−=|θ

|=|θ

|=|θ

.

,

,

3213

22

11

xxx

xx

xx

dxdxx

dx

dx

 

Set up the Lagrangian: 

R→EL :  

( ) ( ) ( ) ( ) ( ) ( )3212232121 ,,,,,, xxxgaxxxfaaxLax +=  

( ),,, 321 xxxU+  

where f, g and U are two no-zero functions on M. 

Since the ,04det
2

≠=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂

∂
βα

fg
aa

L  so L is regular. 

Let Λ be the Legendre transformation associated to L: 

MTE ∗→Λ :  

( ) ( ) .22,, 2211 gdxafdxaaxax +=Λ  

The symplectic form E|ΩL  is given by: 

21
2

1
1

2 22 dxdx
x
fa

x
gadL ∧⎟

⎠
⎞

⎜
⎝
⎛

∂

∂−
∂

∂=|ωΛ=|Ω ∗
EE  

.22 2211 dxgdadxfda ∧+∧+  

The canonical spray LS  of L, is written by: 

( ) ( ) ( ) ,,,, 2
2

1
1

2
2

1
1

a
axS

a
axSAaAaaxSL

∂

∂+
∂

∂++=  

where αS  is given by the expression: 
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.
22

βα
α

ββα
α

∂∂

∂−
∂

∂=
∂∂

∂

ax
La

x
L

aa
LS  

For .2,1=β  Then 

( ) ( ) ,22
1

2
21

11
22

1
211

⎥⎦
⎤

⎢⎣
⎡

∂

∂−
∂

∂+
∂

∂+
∂

∂−=
x
faa

x
U

x
ga

x
fafS  

( ) ( ) .22
1

1
21

22
22

2
212

⎥⎦
⎤

⎢⎣
⎡

∂

∂−
∂

∂+
∂

∂−
∂

∂+=
x
gaa

x
U

x
ga

x
fagS  

The associated metric Lg  of L is defined by ( ) ( ),,, ZXYXg LL Ω=  

where .YJZ =  The matrix of Lg  is given by: 

.
20

02
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

g

f
 

Since [ ] ,, 3321 A
x

AA =
∂
∂=  E is not stable with respect to the Lie bracket. 

We can associate the canonical Lie pre-bracket to E verifying [ ]021, AA  

.0=  

The coefficients of the connection [ ]LL SJ ,=Γ  are: 

( ) ,2
1

2
1, 2

2
1

1
1

1
1
1

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂+
∂

∂=
∂

∂−=Γ
x
fa

x
fafa

Sax  

( ) ,2
1

2
1, 2

1
1

2
1

2
2

1
⎭
⎬
⎫

⎩
⎨
⎧

∂

∂−
∂

∂=
∂

∂−=Γ
x
fa

x
gaga

Sax  

( ) ,2
1

2
1, 1

1
2

2
2

2
2
2

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂+
∂

∂=
∂

∂−=Γ
x
ga

x
gaga

Sax  

( ) .2
1

2
1, 1

2
2

1
2

1
1
2

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂−
∂

∂=
∂

∂−=Γ
x
ga

x
fafa

Sax  
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On the other hand, for any vector fields ( ) ( ) ( ) 2
2

1
1 AxXAxXxX +=  

and ( ) ( ) ( ) 2
2

1
1 AxYAxYxY +=  on M tangents to E, the covariant derivative 

D associated to the connection LΓ  is characterized by: 

[ ( )( ) ( )] ., β
β

α
αβ

α
α +Γ= AYAXxYxXYDX  

In particular, 

.22
122

1
2122121121

A
x
g

x
f

x
g

gA
x
f

x
g

x
f

fADA
⎭
⎬
⎫

⎩
⎨
⎧

∂

∂+
∂

∂−
∂

∂+
⎭
⎬
⎫

⎩
⎨
⎧

∂

∂+
∂

∂−
∂

∂=  

Finally, by using the local representation of the weak torsion =t  

[ ]0,2
1 ΓJ  and the tension [ ] ,,2

1
0Γ= CH  we get 0=t  and ,0=H  and the 

strong torsion is also zero, since .HtiT S −=  
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