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Abstract 

In this paper, on the basis of the singular perturbations of the          
Cahn-Hilliard equtions, by verifying the spectral gap condition,         
we consider the inertial manifolds for dual perturbations of the           
Cahn-Hilliard equations. 

1. Introduction 

In this paper, we consider the inertial manifolds for dual perturbations of 
the Cahn-Hilliard equations by studying exponential attractor of this equation 
and verifying spectral gap condition 

 ( ) ,,2 nk
ttttt Rxfuuuuu ⊂Ω∈=Δ−Δ+Δα−+ε  (1.1) 
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( ) ( ) ( ) ( ) ,,0,;0, 10
n

t Rxxuxuxuxu ⊂Ω∈==  (1.2) 

( ) ,0, =| Ω∂txu  (1.3) 

where ( ) ( ),, 221
010 ΩΩ∈ LHHuu ∩∩  and ε, α are positive constants, 

especially, ,2≥k  ( )txuu ,=  is a real-valued function. 

We have known the long-time behavior of the semiflows generated           
by equation (2.1) when ,0, =δε  certainly, we also have discussed the 

semiflows generated by equation (2.1) when .0=δ  Our motivations for this 
study reside in part in the fact that equation (2.1) and when 0=δ  are the 
examples of nonlinear beam equations with viscous dissipation, which are 
hyperbolic. However, in many situations, it is found that the asymptotic 
properties of the solutions of the parabolic equations and those of their 
hyperbolic perturbations are similar, in the next section, we will consider the 
inertial manifolds for dual perturbations of the Cahn-Hilliard equations for 
the effects of external f. 

The rest of this paper is organized as follows: in Section 2, we introduce 
basic concepts concerning inertial manifolds. In Section 3, we obtain the 
existence and non-existence of the inertial manifolds. 

2. Preliminaries 

Let X be a Banach space, ( )XbaLp ;,  be a function space from ( )ba,  

to X, and its norm be ( ) .1,
1

≥




= ∫ΩΩ pdxuu pp

Lp  

Assume ( ),,022 π= LL  ( ),,0 π= mm HH  m is a positive integer and 

,1≥m  m⋅  is the norm of ,mH  ⋅  is the norm of .2L  ( )⋅⋅,  is an inner 

product of ( );,02 πL  ,: 2

2

x∂
∂=∆  ( ) ,2 








∆−=

αα DH  ( ) ,2 uu
α

α ∆−=  

.α∈ Hu  Because of Poincaré inequality, we have .1 uu ∇=  
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We have discussed the singular perturbations of the Cahn-Hilliard 
equations: 

 ( ) ,03 =δ−+−∆∆++ε tttt uuuuuu  (2.1) 

in particular, ( ) .0,,0,0,0 >π∈≥δ≥ε tx  

On the basis of equation (2.1), we consider equations (1.1), (1.2) and 

(1.3), first, we have mathematical variable about time, ,tt ε→  hence, 
equation (1.1) is (2.2), 

 .2 fuuuuu k
ttttt =∆−∆+∆

ε
α−ε+  (2.2) 

Assume ( ) ( ) ( ),,,,, tttt uvUXvuuuU =∈==  

( )
( )

( ) ,,
0

,
0
2 fuug

ug
UF

I
A k +∆=






=














∆
ε
α−ε∆

−
=  

therefore, we transform equation (1.1) into an equivalent fist-order system of 
the form 

 ( ) ., XUuFAUUt ∈=+  (2.3) 

Now, we can do priori estimates for equation (2.2). 

Lemma 1. If Ω is a bounded region, there exists ,0, >ηξ  we have 

inequation (2.4), 

 ( ) .2
20

2
10

2
0

2
2

2
1

2 η+++ξ≤++ uuvuuv  (2.4) 

Among them 

( ) ( ) ( ),221
0 ΩΩΩ∈ LHHu ∩∩  (2.5) 

 ( ) ( ) ( ) ,;,0 221
00 





 ΩΩΩ∈ ∞ LHHTLu ∩∩  (2.6) 

( ( )) ( ( )).;,0;,0 222
1 ΩΩ∈ ∞ LTLLTLu ∩  (2.7) 
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Proof. In order to writing, let ,t
vv
∂
∂=′  ,2

2

t
vv

∂
∂=′′  and so on. For ,0>ε  

let ,uuv t ε+=  we multiply v for both sides of equation (2.2), 

 ( ) ( ) ( ) ( ) ( ) ( ),,,,,,, 2 vfvuvuvuvuvu k =∆−∆+′∆
ε
α−′ε+′′  (2.8) 

for equation (2.8), we have 

( ) ( )vuuuuudt
dudt

dvdt
d k ,,2

1
22

1 22
2

2
1

2 ∆−ε+′′∆
ε
α−+ε+   

( ),, vf=  (2.9) 

because of Sobolev embedding theorem and Nirenberg-Gagliardo inequation, 
there are 

 ( ) ( ) ,2
1

2
1,, 22 vuvuvuvu +∆≤⋅∆≤∆≤∆  (2.10) 

,2
1

2
22 HL

uCu ≤  (2.11) 

certainly, there are also 

( ) ( ) ( ) ,,,, 2
1

2
1 uuvvuvuu εα+∇∇α−∆α+

ε
α=′′∆

ε
α−  (2.12) 

( ) ( ) vuukkvuvu kkk ⋅∆−≤⋅∆≤∆ −21,  

( ) vuukk k
Lk ⋅−≤ −

− 2
2
21  

,2
2

2
2

2
2 uCvvuC

ρ
+ρ≤⋅≤  (2.13) 

( ) ( ) ,22,,
22 vfvfvfvf +≤⋅≤≤  (2.14) 
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with the help of (2.10), (2.11), (2.12), (2.13) and (2.14), we can see (2.9) that 








 +ε+ 2
2

2
1

2
2
1

22
1 uuvdt

d  (2.15) 

2
1

21
2
21

2
22 uvC εα−+

ε
+α−ε−ερ≤  

.22
24 2

2
2

fuC +
ρ

ερ−ρα++  (2.16) 

Assume 

,02
24,02

21,0
2

221 >
ρ

ερ−ρα+>εα−>
ε

+α−ε−ερ CC
 (2.17) 

let 

,2,2
1min







 ε=β  (2.18) 

.2
24,2

21,
2

22max 1









βρ
ερ−ρα+

β
εα−

εβ
+α−ε−ερ

=γ CC
 (2.19) 

We combine (2.17), (2.18) and (2.19), we have (2.16) that 

 ( ) ( ) ,2

2
2
2

2
1

22
2

2
1

2
β

+++γ≤++
fuuvuuvdt

d  (2.20) 

because of Gronwall inequation, 

 ( ) ,2
20

2
10

2
0

2
2

2
1

2 η+++ξ≤++ uuvuuv  (2.21) 

therefore, Lemma 1 is proved.  

Definition 1. Assume ( )( ) 0≥= ttSS  is a semiflow in Banach space       

X, if µ is a finite dimensional Lipschitz manifold in X, and it satisfies the 
following conditions: 

(1) µ is positively invariant about semiflow ( ),tS  that is to say, 

( ) ,µ⊆µtS  ;0≥t  
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(2) µ is exponential attractor trajectory, that is to say, ,Xx ∈∀  there are 

0>γ′  and 0>′C  such that ,0≥∀t  

 ( )( ) ,0,, ≥′≤µ γ′− teCxtSdist t  (2.22) 

therefore, µ is an inertial manifold about s. 

In order to describing the spectral gap condition, first, we consider that 
the nonlinear term XXF →:  is said to be bounded and whole Lipschitz 
continuous, and there is a Lipschitz constant ;Fl  its operator A has a number 

of positive real characteristic values, the characteristic function is expanded 
into the corresponding orthogonal space X, and assume that ( )XXCF b ,∈  

satisfies the Lipschitz condition: 

 ( ) ( ) .,, XuuuuluFuF XFX ∈−≤− ∗∗∗  (2.23) 

Definition 2. Assume the point spectrum of operator A can be divided 
into the following two parts 1σ  and ,2σ  of which 1σ  is finite and such that 

if 

 { } { },inf,sup 2211 σ∈λ|λ=σ∈λ|λ= ReRe ∧∧  (2.24) 

{ } ,2,1,span =σ∈λ|= jwX jjji  (2.25) 

span says expansion into space symbols, Reλ denotes the real part of a 
complex number λ, and 

 ,421 Fl>− ∧∧  (2.26) 

then the orthogonal decomposition 

 ,21 XXX ⊕=  (2.27) 

holds, with continuous orthogonal projections 11 : XXP →  and :2P  

.2XX →  Hence, the operator A is said to satisfy the spectral gap condition. 

Lemma 2. Let ( ) ( ),3≥∆= kuug k  HHHg →1
0

2: ∩  is said to be 

bounded and whole Lipschitz continuous function. 
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Proof. ,, 1
0

2 HHuu ∩∈∀ ∗  

( ) ( ) kk uuugug ∗∗ ∆−∆=−  

( ) ( ) ( ) ( )2222 11 ∗−− ∇−−∇−= uukkuukk kk  

∗−− ∆−∆+ ukuuku kk 11  

( ) ( ) ( ) ( )2222 11 vukkuukk kk ∇−−∇−≤ −−  

∗−− ∆−∆+ ukuuku kk 11  

( )( )( )( )∗∗−∗− ∇−∇∇+∇+−≤ ∞∞ uuuuuukk L
k

L
k 221  

( ) ( )∗−∗− ∆−∆++ ∞∞ uuuuk L
k

L
k 11  

∗−∗− ∆−∆+∇−∇≤ uuluul kk 1
0

2
0  

( ).0
∗∗ ∆−∆+∇−∇≤ uuuul  

Let .0ll =  Then l is a Lipschitz coefficient of function ( ).ug  Therefore, 

with the help of Lemma 1, Lemma 2 is proved.  

For first-order system of the form (2.3), the solution can be expressed in 
the characteristic function of A, 

( ( ) ) ( ) ,,
1 1
∑ ∑
∞

=

∞

=

==
j j

jjjjt wtCwwtuU  

{ },...,,span: 1 jn wwHP →  .nn PIQ −=  Let ,PuuPp n ==  uQq n=  

.Qu=  

Definition 3. Assume arbitrary solutions ( )tu  and ( )tu  of equation (2.3) 

satisfy: 

(1) because of cone invariance ( ) ( ) ( ) ( ) ,0000 ppqq −≤−  we have 

( ) ( ) ( ) ( ) 0, >−≤− ttptptqtq  and 
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(2) attenuation properties: because of ( ) ( ) ( ) ( ) ,00 qqtqtq −≥−  

( ),0>∃t  we have 

 ( ) ( ) ( ) ( ) ,00 kteqqtqtq −−≤−  (2.28) 

therefore, question (2.3) has strong squeezing properties. 

Lemma 3. If question (2.3) satisfies strong squeezing properties, then 
there exists a Lipschitz function ,: HQHP nn →Φ  

 ( ) ( ) HPpppppp n∈∀−≤Φ−Φ 212121 ,,  (2.29) 

and attractor ( ).Φ⊂ graphA  

Proof. For ,, Avu ∈  we have ,PvPuQvQu −≤−  otherwise, 

because of equation (2.28) and invariance of operator A, there exist 
,, Avu tt ∈  ( ) ,tutSu =  ( ) tvtSv =  for any t, therefore, 

,tt
kt vuevu −≤− −  

A is finite ( ),, AuRu ∈∀≤  ,2 ktRevu −≤−  ,0>∀t  therefore, .vu =  

We define a Lipschitz function ,: QAPA →Φ  ( ) .QuPu =Φ  Because of 

squeezing properties, (2.29) is proved.  

Definition 4. If there is a bounded absorbing ball ( )ρ,0B  in Hilbert 

space H, ( ) PHB ∩ρ,0  is a positive constant and ,0≥∀t  ( )[ ] ,PHPHtPS =  

that is to say, ,PHp ∈∀  there exists ,0 PHp ∈  we have ( )( ),0ptSPp =  

therefore, equation (2.3) has similar preparation conditions. 

Lemma 4. Assume equation (2.3) has strong squeezing properties and 
similar preparation conditions, therefore, equation (2.3) has an inertial 
manifold ( ),Φ=µ graph  Lipschitz function ,: HQHP nn →Φ  

( ) ( ) .,, HPpppppp n∈∀−≤Φ−Φ  
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Proof. Let 00 =Φ  and ( ),00 Φ==µ graphHPn  ( )tS  be semigroups, 

therefore, 
( ) { ( ) },0000 µ∈|µ=µ=µ utStSt  

we will prove ( ),tt graph Φ=µ  Lipschitz constant of tΦ  is less than              

or equal to 1. For ,, 0µ∈∀ uu  there is ,0== qq  therefore, ≤− qq  

.pp −  According to strong squeezing properties, we know that 

( ) ( ) ( ) ( ) .tptptqtq −≤−  

Therefore, ,2121 ppqq −≤−  ., 21 tuu µ∈∀  For ,tPp µ∈  there 

are unique ( )ptΦ  and ( ) .tt pp µ∈Φ+  Because of similar preparation 

conditions, ( ),tt graph Φ=µ  .PHP t =µ  

Further, we consider the state of ( ).∞→Φ tt  There are ( )ppu tΦ+=  

and ( ),ppu τΦ+=  .t>τ  Because ( ) ,0 tutSu µ∈=  .0 PHu ∈  =u  

( ) ,0 tuS µ∈τ  .0 PHu ∈  

Assuming ( ) ( ),ppt τΦ≠Φ  we have 

( ) ( ) ( ) ( ) ( ) ( ) .0 0000 utPSutPSppuQSutQS t −=>Φ−Φ=τ− τ  

And because of the exponential decay, 

( ) ( ) ( ) ( ) .000
ktkt

t eutQSeutQSQupp −−
τ −τ≤−τ−≤Φ−Φ  

Assume ,0 PHu ∈  because of similar preparation conditions ( ) ∈0utS  

( ) ,0,,0 ≥ρ tPHB ∩  

( ) ρ≤−τ 0utQS     and    ., te kt
t >τρ≤Φ−Φ −

∞τ  

This indicates that the sequences of { }nΦ  are the sequences of Cauchy, 

therefore, it converges to the Lipschitz function Φ. We have limit 

,, te kt
t >τρ≤Φ−Φ −

∞  

therefore, the graph of Φ is called µ, that is to say, ( ).Φ=µ graph  
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Assume ,0 µ∈u  ( ).0 ppu Φ+=  We consider approximation of tuu 00,  

,tµ∈  ( ),0 pput Φ+=  ( ) .0 τ+µ∈τ t
tuS  Let ,∞→t  by the continuous 

dependence of the corresponding initial value of the solution, 

( ) ( ) .00 uSuS t τ→τ  

tΦ  converges Φ uniformly, for ( ) [ ( ) ] ( [ ( ) ]),000
t

t
tt uSPuSPuS τΦ+τ=τ τ+  we 

have limit ( )[ ] ( )[ ]( ).00 uSPuSP τΦ+τ  Therefore, ( ) ,µ∈τ uS  µ is invariant 

manifold. 

Finally, we prove manifold µ is exponential attraction. We consider 
initial conditions ( ),,00 ρ∈ Bu  ( ) ,0 qputSu +==  ,µ∈∀u  ( ),ppu Φ+=  

we have 

,0 uPPuuQQu −=>−  

therefore, 

( ) ,0
kteZQuqquu −Φ−≤−=−  

( ) ( )[ ] ,uZZtS =Φ+  and 

( )( ) ( ) .,0
kteuuutSdist −

∞Φ+ρ≤−≤µ  

Initial conditions 0u  do not necessarily within ( )ρ,0B  more generally, there 

exists ( ) ( )HYYt ⊂0  which is a bounded set, ,0 Yu ∈  we can get ( ) ∈0utS  

( ).,0 ρB  Therefore, 

( )( ) ( ) ( )[ ]( )µ−=µ ,, 0000 utSttSdistutSdist  

( ) ( ) ( ) .0 ktttk eYCe −−−
∞ ≤Φ+ρ≤  

Constant C depends on bounded set Y. 

Assume nonlinear ( )uF  is whole Lipschitz in equation (2.3), with the 
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help of Lemma 2, we have 

 ( ) ( ) .,,1 HvuvuCvFuF ∈−≤−  (2.30) 

  

Lemma 5. Assume there is an n that makes characters nλ  and 1+λn  

satisfy the following condition: 

 ,4 11 Cnn >λ−λ +  (2.31) 

therefore, squeezing properties are established, ,2 1Ck n +λ≥  k is in 

equation (2.28). 

Proof. Assume u, u  are the solutions of equation (2.3), ,uuw −=  and 

w is in bounded cone, that is to say, 

( ) ( ){ }., uuPuuQuu −≤−|  

First, the trajectory cannot leave the cone, we need to prove that 

( )PwQwdt
du −  ( )PwQw =when  is negative. w satisfies 

 ( ) ( ).uFuFAwdt
dw −=+  (2.32) 

Let ,Pwp =  ,Qwq =  because of equation (2.32), 

 ( ) ( ),uPFuPFApdt
dp −=+  (2.33) 

 ( ) ( ),uQFuQFAqdt
dq −=+  (2.34) 

and equation (2.33) takes the inner product by ,Pwp =  

( ) ( )( ) ( ) ( )( ),,,2
1 22 puPFuPFpuPFuPFppdt

d −−=−=+  

( ) ( )( ) .,2
1

1
222 pwCppuPFuPFppdt

d
n −λ−≥−−−=  
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When ( ) ( ) ,00 pq =  

( ) ,2 1
0

qCpdt
d

n
t

+λ−≥






=
 

( ) ( )( ),,2
1 22 quQFuQFqqdt

d −=+  

.2
1

1
2

1
2 wqCqqdt

d
n +λ−≤ +  (2.35) 

When ( ) ( ) ,00 pq =  .22
1

1
2

1
0

2 qCqqdt
d

n
t

+λ−≤






+
=

 Therefore, 

( ) .2 11
0

qCqdt
d

n
t

−λ−≤







+
=+

 

When ,0=t  ( ) ( ) ( ) .04 110 qCpqdt
d

nnt −λ−λ−≤− +=
+

 We prove 

invariance of cone by the spectrum gap condition (2.31). 

We have pq ≥  without cone, by equation (2.35), we get 

.2
1

1
2

1
2 wqCqqdt

d
n +λ−≤ +  

Let ,2 11 Ck n −λ= +  and with the help of inequation of Gronwall, we 

can get 

( ) ( ) .0 kteqtq −≤  

  

3. Inertial Manifolds 

In this section, we will discuss many cases of the parameters, then we 
obtain the existence and non-existence of inertial manifolds. 

3.1. Existence 

To determine the characteristic value of the matrix operator A, we have 
the inner product on X first, 
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 ( ) ( ) ( ),,,, vzyuVU X +∆∆=  (3.1) 

( ) ( ) zyXzyVvuU ,,,,, ∈==  are conjugated for y, z, 

( ) ( ) 




 





 ∆

ε
α−ε+∆+∆∆−= vuvuvUAU X

2,,,  

.2
1

2 vv
ε
α+ε=  (3.2) 

Therefore, the operator A is monotonically increasing, and ( )XUAU ,  is a 

nonnegative real number. 

To determine the eigenvalues of A, we observe the eigenvalue equation 

( ) XvuUUAU ∈=λ= ,,  

is equivalent to the system 

 






λ=




 ∆

ε
α−ε+∆

λ=−

.

,

2 uvu

uv
 (3.3) 

Thus, u must solve the eigenvalue problem 

 
( ) ( ) ( ) ( )





=π∆=∆=π=

=∆+λ




 ε−

ε
α+λ

.00,00

,022

uuuu

uuu
 (3.4) 

We easily see that (3.3) has, for each positive integer j, the pair of 
eigenvalues 

 ( ) ( ) ( ) ( ),sin2,,, jxxuuuvuU jjjjjjj π
=λ−== ±±  (3.5) 

so that A does have countable set of eigenvalues, with 0>ℜ ±
ju  for all j. 

Because of the first of (3.3), the corresponding eigenfunctions have the form 

( ),, jjjj uuU ±± λ−=  with ( ) ( ).sin2 jxxu j π
=  For future reference, we note 

that for all ,1>j  
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 ,1, 11 juju jj == −  (3.6) 

therefore, we substitute u of (3.4) by ( ) ( )jxxu j sin2
π

=  and do inner 

product with ( ) ( ),1 xu j
−∆−  with the help of (3.6), 

,0422 =+λ






ε
α+ε−λ jj  (3.7) 

2

4 4
2

22 jjj
j

−






ε
α+ε±







ε
α+ε

=λ∴ ±  

,2

22 22222

C
jjjjj

∈




 −







ε
α+ε⋅



 +







ε
α+ε±







ε
α+ε

=  

 (3.8) 

C is the complex domain. 

For (3.8), when ,02 22 ≥−






ε
α+ε jj  eigenvalues ±λ j  are real 

numbers; when ,02 22 <−






ε
α+ε jj  eigenvalues ±λ j  of A are complex. 

And they have the same real part ,2

2j
ε
α+ε

 in this case, there is no 

decomposition of eigenvalues of A, the spectral gap condition (2.26) is not 
valid, therefore, existence of inertial manifolds of equation (2.3) cannot be 
assured. 

Furthermore, we consider ,02 22 ≥−






ε
α+ε jj  assuming ε is 

sufficiently small, we only consider ,02 22 ≥−
ε
α jj  that is to say, when 
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,2≥
ε
α  some eigenvalues ±λ j  of A are different positive real numbers, 

therefore, the spectral gap condition can be valid in this case. 

We first prove that the spectral gap condition can be valid when ε is 
sufficiently small, finally, we prove the existence of inertial manifolds of 
equation (2.3). 

Theorem 3.1. Assume that ε and α satisfy l,20 <
ε
α<  Lipschitz 

constant of ( )ug  in Lemma 2, let ,1 NN ∈  when ,1NN ≥  we have 

 [( ) ] ,81 22 lNN >−+
ε
α  (3.9) 

therefore, operator A satisfies the spectral gap condition (2.26). 

Proof. For (2.3) and (3.1), ( ) ( ) ,,,, XvvVuuU ∈==  therefore, 

 ( ) ( ) ( ) ( ) ,2HHX vulvgugvFuF −≤−=−  (3.10) 

that is to say, .0llF ≤  According to (3.8), ±λ j  is a real number, necessary 

and sufficient condition of which is .2 2j






ε
α−≥ε  If ,02 >

ε
α−  then         

A has finite 02N  characteristic roots at most, when ,00 =N  <ε  

,2 2j






ε
α−  { }.max 00 Njj ≤|λ= ±∧  When ,10 +> Nj  eigenvalues are 

complex, 

 ,2
1 2 







ε
α+ε=λℜ ± jj  (3.11) 

therefore, there exists 101 +≥ NN  so that ,0Nj >λℜ ±  .1Nj ≥  

Assuming ,1NN ≥  (3.9) is right. The point spectrum of the operator A 

can be divided into two parts 1σ  and ,2σ  
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 { } { }.1, 21 +>|λ=σ≤|λ=σ ±± NjNj jj  (3.12) 

Assume the corresponding subspaces are 

 { } { }.1, 21 +>|λ=≤|λ= ±± NjspanXNjspanX jj  (3.13) 

Thereon exists j so that 1σ∈λ−j  and .2σ∈λ+j  There cannot be 1XU j ∈−  

and .2XU j ∉±  Therefore, 1X  and 2X  are the orthogonal subspaces of X, 

with the help of (2.24) and (3.11), 

( ) ( ) 






ε
α+ε−



 +

ε
α+ε=λ−λℜ +−

+
22

1 2
112

1 NNNN  

( ) 22
2
1

2
112

1
2
1 NN

ε
α⋅−ε−+

ε
α⋅+ε=  

[( ) ],12
1 22 NN −+

ε
α⋅=  (3.14) 

therefore, with the help of (3.9), A satisfies the spectral gap condition (2.26). 

  

Theorem 3.2. Assume l,2≥
ε
α  the Lipschitz constant of ( ).ug  

(1) Assume ,2>
ε
α  NN ∈1  sufficiently big, when ,1NN ≥  there are 

some inequations, 

( ) ,18412
2

+
ζ

≥









−

ε
α−

ε
α+ lN  

( ( ) ( )) ( ) ,14121
2

≤−
ε
α+++− NNRNR  

( ) .2,1
2

min,24 22
2





 −

ε
α−

ε
α=ζε+α+








−

ε
α= NNNR  
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(2) Assume ,2=
ε
α  NN ∈1  sufficiently big, when ,1NN ≥  there is an 

inequation, 

( ) ,82122 4
1

lN >ε−+  

therefore, in (1) or (2), the operator A satisfies the spectral gap condition 
(2.26). 

Proof. We can divide three steps to proof: 

(1) Let 

 .20,21 10 



 <

ε
α<|∈=





 >

ε
α|≤≤= NjZNjZ  (3.15) 

If ,0Zj ∈  ;R∈λ±  if ,1Zj ∈  ±λ j  are complex. And if ,0Zj ∈  

 ,
2

10 1111 00
++

+
−

+
− λ<<λ<

ε
<λ<<λ< "" NN  (3.16) 

,sup 00 ZN =  ,2
1 2 







ε
α+ε=λℜ ± jj  .0Nj ∈∀  

If ,0 NN ≥  let 

 { } { }.1,,1 21 jNkNk jkk ≤≤≤|λλ=σ≤≤|λ=σ ±+−  (3.17) 

(2) We consider the corresponding decomposition of X, 

{ },11 NkUspanX k ≤≤|= −  

 { }.1,2 jNkUUspanX jk ≤≤≤|= ±+  (3.18) 

There is an equivalent inner product ( )( )XVU ,  in X so that 1X  and 2X  are 

orthogonal. 
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Let 

 { }

{ }








+≥|=

=

⊕=

± 1

,...,,

,

1

1

NjUspanX

UUspanX

XXX

jR

k
N

k
C

RC

 (3.19) 

and .1 CN XXX ⊕=  

We define functions RX N →Φ :  and ,: RX R →Ψ  

( ) ( ) ( ) ( )( )uzyuuuVU ∆−+∆∆




 −

ε
α+∇∇ε=Φ ,,1,,  

( )( ) ( ),,, vzyv +∆−+  (3.20) 

 ( ) ( ) ( )( ) ( )( ) ( ),,,,,
2

, vzyvuzyuVU +∆−+∆−+∆∆
ε

α=Ψ  (3.21) 

( ) ( ) NXzyVvuU ∈== ,,,  and .RX  

Letting ( ) ,, NXvuU ∈=  we can get 

( ) ( ) ( ) ( )( ) ( )( ) ( )vvyvuvuuuuUU ,,,,,, +∆−+∆−+∆∆






ε
α+∇∇ε=Φ  

,2 2
2

2
1 uu 





 −

ε
α+ε≥  (3.22) 

let ( ) ,,0,,2 NXUUU ∈∀≥Φ≥
ε
α  that is to say, Φ is positive definite. 

Similarly, for ( ) ,, RXvuU ∈=  

( ) ( ) ( )( ) ( )( ) ( )vvyvuvuuUU ,,,,
2

, +∆−+∆−+∆∆
ε

α=Ψ  

,1
2

2
2u





 −

ε
α≥  (3.23) 

for ,2≥
ε
α  therefore, ,01

2
≥−

ε
α  that is to say, ( ) .0, ≥Ψ UU  
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There is an inner product in X, 

 ( )( ) ( ) ( ),,,, VPUPVPUPVU RRNNX Ψ+Φ=  (3.24) 

NP  and RP  are the projections of NX  and ,RX  equation (3.24) is called 

( )( ) ( ) ( ).,,, VUVUVU X Ψ+Φ=  

With the help of inner product of equation (3.24) in X, 1X  and 2X  are 

orthogonal, in fact, only when 1X  and 2X  are orthogonal, we can prove 

(( )) ( ),,if0, CjNjXjj XUXUUU ∈∈= +−+−  

since ( ),, jjjj uuU ±± λ−=  we have 

( ) ( ) ( ) ( ( ) )jjjjjjjjj uuuuuuUU ∆−λ−+∆∆




 −

ε
α+∇∇ε=Φ ++− ,,1,,  

( ( ) ) ( )jjjjjjj uuuu −+− λ−λ−+∆−λ−+ ,,  

( ) 2
1

2
2

2
1 1 jjjjj uuu +− λ+λ−





 −

ε
α+ε=  

,2
jjj u+− λ⋅λ+  (3.25) 

we combine ,12 =ju  ,, 42
2

2
1 juu jj =  ,2jjj ⋅

ε
α+ε=λ+λ +−  

,4jjj =λ⋅λ +−  therefore, 

( ) ,0, =Φ +−
jj UU  

thus, (( )) ( ) .0,, =Φ= +−+−
jjXjj uuUU  

(3) We define the norm X⋅  of X in equation (3.24), we need to prove 

the spectral gap condition (2.26). 

First, we estimate the Lipschitz constant Fl  of ( ) ( )( ).,0 uguF =  Assume 

,: 2 HHg →  ,: 11 XXP →  22 : XXP →  are orthogonal projections, if 
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( ) ,, XvuU ∈=  ( ) ,, 1211 UPuuU ==  ( ) ,, 2222 UPvuU ==  therefore, 

,, 221 uuPuuP ==  

 ( ) ( ),,, 2211
2 UPUPUPUPU X Ψ+Φ=  (3.26) 

and 

( ) ( ) ( )111111 ,1,, uuuuUPUP ∆∆




 −

ε
α+∇∇ε=Φ  

( )( ) ( )( ) ( )111111 ,,, vvuvuv +∆−+∆−+  

,2 2
21u





 −

ε
α≥  

( ) ( ) ( )( ) ( )( ) ( )2222222222 ,,,,
2

, vvuvuvuuUPUP +∆−+∆−+∆∆
ε

α=Ψ  

,1
2

2
22u





 −

ε
α≥  

let .1
2

,2min




 −

ε
α−

ε
α=ζ  Then we combine (2.26): 

 ( ) ( ) .,, 2
22211

2 uUPUPUPUPU X ζ≥Ψ+Φ=  (3.27) 

Let ( ) ( ) ,,,, XvvVuuU ∈==  

 ( ) ( ) ( ) ( ) ,1
XX VUvgugVFUF −

ζ
≤−=−  (3.28) 

therefore, ,1
ζ

≤Fl  let .1
2

,2min




 −

ε
α−

ε
α=ζ  

If 

 ,1
1 ζ

>λ−λ −−
+ NN  (3.29) 
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thus, the spectral gap condition (2.26) is valid. With the help of (3.8), there 
can be 

( ) ( ) ( )

2

1411 4
2

22

1

+−



 +

ε
α+ε−



 +

ε
α+ε

=λ−λ −−
+

NNN
NN  

( )

2

4 4
2

22 NNN −





ε
α+ε−





ε
α+ε

−  

( ) ( ) ( ) ,1212
1





 +

ε
α++−= NNRNR  (3.30) 

we let ( ) .24 24
2

ε+α+







−

ε
α= NNNR  

And 

 ( ) ( ) ( ) .04121lim
2

=











−

ε
α+++−

+∞→
NNRNR

N
 (3.31) 

In fact, for (3.31), we let 

( ) ,
44

21
4

2
2

2
NN

NR









−

ε
α

ε+









−

ε
α

α+=′  

therefore, 

( ) ( ) ( ) 4121
2
−

ε
α+++− NNRNR  

( )








−
ε
α

ε+
−

ε
α
α++−+−

ε
α=

44

214 22

2
422

2 NNNN  
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( ) ( )








−
ε
α

ε+
−

ε
α

+α+++
44

121 22

2
4 NN  

[( ) ( ( )) ( ( ))],1114 22
2

NRNNRN ′−−′−+−
ε
α=  (3.32) 

for (3.32), 

( ( )) ,
4

1lim 2
2

ε
α−

α=′−
+∞→

NRN
N

 

therefore, (3.31) is proved. 

For ,01 >N  when ,1NN >  the spectral gap inequation reads 

( ) ,44122
1 2

1 lNNN ≥





















−

ε
α−

ε
α+≥λ−λ −−

+  

therefore, when ,2>
ε
α  Theorem 3.2 is proved. 

Furthermore, we will consider the case when .2=
ε
α  Therefore, the 

definition of Ψ is modified in equation (3.21), and increase ( ),, yu  then 

estimate (3.23) is replaced by 

 ( ) ,, 2uUU ≥Ψ  (3.33) 

when ,2 ε=α  inequation (3.33) is valid. In turn, instead of (3.27) and 

(3.28), the estimates 

 ,,2 lluU FX ≤≥  (3.34) 
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so that the spectral gap condition (3.29) reads 

[ ( ) ( )] ,41221442
1 22

1 lNNNNN >++ε++ε−ε+ε=λ−λ −−
+  (3.35) 

[ ( ) ] .2144lim 4
1

22 ε−=ε++ε−ε+ε
+∞→

NN
N

 (3.36) 

  

3.2. Non-existence 

Furthermore, we consider the non-existence of inertial manifolds of 
equation (2.2), when ,0=α  we assume that it satisfies the spectral gap 
condition. With the help of (3.8), 

 ,2
4 4j

j
−ε±ε=λ±  (3.37) 

when ε is sufficiently small for ,04,1 4 <−ε≥ jj  therefore, 

 ,Cj ∈λ±  (3.38) 

thus, equation (2.2) does not satisfy the spectral gap condition and inertial 
manifolds of equation (2.2) are not existent. 

With the help of every theorem, we all know that 

Theorem 3.3. Assuming ε is sufficiently small, there is a positive integer 
N, ( )uF  of equation (2.3) satisfies the Lipschitz condition, A satisfies the 

spectral gap condition, therefore, equation (2.3) has s inertial manifold 
,X⊂µ  

( ) ( ){ }.1Xgraph ∈ς|ςΦ+ς=Φ=µ  

21: XX →Φ  is a Lipschitz continuous function and ( )Φgraph  means 

diagram of .Φ  
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