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Abstract

In this paper, on the basis of the singular perturbations of the
Cahn-Hilliard equtions, by verifying the spectral gap condition,
we consider the inertial manifolds for dual perturbations of the
Cahn-Hilliard equations.

1. Introduction

In this paper, we consider the inertial manifolds for dual perturbations of
the Cahn-Hilliard equations by studying exponential attractor of this equation
and verifying spectral gap condition

e(Ug + Up) — oAUy + AU — AU = f, x e Q < R, (1.1)
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u(x, 0) = up(x); u,(x, 0)=u(x), xeQcR", (1.2)
u(x, t)laq =0, (1.3)

where ug, u; € HY(Q)N H> N I*(Q), and &, a are positive constants,

especially, k > 2, u = u(x, t) is a real-valued function.

We have known the long-time behavior of the semiflows generated

by equation (2.1) when g, 6 =0, certainly, we also have discussed the

semiflows generated by equation (2.1) when & = 0. Our motivations for this
study reside in part in the fact that equation (2.1) and when & = 0 are the
examples of nonlinear beam equations with viscous dissipation, which are
hyperbolic. However, in many situations, it is found that the asymptotic
properties of the solutions of the parabolic equations and those of their
hyperbolic perturbations are similar, in the next section, we will consider the
inertial manifolds for dual perturbations of the Cahn-Hilliard equations for
the effects of external f.

The rest of this paper is organized as follows: in Section 2, we introduce
basic concepts concerning inertial manifolds. In Section 3, we obtain the
existence and non-existence of the inertial manifolds.

2. Preliminaries
Let X be a Banach space, L”(a, b; X) be a function space from (a, b)
1

to X, and its norm be | u ”Lp(Q) = UQ| u |pdx);, p=>1.

Assume % = I? (0, m), H™ = H™(0, n), m is a positive integer and

m 21, ||, isthe norm of H™, |-| is the norm of L%, () is an inner
> o o o
product of L°(0, n); A ::6—2, H* =D{ (-A)2 |, [ul, =|(-A)2ul|,
x

u € H. Because of Poincaré inequality, we have | u ||, = | Vu/|.
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We have discussed the singular perturbations of the Cahn-Hilliard
equations:
ey + 1, + MAu— 1> +u—8u,) =0, (2.1)
in particular, € > 0,8 >0, x € (0, w), ¢ > 0.

On the basis of equation (2.1), we consider equations (1.1), (1.2) and
(1.3), first, we have mathematical variable about time, ¢ — x/gt, hence,
equation (1.1) is (2.2),

u; + eu, — %Au, + Nu, — AuF = f (2.2)
S

Assume U = (u, u;) = (u, v) € X, U, = (v, uy),

0 - 0 )
ofp g o) mmates

€

therefore, we transform equation (1.1) into an equivalent fist-order system of
the form

U, + AU = F(u), U eX. (2.3)
Now, we can do priori estimates for equation (2.2).

Lemma 1. If Q is a bounded region, there exists &, m > 0, we have

inequation (2.4),

VPl lf +lull <&(vo P+ 1w I +1uo I5)+n. (2.4)

Among them
u e HY(Q)N H2(Q)N (), (2.5)
uo Lw[o, T HY Q)N HA(Q)N 12 (Q)j, (2.6)

u € L2(0, T; I2(Q)) N L°(0, T; I2(Q)). 2.7)
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62
v =2V andsoon. For € > 0,

Proof. In order to writing, let v' = i , ,

let v=u + Veu, we multiply v for both sides of equation (2.2),
(", v)+ Ve (', v) - %(Au’, V) + (M, v) = (b, v) = (f,v), (2.8)
€

for equation (2.8), we have

1d, 2 2
L Pl o Ll w0 e P
=(f,v), (2.9)
because of Sobolev embedding theorem and Nirenberg-Gagliardo inequation,
there are
1 2 1 2
(Au,V)S|(Au,v)|S|Au|-|v|£§|Au| +§|v , (2.10)
2 2
lul, <Glul . 2.11)

certainly, there are also

—%(Au', u') = %u vIE+ a(Au, v) - a(Vy, V) +ode |u |, (2.12)

(Au®, vy < | Auk || v] < k(k = 1D)u* 2] Au - | v
<k(k—l)|u|" ol v

< Clufy-|v|< v+ ; a3, (2.13)

2 2
S v

(F. <l lf 1 vs e 2 (.14
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with the help of (2.10), (2.11), (2.12), (2.13) and (2.14), we can see (2.9) that

d(1, 2 ey 1o 1, 1o
31 1l + J1uld) @19
pf Ve - 2(X+2| |2Jr 20“/_” ||
2Ve 1
2
4C+poc 2p«/_ 2 |f|
el L R 210
Assume
ple—C¥e-2a42  1-20Ve _ 4C+pa-20V8 _ (h g
2Ve 2 o
let
1 Ve
B= mm{2 2} (2.18)
y = max|PYE=CYe m20 2 1-2ae 4C+pa=—2p¥e]
2 2B 2Bp

We combine (2.17), (2.18) and (2.19), we have (2.16) that

2
2 2 f
LOvP ull +ul) < (v P +Jul? +uid)+ L2, @20

2B -
because of Gronwall inequation,
v+l +luly <& P+l +lug ) +n. @21
therefore, Lemma 1 is proved. O

Definition 1. Assume S = (S(¢));»( is a semiflow in Banach space

X, if p is a finite dimensional Lipschitz manifold in X, and it satisfies the
following conditions:

(1) p is positively invariant about semiflow S(7), that is to say,

S, 120



118 Bin Zhao and Guoguang Lin

(2) p is exponential attractor trajectory, that is to say, Vx € X, there are

¥y >0 and C' > 0 such that V¢ > 0,
dist(S(t)x, w) < Ce™!, >0, (2.22)

therefore, p is an inertial manifold about s.

In order to describing the spectral gap condition, first, we consider that
the nonlinear term F : X — X is said to be bounded and whole Lipschitz

continuous, and there is a Lipschitz constant /g ; its operator 4 has a number

of positive real characteristic values, the characteristic function is expanded

into the corresponding orthogonal space X, and assume that F e Cp(X, X)

satisfies the Lipschitz condition:
| Fu)- Fu™) |y <lplu-u"|y, uu”eX. (2.23)

Definition 2. Assume the point spectrum of operator 4 can be divided

into the following two parts o; and c,, of which o is finite and such that
if
Al = sup{ReL|X € 61}, A, =inf{Rek|L € 65}, (2.24)

Xi :Span{Wj|}\,j EG]}, j=1, 2, (225)

span says expansion into space symbols, ReA denotes the real part of a

complex number A, and

N =Ny >4lp, (2.26)
then the orthogonal decomposition

X=X ©X,, (2.27)
holds, with continuous orthogonal projections A : X — X; and A :

X — X,. Hence, the operator 4 is said to satisfy the spectral gap condition.

Lemma 2. Let g(u) = Au* (k>3), g: H> NH) = H is said to be

bounded and whole Lipschitz continuous function.
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Proof. Vu, u* € H?  H),
| 2)— g(u”)| = | Au* - au™ |
= | k(k = D=2 (Vu)? = k(k = )u* 2 (Vu*)?
+ k7 A — d* T A |
< | k(k = D=2 (Vu)? = k(k = 1)u* 2 (Vv)? |
+] kel A — k* A |
<k(k=1)(| "2 | o + ™72 | o )(| Ve +- V" |)(| V=V |)
+ k(| uk! | +| ™ o ) (| Au— Au™ |)
< I Vu = Vit |+ 1E7Y Au - A
<Ip(| Vu = Vu* | +| Au — Au™ |).
Let [ =/y. Then [ is a Lipschitz coefficient of function g(u). Therefore,
with the help of Lemma 1, Lemma 2 is proved. g

For first-order system of the form (2.3), the solution can be expressed in
the characteristic function of A4,

U, = Z(u(t), wiw; = ZCj(t)w-,
=1

j=1
B, : H — span{wy, .., w;}, O, =1-F, Let p=PBu=Pu, q=Quu
= Qu.
Definition 3. Assume arbitrary solutions u(¢) and m of equation (2.3)
satisfy:
(1) because of cone invariance | g(0)—g(0)| <| p(0) — p(0)|, we have
|q(t) —q(t)| <| p(t) - P(1) [, > 0 and
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(2) attenuation properties: because of |g(r)—q(¢)| =|q(0) - g(0)],

(3¢ > 0), we have

— _ —k
[ 4() - q(1)| <[ 4(0) - g(0) [, (2.28)
therefore, question (2.3) has strong squeezing properties.

Lemma 3. If question (2.3) satisfies strong squeezing properties, then

there exists a Lipschitz function ® : b,H — Q,H,

|®(p1) - @(p2) | <|p1 = p2l. Vp1. p2 € BH (2:29)
and attractor A < graph(®).

Proof. For u,ve A, we have |Qu— Qv|<|Pu- Pv|, otherwise,
because of equation (2.28) and invariance of operator A4, there exist

u, v € 4, u = S{t)u,, v=_S(t)v, forany ¢, therefore,
|u—v|< e_kt|ut -v,
A is finite (Ju|< R, Vu € A), |u—v|<2Re - kt, Vt > 0, therefore, u = v.

We define a Lipschitz function ® : PA — QA4, ®(Pu) = Qu. Because of

squeezing properties, (2.29) is proved. O

Definition 4. If there is a bounded absorbing ball B(0, p) in Hilbert
space H, B(0, p)(\ PH is a positive constant and V¢ >0, PS(¢)[PH]= PH,
that is to say, Vp € PH, there exists py € PH, we have p = P(S(¢) py),
therefore, equation (2.3) has similar preparation conditions.

Lemma 4. Assume equation (2.3) has strong squeezing properties and

similar preparation conditions, therefore, equation (2.3) has an inertial
manifold w = graph(®), Lipschitz function ® : P,H — Q, H,

|®(p)-@(p)|<|p-P|. Vp.PePH.
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Proof. Let ®y =0 and py = P,H = graph(®), S(¢) be semigroups,
therefore,
=S = {SErolug € po s
we will prove p, = graph(®,), Lipschitz constant of ®, is less than
or equal to 1. For Vu, u € pg, there is ¢ =g =0, therefore, |g—q|<

| » — P|. According to strong squeezing properties, we know that
[9() - q() | < | p() - p(1)|
Therefore, | ¢y —qp | <|p1 — P2 |, Vuy, up € p,. For p e Py;, there

are unique ®,(p) and p+ ®,(p) € n,. Because of similar preparation

conditions, y, = graph(®,), Pu, = PH.

Further, we consider the state of ®, (¢ — «). There are u = p + ®,(p)

and u =p+®(p), t>t Because u = S({)ug ey, uye PH. u =
S(t)ug € vy, uy € PH.
Assuming ®@;(p) # ®@(p), we have
| 05()ug — 0S(D)ug | = | ©,(p) = @<(p)| > 0 =| PS()ug = PS(t)tg |-
And because of the exponential decay,
| ki Lk
| @(p) = @(p) | <[ Quo — OS(x — g [ <[ OS(x = 1)ug e

Assume uy € PH, because of similar preparation conditions S(¢)ug e

B(0, p)N PH, t >0,
| OS(t—t)ug | <p and |®, D | <pe™ 1>t

This indicates that the sequences of {®,} are the sequences of Cauchy,

therefore, it converges to the Lipschitz function ®. We have limit
—kt
| @, —D|, <pe™, 1>t

therefore, the graph of @ is called p, that is to say, u = graph(®).
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Assume ug € W, uy = p + ®(p). We consider approximation of u, uf)

e, uh=p+0(p), S(t)uhep, .. Let t > oo, by the continuous

dependence of the corresponding initial value of the solution,
S(t)uh — S()up.

@, converges @ uniformly, for S(t)uly = P[S(t)uf] + @, (P[S(t)u(]), we
have limit P[S(t)ug] + ®(P[S(t)ug]). Therefore, S(t)u € u, u is invariant

manifold.

Finally, we prove manifold p is exponential attraction. We consider
initial conditions uy € B(0,p), u = S({)ug = p+q, Yu e, u = p+d(p),

we have
|Qu—Qu|>0=|Pu-Pu|,
therefore,
lu—it|=|q—-q|<|Quy—®(2)|e™,
S(t)[Z + ®(Z2)] = u, and
dist(S(t)ug, p) < [u ~7| < (p +| @, )e™.

Initial conditions u( do not necessarily within B(0, p) more generally, there
exists #o(Y) (Y < H) which is a bounded set, uy € Y, we can get S(¢t)ug
B(0, p). Therefore,

dist(S(t)ug, ) = dist(S(t — o) [S(to)uo], 1)
<(p+|@], ) ) < c(rye ™.

Constant C depends on bounded set Y.

Assume nonlinear F(u) is whole Lipschitz in equation (2.3), with the
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help of Lemma 2, we have

| F(u) - FO) | < Gilu v

, u,veH. (2.30)
O

Lemma 5. Assume there is an n that makes characters A\, and A,.|

satisfy the following condition:

Ape1 — A, > 40, (2.31)
therefore, squeezing properties are established, k >\, +2Cy, k is in
equation (2.28).

Proof. Assume u, u are the solutions of equation (2.3), w = u —u, and

w is in bounded cone, that is to say,
{(u, w)||Ow —u)| < Plu—ul}.
First, the trajectory cannot leave the cone, we need to prove that

%ﬂ Ow|—| Pw|) (when |Qw| = | Pw|) is negative. w satisfies

‘% + Aw = F(u) - F(«). (2.32)

Let p = Pw, g = Ow, because of equation (2.32),

D\ ap = PF() - PF(@), (2.33)
90\ 4q = OF () - OF (@), (2.34)

and equation (2.33) takes the inner product by p = Pw,

%%| P +| pI? = (PF(u) - PF(i), p) = — (PF(it) - PF(u), p),
1| P = | p - (PEG) - PFG) p)> 2l p P~ Gl wl .
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When | ¢(0)| = p(0)],

d
(EI P I)t_o > (“hn +2C1)| g,

1d -
Slal 14l = (©Fw) - oF@). q),

1d

EE"”Z < —hpalgl? +Clallwl (2.35)

1d
When | ¢(0)| =| p(0)], (5%'61'2) <=hplaf +26g|. Therefoe,
t=

d
(_dz+ |(1|) . < =(Mpe1 =201 g
t=

d
When ¢ = 0, Eq ql=r),_g £ =(Aps1 —A, —4C))|q(0)|. We prove
invariance of cone by the spectrum gap condition (2.31).

We have | g | > | p| without cone, by equation (2.35), we get
2
<=Ml g[”+ Cllg|lw].

Let k =X, —2C;, and with the help of inequation of Gronwall, we

can get
|4(1) | <] (0]

3. Inertial Manifolds

In this section, we will discuss many cases of the parameters, then we

obtain the existence and non-existence of inertial manifolds.
3.1. Existence

To determine the characteristic value of the matrix operator 4, we have

the inner product on X first,
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U, V)X = (Au, AY) + (2, v), 3.1

U=(u,v),V=(y,z)e X, y, z are conjugated for y, z,
(AU, U)y = (—Av, Ait) + (v, Au + (JE - %Aj v)
g

= Je|v [ + (3.2)

a 2
SR,
Therefore, the operator 4 is monotonically increasing, and (AU, U)y is a
nonnegative real number.

To determine the eigenvalues of 4, we observe the eigenvalue equation
AU =AU, U=(@u,v)eX

is equivalent to the system

—v = \u,
) o (3.3)
ANu +(«/€——A)v = \u.
Ve
Thus, u must solve the eigenvalue problem
2u + (i - \/E)ul + ANu = 0,
Ve (3.4)

u(0) = u(n) =0, Au(0)= Au(rn)=0.

We easily see that (3.3) has, for each positive integer j, the pair of
eigenvalues

2 ..
U;—~r =(uj, vj)=(uj, —ki}uj), uj(x)z\/;sm(]x), (3.5)
so that 4 does have countable set of eigenvalues, with ‘Ji’u}‘f >0 for all j.
Because of the first of (3.3), the corresponding eigenfunctions have the form

U;—-L = (u;, —f‘}u ;)s with u;(x) = \/% sin(jx). For future reference, we note

that for all j > 1,
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. 1
Fuj =g ujly = (3.6)

therefore, we substitute u of (3.4) by u;(x)= \/%sin( jx) and do inner

product with (~A)~"u;(x), with the help of (3.6),

22 {J@%ﬂjmﬁ _ 0, (3.7)

- [* +E’2)+\/(f ) e
(e ],
(3.8)

C is the complex domain.
For (3.8), when (\/_ + 7 i j—2 j2 >0, eigenvalues 7»3 are real

numbers; when (\/_ +T 2) -2 j2 < 0, eigenvalues 76- of A are complex.

I+T

And they have the same real part , in this case, there is no

decomposition of eigenvalues of A4, the spectral gap condition (2.26) is not
valid, therefore, existence of inertial manifolds of equation (2.3) cannot be

assured.

Furthermore, we consider (\/_ +T )—2 j2 >0, assuming € is

sufficiently small, we only consider % j2 -2 j2 > 0, that is to say, when
€
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o . + . .
—= 22, some eigenvalues A; of 4 are different positive real numbers,

Ve

therefore, the spectral gap condition can be valid in this case.

We first prove that the spectral gap condition can be valid when ¢ is
sufficiently small, finally, we prove the existence of inertial manifolds of
equation (2.3).

o
Ve

constant of g(u) in Lemma 2, let Ny € N, when N > N;, we have

Theorem 3.1. Assume that € and o satisfy 0 < < 2,1 Lipschitz

%[(N +1)% - N?] > 81, (3.9)
therefore, operator A satisfies the spectral gap condition (2.26).
Proof. For (2.3) and (3.1), U = (u, u), V = (v, v) € X, therefore,
| F) = FO)lx =1 g) - g0y < Hu=vy2, (3.10)
that is to say, /g < [j. According to (3.8), 76- is a real number, necessary

and sufficient condition of which is Ve > (2 - i) jz. f2--%> 0, then
Ve Ve

A has finite 2N, -characteristic roots at most, when N; =0, Ve <
) .2 + . . .

(2 - T)] ., Ao = max{X;|j < No}. When j > Nj +1, eigenvalues are
€

complex,
1 a .
RS = E(«/s + Efj, (3.11)

therefore, there exists Ny = Ny + 1 so that ERXJ—; > Ny, j =N

Assuming N > Np, (3.9) is right. The point spectrum of the operator 4

can be divided into two parts oy and o5,
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o1 ={M;1j <N}, oy ={;|j>N+1}. (3.12)
Assume the corresponding subspaces are
X = span{?ﬁ |j <N}, X, = Span{kij |j >N +1}. (3.13)
Thereon exists j so that A; € o1 and XJ;- € 0,. There cannot be U; € X

and U;‘-r ¢ X,. Therefore, X| and X, are the orthogonal subspaces of X,
with the help of (2.24) and (3.11),

ROkt — 1) = 3 VE + v+ 02| - 3 (V5 + 02

1f+— F ey —%«/‘—% ol
€

o
therefore, with the help of (3.9), 4 satisfies the spectral gap condition (2.26).
O

Theorem 3.2. Assume % > 2,1 the Lipschitz constant of g(u).
€

(1) Assume > 2, Ny € N sufficiently big, when N > N, there are

o
Ve

some inequations,
2
o [ 81
2N +1)| —=—4|— -4 +1,

(WR(N) —=y/R(N +1))+ (2N + 1)\/0;2 -4<1,

2

R(N) = [T - 4JN2 +2aN% +¢ (= min{% ~1, % = 2}.
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(2) Assume =2, N; € N sufficiently big, when N > N;, there is an

JE

inequation,

1
202N +1)—2e4 > 8l,

therefore, in (1) or (2), the operator A satisfies the spectral gap condition
(2.20).

Proof. We can divide three steps to proof:

(1) Let

ZO—{1<]<N|T>2} le{jeN|0<%<2}. (3.15)

If jeZ, 2 e R;if jeZ, kij are complex. And if j € Z,

_ 1
0<Ay <- <7LN0+1<2\/_<?C;\, b < <M, (3.16)
No = sup Zy, RY; = (I+T ) Vj e N,.
If Ny > N, let

o1 =M [1<k<N}, oy={f A 1<k<N<j}. (317
(2) We consider the corresponding decomposition of X,
Xy = span{U |1 < k < N},
Xy = span{U;, U1k < N < j}. (3.18)

There is an equivalent inner product (U, V'))y in X so that X; and X, are

orthogonal.
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Let
X =Xc @ Xg,
Xc = span{UF, ..., U%}, (3.19)
Xp =span{U}‘-L|j >N +1}

and XN =X1®Xc.

We define functions ® : Xy - R and ¥ : X — R,

(U, V) = Na(Vu, Vi) + (% _ 1) (Au, A7) + (5, (—A)u)

+ (‘7’ (_A)y) + (E’ V), (320)
(U, V) = = (Au, AP) + (2, (~A)u) + (7, (A)y) + (Z,v), (3:21)
2e
U=(u,v),V=(yz)e Xy and Xp.
Letting U = (u, v) € Xy, we can get

(00

U, U) = ve(Vu, Vit) + ( \/E)(Au, AT+ (7, (~A)u) + (7, (=A) )+ (7, v)

% (3.22)

> ellul + (% -2l

let % >2,®U,U)>0, VU € Xy, that s to say, @ is positive definite.
€

Similarly, for U = (u, v) € Xp,

YU, U)= %(Au, Au)+ (v, (A)u)+ (v, (-A)y)+ (v, v)

o 2
2 (5= 1) (3.23)

(03

2We

for

g > 2, therefore,

> —12>0, thatis to say, ¥(U, U) > 0.
Ve
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There is an inner product in X,
(U, V)y = ®(PyU, PyV)+ Y(PRU, BRV), (3.24)
Py and Py are the projections of X and Xy, equation (3.24) is called
(U, )y =0U,V)+¥(U, V).

With the help of inner product of equation (3.24) in X, X; and X, are

orthogonal, in fact, only when X; and X, are orthogonal, we can prove
(U7, U7 )y =0 (ifU; e Xy, U € Xc),

. + +
since U = (uj, —kjuj), we have

(U7, U}L)zx/g(Vuj,Vu_j)+(%—l)(Au Auj )+ (=Kuj, (~A)uj)

+(=Nju;, (~A)u; )+(lu —\ju )
2 2
= el I+ (S =1y B - G5+ )y
+ 052 P (3.25)

we combine |u; |2=1, [ ||12,||uj ||%:j4, 7»}+7f;~:x/§+i-j2,

Je
2 A = j*, therefore,
dU;,UT) =0,
thus, (U7, U} )y = ®(uj, u}) = 0.
(3) We define the norm || - |||, of X in equation (3.24), we need to prove
the spectral gap condition (2.26).

First, we estimate the Lipschitz constant [z of F(u) = (0, g(u)). Assume

g: H? > H, B:X —> X, P,:X — X, are orthogonal projections, if
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U= (u, V) € X, U] = (ul, M2) = PIU, U2 = (uz, V2)=P2U, therefore,
Pu=u, Pu=u,,
2
U = ®(AU, AU) + ¥(RU, RU), (3.26)
and

®(RU, BU) = ve(Vuy, Vigy) + (% - 1) (Auy, Airy)

+ (7 (CA)) + T (<A + (7, )
2 (S-2lu .

Y(RU, RU) = %(Auz, Aiiy) + (vg, (=A)uy) + (g, (=A)uy) + (v3, vy)
2 (55— 1)l B,

let £ = min{i -2, — - 1}. Then we combine (2.26):
o N A (2.26)

U = ®BU, BU)+ ¥ (RU, RU) > Elus. (3.27)

Let U =(u,u),V =(vv)e X,

IF@)=FO) Iy =8 =gl < F|U-VIy.  G29)
1 —mind % o %
therefore, /p < % let £ = mm{«/g 2, WA 1}.

If

- - 1
7\.N+1—7\.N>Z, (329)
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thus, the spectral gap condition (2.26) is valid. With the help of (3.8), there

can be
o \/_+T(N+1)2 —\/\/_JFT(NH)2 2—4(N+1)4
AN+l — Ay 5
2
A A2 o A2 4
[ ]
2

= %[\/R(N) ~JR(N +1) + %(2N + 1)},

2
we let R(N) = (T - 4] N* +2aN? +&.

And

N —+o0

In fact, for (3.31), we let

20 €

€

R(N)=1+

therefore,

JR(N) = YRV +1) + (2N + 1) %=~ 4

lim [\/R(N)—\/R(N+1)+(2N+1) %—4]:0.

[2 2
= 0L——4(N+1)2—N2+ N4+2§xN + 28
€ a a

Loy &y
€ €

(3.30)

(3.31)
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2
+ [(N+D)*+ 2a(]2\7+1) + 28
(04 (04
Loy &y
€ €

A 1020 - VR - N -VRT)L (D)

for (3.32),

lim N2(1-JR(N)) = —"—,
N—+o0 4_ o’
&

therefore, (3.31) is proved.

For N; > 0, when N > Nj, the spectral gap inequation reads

Ayal = Ay 2 %[(zzv " 1){%—1/%2 - 4}} > 41,

therefore, when NN 2, Theorem 3.2 is proved.
Ve
Furthermore, we will consider the case when % = 2. Therefore, the
€

definition of ¥ is modified in equation (3.21), and increase (u, y), then

estimate (3.23) is replaced by
YU, U)>|ul, (3.33)

when a = 2+e, inequation (3.33) is valid. In turn, instead of (3.27) and
(3.28), the estimates

Uy 2 [

5 g <1, (3.34)
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so that the spectral gap condition (3.29) reads

Aol — Ay = %[\/4«/EN2 t e —Ae(N+1)% +6+ 202N +1)] > 41, (3.35)

1
lim [V4VeN? + & — JaVe(N +1)> +&] = — 262, (3.36)

N—+x

O

3.2. Non-existence

Furthermore, we consider the non-existence of inertial manifolds of
equation (2.2), when o =0, we assume that it satisfies the spectral gap

condition. With the help of (3.8),
+ Netqe—4jt
N o= s (3.37)
when ¢ is sufficiently small for j > 1, -4 j4 < 0, therefore,

W5 e, (3.38)
thus, equation (2.2) does not satisfy the spectral gap condition and inertial
manifolds of equation (2.2) are not existent.

With the help of every theorem, we all know that

Theorem 3.3. Assuming ¢ is sufficiently small, there is a positive integer
N, F(u) of equation (2.3) satisfies the Lipschitz condition, A satisfies the
spectral gap condition, therefore, equation (2.3) has s inertial manifold
we X,
p = graph(®) = {c + ®(c)|c € X1}.
®: X| > X, is a Lipschitz continuous function and graph(®) means
diagram of ©.
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