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Abstract

In this paper, considered as the second one of the two-part paper, we
discuss a structure of mathematical theory which would be convenient
for description of biological systems accentuating to more degree
multiscale aspects of modelling. In the first part, we have discussed
two levels of modelling. The first one has been related to electronic
structure and the second one has been related to atomic level of
description. The third level of description considered here is called
functional and is related to scale larger than atomic one. Models
related to such a scale are designed to description of selective
functions of biological systems. In order to join of all descriptions
introduced in both parts of the two-part paper, one proposes
application of collection of dynamical systems with dimensional
reduction as a multiscale method of modelling. Within this method, a
scale of averaging applied in modelling is formalized. By this step, we
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obtain convenient conditions for unification of discrete and continuum
descriptions and a framework for whole structure for theory describing
biological systems. Role of mechanics of reactive nanostructures is
accentuated. By this step, we try to change the point of view that
biology is related predominantly to chemistry.

1. Introduction

In the first part [1] of the two-part paper, we have discussed methods
of modelling related to electronic and atomic scales. Consequently, the
paper [1] has been devoted to introduction of attractor responsible for
selforganization of molecular structures considered at the most elementary
level corresponding to dynamics of electrons. To this end, the description is
based on vacuum medium mechanics instead of quantum mechanics. In the
paper [1], one also discusses description related to atomic scale where
biological structures are formed. One accentuates role of attractor and
integrity of molecular structures within methods of modelling.

In this paper, one introduces the third level of modelling related to scale
larger than atomic one and designed to description of functionality of
molecular biological structures. Consequently, in this paper, one accentuates
to larger degree role of multiscale aspects in theoretical description.

The most known multiscale method of modelling is related to mechanics
of composites and allows us to average some structures from smaller scale to
larger one. However, in case of biological structures, we have to do with
various mechanisms close to atomic scale where dynamics of processes is
large. Then traditional averaging over approximately static structure is not so

appropriate.

We have also to do with another difficulty. Continuum mechanics which
is applied usually to larger scales has infinite-dimensional fields. Thereby,
when we average more complex processes described by molecular dynamics
to more simple continuum description, we do not reduce the dimension of the
problem. This inconvenience follows from fact that scale of averaging is not

expressed formally.
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Having in mind above obstacles on the way towards modelling of
biological systems, we propose in this paper a method of multiscale
modelling called collection of dynamical systems with dimensional reduction
which seems to be appropriate to discussed ends. We distinguish furthermore
particular scale of modelling by defining of reactive nanostructures. By
this step, we try to indicate that biological processes are not related
predominantly to chemistry but rather to stable structures which cooperate
with chemical reactions in order to have at their disposal possibility of fluent
change of structures.

2. Modelling of Processes at Functional Level of Description

2.1. Introductory remarks

Functional properties of molecular systems are manifested usually by
groups of atoms. Then atoms within groups cooperate in order to realize
a task. This cooperation frequently consists in organized change of
conformations. Functionality is manifested at various scales. Let us mention
role of muscles which are responsible for macroscopic motion. We can
consider motion at single cell scale manifested by motion of a bacteria. We
can also observe motion at molecular scale. Let us mention ATP synthase
and rotation of their parts for instance.

Above discussion accentuates fact that functionality is related to various
scales and particular tasks for this functionality can be represented by
selective properties of molecular systems in relation to scale associated with
external interaction.

Modelling of such a functionality with the aid of full atomic description
could be enormously complex. Therefore, selective modelling should be
applied to this end. Then we should be able to approximate our biological
system in order to concentrate efforts on its chosen properties. However,
maintaining of relations with more elementary descriptions is important.

Specificity of biological systems leads frequently to difficult questions.
Let us mention a problem related to evolution. How a macroscopic function
of a living organism appears as an adaptation property to environment.
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In other words, how transmission of information from environment to
mechanisms responsible for evolutionary changes happens.

Let us mention the simple question why the polar bear is white. The
question is simple but the answer is in my opinion extremely difficult. We
should determine mechanism of intention of such a change going through all
scales related to mathematical models and ask which electronic process
in molecules can express intention of corresponding reconstruction of the

molecular system.

At this moment, we are not able to pose such a question since we have
not at our disposal any theory which would be able to describe processes
in all scales and would have determined the most elementary evolutionary
mechanisms. In other words, now we have at our disposal descriptive
evolution theory without any mechanisms responsible for such an evolution.
Furthermore, modelling of selective functions is now rather arbitrary since
methods of modelling are not unified. Let us mention an example.

Evolution of DNA by mutations applied also in theoretical models is in
fact observed property which is introduced into model phenomenologically.
However, physical mechanism of generation of mutations is not clear.
Frequently, statistical approach is applied in order to justify this way of
evolution. In order to treat stochasticity in mutations as mechanism of
evolution, we should have justification of the stochastic distribution from
smaller scale processes. By this point of view, one suggests that stochastic
evolution is generated by lower scale physical laws which have stochastic

manifestation at the atomic level.

The aim of this section is to characterize a methodology in construction
of a multiscale theoretical description which would be able by its further

development to approach to above discussed questions.
2.2. Collection of dynamical systems with dimensional reduction

Method of collection of dynamical system with dimensional reduction is
previously elaborated for mechanics of materials [2]. In this paper, we adapt
and include it into general concept of modelling of biological systems.
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General aim of the collection of dynamical systems with dimensional
reduction is to elaborate methods of dimensional reduction of an elementary
dynamical system (EDS). The elementary dynamical system represents
description of physical processes on an assumed elementary level and
is characterized usually by considerable complexity. By means of the
dimensional reduction, we obtain a simplified model based on theoretical
foundations provided by the EDS.

Let @ be variables of £DS and f represents external interactions acting on
such a system. Then we introduce the elementary dynamical system in the

form
¢ = L(o, f). (1)

Transition to a larger scale of averaging is connected with a simplification of
this model, corresponding to reduction of degrees of freedom. Our concept
of this simplification consists in division of the elementary dynamical
system (1) into subsystems. Subsystems are distinguished by determination

of groups of variables @, = {0}, @ € 4. Then our initial variable takes

the form ¢ = {¢,}, h e Ip ={l, ..., P}, where P is a number of subsystems.

Determination of subsystems allows one to introduce new variables.
They have a reduced number of degrees of freedom and describe

approximately behaviour of each subsystem. New variables are introduced
by a mapping m; =¥y — Vp which transforms processes @(t) € Vy
determined on a time interval T into processes determined on the reduced

level of description d(¢) € V7.

External interactions acting on the dimensionally reduced dynamical
system have to correspond to those ones introduced for the elementary

dynamical system. Such a correspondence is introduced by a mapping

ner t Fr > F7 which transforms processes of external interactions.

The dimensional reduction procedure DR = {ny, nsr, SDS, app}

consists of four elements. Determination of new variables and external
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interactions with the help of 77 and nr is a first step in postulating of a

skeletal dynamical system SDS. The SDS(C) represents a set of dynamical

systems with elements depending on constants C. Final form of the
dimensionally reduced dynamical system RDS is obtained by identification
of the best constants C by comparison of solutions of the elementary

dynamical systems and solutions depending on C which are obtained from

equations of the skeletal dynamical systems. Then we obtain RDS =
SDS(C). The set of all methods of approximation and identification applied
for obtaining C is denoted by app and is viewed as fourth component of the

dimensional reduction procedure.

Discussion of particular form of the dimensional reduction procedure

will be carried out in next sections in relation to reactive nanostructures.
2.3. Balance of mass and energy for collection of dynamical systems

In order to postulate a form of the skeletal dynamical system, we have to
introduce a set of assumptions which enable us to transfer fundamental
physical laws expressed by balance of mass and energy equations into the
reduced level. They are transferred from the EDS level.

Let Mp = {{@y}}, h € Ip stand for space of solutions of the elementary
dynamical system with distinguished groups of variables ¢, related to /th

subsystem. We introduce the following set of assumptions:

1. There exists a function my (@) = {my,, ..., myg, } Which assigns a set
of masses for the Ath subsystem. The total mass of this subsystem is then

my = Zimhi' We have also that Zh B, =N, where N is the total number of

masses in the whole system. The function m : M — R? with property
m({@,}) = {m;,} determines distribution of masses in subsystems and

m: Mpg — R, m({@y}) = my, determines the total mass related to (1).

2. There exists a function E: My — RY, E({g,}) = {E,} which
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determines distribution of energy assigned to subsystems and E : M — R,

E({@,}) =D, , £ determines the total energy related to (1).

3. There exists a family of mappings Jj; : Mpg > R, i, jelp,
Jij({@n}) = Jjj called flux of mass from jth subsystem to ith subsystem and
JU +le' =0, Jii =0.

4. There exists a family of mappings W; : Mp —> R, i, jelp,
Wii({en}) = Wy called flux of energy from jth subsystem to ith subsystem
and VVZJ + le = O, VVii =0.

5. A source of mass is determined by a function c¢: My — R?,
c({op}) =1{c;}. ¢ =m0 c({@y}) can be considered for each subsystem of

the whole system and stands for a source of mass in the ith subsystem.

6. A source of energy is determined by a function R : My — R?,
R({p,}) ={R;}. R; = m; o R({®;}) can be considered for each subsystem of

the whole system and stands for a source of energy in the ith subsystem.

Let I < Ip be a set of indexes which distinguishes a group of
subsystem. Then I, = Ip — I; determines subsystems which are external
with respect to our group.

By means of above introduced assumptions, we are able to carry out
analysis of interchange of mass between subsystems as well as to consider
possible sources of mass which appear within subsystems. This leads to

expressing the balance of mass equation for collection of dynamical systems
in the following form:

Z(m,-—ci)+ Z Jij + Z (Jij +Jji)

ie]G i,jEIG ie]G,jGIO

Y Tt Y i —e)=0. )

i,jelp ielp
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Total sum of masses interchanged between subsystems, within the

distinguished group by [;, without any interchange with an external

subsystem is equal to zero. Consequently, we obtain then ZI. ; Jy =0.

E]G

Option of [ is arbitrary. Accordingly, we can express the balance of

mass equation connected with an arbitrary group of subsystems represented
by I; with the help of the formula

D=+ Y Jy|=0. 3)

ielg jelp
The terms J;; describe interchange of mass with an external system

indexed by elements of /,. As a result, equation (3) is not entirely

determined. This, in turn, necessitates introducing an additional condition

Jl“ :Jij’ jE[O, (4)
where jl-j is given and expresses an assumed form of efflux of mass.

The balance of energy equation has similar structure as the balance of
mass equation and is given by

DB -Ri+ D Wy|=0 (5)

ielg jelp

with additional conditions

Wiy =Wy, Jjelp, (6)
where W,j represents an assumed form of efflux of energy.

Balance of mass and energy equations given by (3)-(6) is a starting point
for postulating the skeletal dynamical system. This is realized by option of
new variables and representations of functions which appear in (3)-(6). These
functions are parameterized then by a set of constants which should be next
identified.
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2.4. Continuum skeletal dynamical system

Wide application of continuum mechanics in biology necessitates
discussion of way of appearing of this theory within the collection of
dynamical systems. Foundations of continuum mechanics have been

discussed by many authors, see for instance [3, 4].

We would like to introduce fundamental notions of continuum
mechanics in connection with the elementary dynamical system. Continuum
is defined by means of geometrical terms. Therefore, we introduce an
additional assumption related to properties of subsystems distinguished
within EDS as follows:

Geometrical objects of various dimensions can be assigned to each
subsystem by means of mappings G, = M — Ef, G : Mg > (2Ee )P,
Gg : M — ) Gy My > (2%)P, where 2F¢ stands for family
of all subsets of the Euclidean space E,. The map G, assigns some
distinguished points to subsystems, G; introduces one-dimensional, Gg
two-dimensional, Gy three-dimensional geometrical objects considered as

subsets of E, and accompanied by distinguished subsystems.

Assumption introduced above gives possibility of discussion of
geometrical objects associated with EDS. In particular, we can discuss

position vectors related to £DS by means of mappings G,. This also gives a
possibility of considering kinematics and other elementary notions of
continuum mechanics in relation to the elementary dynamical system.

For defining a body, we consider the mapping Gy ({0,}) = {K;,}, where
K; is a three-dimensional subset of E,. Let K ={Kj, h e Ip} and
My ={K} stand for all families of K obtained by means of Gj. Then
Gy : My — My. We assume also that intK, (intK;, =9, g, h e lp,

where int is operation of taking interior of a set.
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Definition 1. The body associated with the elementary dynamical system

¢ = L(o, f) is defined with the help of mapping Gy as B, = Uhe Ip K.

Deformation is connected with evolution of points with respect to
reference configuration. In order to describe deformation, we consider the

function G, which assigns a distinguished point 7y; to each subsystem.
Consequently, we have that G, : Mp — {{x;}}. We interpret {y,} as

distinguished positions associated with subsystems.

Let Hyj = {Xm>m €I} and V,, be a linear space. The set [}
represents indexes of subsystems K,, which interact with K. Then
we introduce the function aj, : {H,,} =V, and a:{{H,,}, h € Ip} >

{an({xm ) h € Ip} as a function of kinematical dependence between

subsystems. By this function, the gradient of deformation and strain tensor
can be introduced.

The space Vp ={{x,a,}, help} characterizes deformation determined
by a finite number of parameters. Let us define the space V,. of deformation
functions y, of the body B with respect to a given configuration k as
Ve ={e 1 %e = Lok |, A keC} in accordance with classical formulation

of continuum mechanics [3]. Let furthermore, o, : Vp — Vi be a function
and X = o, (s ant)s Xf(Xh) = xn, Where X, is a value of y; in a
reference configuration.

Definition 2. The deformation function associated with the distinguished

family of subbodies K is a function X’KC which has the form X}KC =
Gx({Xh, ap})-

Definition 3. The motion of the body B associated with the family of

sets /C is a continuous map ¥, : [0, T] = {}}.
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Let us consider a function T : Mg — RY, T({K,})={T,} which

represents temperature. Let furthermore ]2 cIpand Hp, =1{T,, n e Ihb }.

Then we introduce function b, by analogy to ay, as by, : {Hp,} — V}y, and
b {Hpy}} = {ba(Ty)}-

Determination of the value 7}, is not so direct as defining ;. In the last
case, we use geometrical interpretation. We cannot do this in the case of
temperature. Discussed problem is connected with precise definition of
the mapping m; considered as component of the dimensional reduction
procedure. Such a definition allows one to distinguish the part of evolution of
the system which is responsible for definition of temperature.

Let Vpyy = (T, by}, b€ Ip}, Vi = {T(x) : x € x(B)}. Let us consider

a function oy : Vpyy — Vpyy and TN = ap({Ty, by)).

Definition 4. The temperature field T K associated with the distinguished
family of subbodies K is the field obtained with the help of the function o

as T = oy ({Ty,. by )

We have obtained definition of the body, deformation function and
motion of the body using an elementary dynamical system. The mappings
Gy, G, determine connections between EDS and continuum description.

Furthermore, temperature is connected with EDS by means of the mapping
nr.
The spaces ¥, and Vpy, are finite dimensional. As a result, we have

obtained also finite-dimensional spaces OLX(VD) and ay; (V). This follows

that finite-dimensional fields are considered on continuum only.

In order to introduce a continuum skeletal dynamical system, we must
have at our disposal balance of mass and energy equations also associated
with the elementary dynamical system. Previously we have defined functions

m, J, E,, W

gij» € 9> Moij»

o R(P which introduce masses, efflux of mass
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between subsystems, source of mass, energy, efflux of energy and source of
energy related to subsystems, respectively. These functions, indexed here by

@, are introduced in connection with the elementary dynamical system.

Let us consider the mapping m : My — {{m},}} which determines a set
of masses related to collection of dynamical systems. Let M, = {{M,}}
and M : Mg — M,, be a mapping which assigns masses to each Kj.
Masses M, related to continuum model are defined by means of the relation
M oGy =iom, where i is an identity mapping. Thereby, a system of
masses related to continuum is introduced by means of the mapping m

defined on elementary dynamical system.

We have defined body B associated with the elementary dynamical
system. We define subbody also denoted by B = Uh K;, help, where

Ip < Ip is an arbitrary subset of /p. Let us introduce M (B)= ZheIB My,

Thereby, mass related to subbodies is defined as a kind of measure on the
body.

The function &€ : Mg — {{€,}} determines distribution of energy on
the family {K}} and &, = w;, o E({K},}) assigned to each K, is defined by

means of the relation £ o Gy =i E,.
Source of mass ¢, : Mp — RT and source of energy Ry : Mp — RP

are defined now as C : Mg — RF, R M K = RF by means of relations

CoGy =iccy and RoGy =ioR,. These quantities can be defined for

subbodies with the help of formulas £(B) = zh Ep, C(B) = zh Cy, R(B)
=2, Ri

We assume without discussion of details that £ = E + 7T is considered

as a sum of internal energy and kinetic energy for continuum.
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Interchange of mass and energy is described by efflux of mass
Joij : M — R and efflux of energy W,; : My — R. These quantities
are defined for continuum as Jj; : K; x K; — R, where Jj; is determined
by means of J;; o (Gy; x Gy;) = i o Jy; and W : K; x K; — R, where we

obtain Wj; from Wj; o (Gy; x Gy;) =i o Wy

Let us consider furthermore boundary of the body as dB = 0 U, Kj,.

We define J(0B)=)_ Jim and W(0B)=>

iE[B,mGIP—IB iEIB,mEIP—IB VVlm

as quantities referred to boundary of the body. Let 0B, < 0B be defined as
0B =Uper, (0K, N0B), I < Ip. We assume that pair of indexes {i, m}

is associated with 0B if 0B is a border between subsystems i and m. Then

J(0By)= Zi,m Jim-

Using terms of continuum associated with the elementary dynamical
system introduced above, we can express balance of mass equation for

continuum which corresponds to (3) as
M(B)+ J(B)-C(B)=0 (7

with the additional condition as a counterpart of (4) and satisfied for arbitrary
0B, c 0B,

J(aBs):j(aBs) 3
for a given J(0B;).

The balance of energy equation corresponding to (5) and now expressed

in terms of continuum is assumed in the following form
E(B)+T(B)+W(@B)-R(B) =0 )

with the additional condition corresponding to (6) and satisfied for arbitrary
subboundary 0B < 0B of the body B,
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w(oB) = W(0By) (10)
for a given W (0By).

Considered above equations of balance of mass and energy are the first
stage for postulating of form of the skeletal dynamical system. In the next
step, we assume representations of quantities introduced in (7)-(10). They are
parameterized by some constants which have to be identified. Identification
of these constants is realized with the help of solutions of the elementary
dynamical system.

Continuum fields on the body are introduced by means of previously

determined discrete fields with the help of mappings similar to o, and ar

X
for deformation and temperature. They should fulfill well known integral
relations between densities and discrete values of quantities on each subbody.
Consequently, discussed here continuum mechanics is characterized by
finite-dimensional spaces of fields. In classical case, such spaces are infinite-
dimensional. This difference is important. Derived equations are finite-
dimensional and we do not apply discretization methods. In discussed case, a
continuum model with finite-dimensional fields is inherently connected with

determination of degree of averaging what is expressed by option of sets K},

and the skeletal dynamical system. As a result we introduce by this,
formalization of scale of averaging. Such a fact is important for description
of processes associated with phenomena relating to several scales. Thereby
this is also important for biological systems.

Introduced formulation of continuum mechanics admits integration of
it with molecular dynamics. This integration consists in fact that we use
EDS determined by molecular dynamics equations and continuum skeletal
dynamical system in the framework of the dimensional reduction procedure.

Let us note that connections of molecular dynamics and continuum
mechanics are discussed in literature. Such considerations are carried out
usually in the context of statistical mechanical calculations supported by
molecular dynamics [5, 6]. Considerable achievement for cooperation of both
theories is given by Prrinello and Rahman in [7].
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3. Mechanics of Reactive Nanostructures as a
Functional Level for Modelling

3.1. Introductory remarks

Biological structures are frequently similar to solids. It means that role
of chemical reactions is not so dominant as frequently is commented.
Sometimes they say that biology is a chemistry. However, biological
processes create very stable structures which are not similar to chemical
reactions. Let us mention DNA for instance. The DNA molecule takes part in
chemical reactions. However, this molecule is viewed predominantly as a
relatively stable structure which can undergo some changes. We observe also
that higher level of evolution is associated with creation of more dense
molecular structures. We observe for instance in single cell increasing
number of various compartments when evolution is continued. This makes
structure of cell more dense and stable. In larger scale, an animal is perceived

rather as solids like object than a chemically reacting system.

Above comments suggest a change of traditional point of view which
treats biological systems predominantly as reacting system. On the other
hand, stable structures within biological systems are characterized by large
flexibility related to conformations and also with respect to possibility of
changing this structure in order to evolve.

Possibility of fluent change of structures is realized just by chemical
reactions. Thereby, we should see biological systems as a set of stable
structures with possibility of realization of some structural changes,
cooperating with chemical reactions. Thereby, this point of view suggests
that chemical reactions are important but are considered now in a larger
context. Accentuating role of stable structures, we introduce to larger degree
molecular physics together with theoretical chemistry into description of
biological systems.

Taking into account above discussion, we introduce concept of molecular
reactive structure as an important object in mathematical modelling of
biological systems.
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3.2. Definition of the molecular reactive structure

Large part of molecules in cell does not change their chemical
composition for a time. However, such molecules can undergo structural
transformations and take part in chemical reactions. Thus, they are similar
to catalysts. However, category of catalysts is functionally directed to
controlling chemical reactions. We would like to define molecular reactive
structures as all stable with respect to composition molecules which can take
part in chemical reactions but their functions can be various. In particular,
they can be enzymes or they can create larger, solids like structures.

We formulate definition of the molecular reactive structure considering
molecule as a set of material points corresponding to nuclei of atoms. We

introduce notation S(R) for a system of the material points representing

molecule and R for its current configuration. We introduce notation from the
set theory for systems like S. Thus, two subsystems S U S, = S create a

new molecule represented by S.
Let Rpg = {R;}, i € Ipg stand for positions of material points within
the reactive structure Sgg. The configuration Ryg can undergo transition

between catchment regions during evolution. We admit, in general,
transitions for the molecular reactive structure which do not destroy an
admissible structure of interatomic bonds.

Let us introduce a relation B, < Ipg x Ipg which consists of pairs of
nuclei which are joined by interatomic bond b(R;, R j)- Existence of such

bonds can be determined by means of methods of quantum chemistry [8] for
instance.

Let Ap be a set of all relations B, which represents an admissible
structure of interatomic bonds within Spg. The term “admissible”

corresponds to current requirements related to described structure. Thus, we
can accept the case when the set Ap consists of one element only. Then all
interatomic bonds cannot be changed with respect to the relation classifying
them. However, we can accept the situation when a reorganization of
interatomic bonds structure without unwanted changes happens.
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With the help of the set Az, we introduce a relation between relations.

Thus, B, =4 By, when By, B, € Ap.

We accept potential energy hypersurface and notion associated with it for

further considerations. Domain V- of the potential energy can be divided
into catchment regions C,, connected with minima ¢, of V'as V¢ = U, Cy
[10, 11]. If the molecule Syg interacts with other particles during a chemical

reaction, then the configuration space is extended. As a result, the potential

energy V =V (Rpg, Rg) depends on additional variables R representing
a system of external molecules Sg. Decomposition of V- into catchment

regions depends now on Ry and we have C, = C,(Rp).

Let us assume that {Rpg, R} (¢) represents process of a chemical
reaction. At an initial instant #;, the molecules Spg and S are separated.
At a final instant ¢z, they are also separated. This can be expressed by the
fact that V(Rgg, Rp)ly, ,= Vrs(Rgs) + VE(RE) in a neighbourhood of
initial and final positions of this molecular system. We introduce a set of
admissible processes Rp(t) € Apg satisfying discussed above conditions

with respect to Spg and which ensures realization of this reaction process.

Definition 5. We call a molecule Szg the molecular reactive structure if
configurations Rpg induced by all admissible processes Rg(7) € Apg are

contained within domain V¢ =| CCOL (Rg(#)) between initial and final

el
instants #; and ¢z. Furthermore, then we also have B, =4 B, for each
pair o, o' € I~ which appears during evolution of the configuration Rpg
through various catchment regions.

This definition expresses fact that the molecular reactive structure takes
part in a chemical reaction but interatomic bonds can undergo evolution

without destroying their admissible structure only. Thereby, deformation and

structural transformations of the molecule Sy are admissible.
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3.3. Skeletal dynamical system for reactive nanostructures

We have introduced molecular reactive structures using atomic level
of description. However, we can discuss reactive structures also by more

averaged descriptions.

Let us consider behaviour of actin cytoskeleton [12, 9]. This molecular
structure undergoes considerable reorganization in order to realize motility
of cell. In particular, cytogel into cytosol transformation is realized by
destruction of a meshwork of actin filaments. Assembly of contractile actin-
myosin filaments is organized within cell for generation of active stress.
Such a medium can be described by means of continuum models [9] in a
very averaged way. Then the problem is to postulate form of constitutive

equations taking into account high controllability of this medium.

Elementary mechanisms of reorganization of the actin cytoskeleton are
related to single molecules. Actin filaments are assembled from monomers

[12]. Protein molecules take part in regulation of these processes [9, 13, 14].

Above concise discussion suggests that considered here processes are
related to single molecules or to a system of such molecules which can
undergo a reorganization. Thus, evolution of this system depends on the
properties of single molecules as well as on processes responsible for the

reorganization.

Direct modelling of single molecules considering all atoms is too
complicated for description of the multimolecular processes. Therefore, it
seems to be the most appropriate to elaborate models of single molecules
which describe evolution of groups of atoms within them in an averaged
way. Then we have to use a nanoscale level of averaging properties of
intramolecular processes. Furthermore, we should be able to describe
mentioned above processes of reorganization as well as interactions with

external chemical reactions.

We can encounter in literature some models which consider reduced
number of degrees of freedom for describing evolution of molecules. Let us
mention for instance the papers [15-17].
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Particular properties of reactive nanostructures have to follow from
smaller scale considerations. Consequently, reactive nanostructures should be
placed in our multiscale method of modelling. We tend towards construction
of a skeletal dynamical system for our reactive nanostructures. To this end,
we should distinguish first a set of new variables related to the reduced level

of description.

In many cases, during modelling, we are able to distinguish slowly and
quickly varying processes realized within considered system. We assume that
this is the case for evolution of our molecule modelled. Thus we consider
thermal vibrations as quickly varying processes and structural transformation
or a deformation of the molecule as the slowly varying one. Such division of
processes, we call SO-decomposition. We introduce variables which reflect
this property, by means of a set of mappings defined to this end.

We consider, as previously, a molecule S(Rpzg) modelled by means of a

set of material points. We distinguish subsystems within such a molecule as

SRzs)=J hel Sp(1Ry;}) composed of determined groups of atoms.

Let us note that many small molecules appear in biological systems
repeatedly, what gives a hope to obtain a degree of universality in division

into subsystems.

We introduce three kinds of variables on the dimensionally reduced level

of description. The first one represents configurational variables Qj, = {th}

and velocities wy, =Qh, which approximately describe evolution of the
whole group of particles within Ath subsystem. They describe slowly varying
processes. We introduce also the configuration space Vo = {Q} = {{Q,}}

and the corresponding phase space Vp, = {{Q;, w),}}.

The second kind of variables 0, describes in an averaged way quickly

varying processes and is related directly to balance of energy equation. The

third group of variables n,, is related to quickly varying processes and needs

postulating additional evolution equations.
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Let us introduce spaces of processes Vy = {{R;, v;}(¢):i € Irg, t € T}

related to atomic level of description and

Vpr = {Qp, wp}(t) :hely, t €T},

Vor ={0n}(0)helyteTh Vor ={m}():helyteT}
and Vp = Vpr x Vor X 1_}11 7, where T'is a time interval.

New variables are obtained by means of the mappings ny : Vp — 1_/T,
Ty = Mgy X Tor and Ter - VT - ]_}DTa ToT . VT - VGT X VnT.
Structure of the mappings mgy and mpr is obtained by using

decomposition of variables. In order to illustrate this, let us take a set of time

instants 7y < f; < --- < #; which belong to the time interval T = [ty, tx ],
tx =ty + T, and let Ix ={0, 1, ..., K}. By means of these instants, we
divide the time interval into the sum 7 = Uy Ty, T} =[tr_1, 4 ) k=1,..., K.

Then for each k, we can calculate the value of ﬁk as

R, = Tik-[Tk R(7)dt. (11)

A value Ry = R(f) is assigned to k = 0. With the aid of sequence of

values {R;}, k € Ix, we can generate a function R(¢) = 7 x({R}), where
J R 1s an approximation procedure which tries to lower second order
derivative as far as it is possible for R(z). Now, we are able to decompose

the variable R(¢) into two summands
R(7) = R(7) + 8R(?). (12)

Thus, R(¢) represents the slowly varying part of R(¢) and 8R(¢) its quickly
varying part.

We assume that the mapping J p satisfies the condition _[ T (R - R)dr
k

= f T ORdt = 0, where “~” means equality with an admissible error. In
k
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general, methods of determining of Jp are an open problem. In the

paper [18], one considers a numerical example of procedure of such a
decomposition.

Let 4,({R, R}(r)) = {R, 3R, R, 8R}(r) be mapping which realizes SO-
decomposition. We assume further that there exist mappings mg and mg

which give direct assignation of new reduced variables to those obtained by
means of 4,. We would say that 1y and 7y take into account also a space

averaging imposed on previously obtained time averaging introduced by 4;.

As a result, we obtain
nr = {nsr, mor} = {ng ° 4, g © 4} (13)

Similar SQ-decomposition can be carried out for forces f. To this end, we
calculate the following time averaged quantities

_
=g j . £(¢)dt. (14)

Then we have f(f) = J f (f,) with the help of an approximation procedure

J r. Finally, we obtain the decomposition
£(r) = £(¢) + 8f(¢). (15)
Let B,(f(1)={f(:),8f(t)} and mg o B,(f(t)) =f5, mps o B,(£(1)) = fp.
Thereby, we obtain the general form of the map my7 by
ner ={nsy © By, mgs © By} (16)
and 7 (£(1)) = s, T} (1)
In general, it is expected that mappings ny and 7,7 are not entirely

independent. We postulate that there exists a relation R (ny, © fT) which

joins considered two mappings. By this relation, we accentuate fact that it is
possible that averaging methods applied to processes described by variables
of the dynamical system and processes related to forces can be consistent to
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some degree. At this moment, we do not analyse this possibility in details. In

discussed here case, we assume that R; =/ or in other words, the same

procedures are represented by ny and 7 7.
Discussed above SQO-decomposition is similar to some degree to the
Parinello Rahman method applied in molecular dynamics [7].

In order to construct a skeletal dynamical system, we have to postulate
form of total energy £ of the system modelled. We assume that

5=2Eh :Z(Vh +Tp), 17
h h

where 7T :Zh T, 1is kinetic energy corresponding to slowly varying

processes and

ZVh :Z(VSh+VQh):q)+8Q (18)
h h

is decomposed into parts related to slowly and quickly varying processes.
Furthermore, we assume that

Vsh = Csiy¥siy (Qu» agp ) (19)
Vo = Cons¥ons (O aon) (20)
where ap;, and ag, are functions of kinematical dependence between

subsystems related to Qj and 0, correspondingly. They are defined in

similar way as this is done in subsection related to continuum mechanics for

deformation function and temperature. We admit dependence Cgy,,, Cojs on

Qy, 65, m, in the sequel.

Let us consider temporarily a given constant values of variables {0, n}.

By such a step, we can introduce the properties of the function O =
®({0, n})(Q) defined in (18) which depends now on configurational

variables only. We also assume that Q = {Q,} stands for minimum of this

function.
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Let Ag : Ve = Ve, Ar :Ve — Ve be mappings which realize the
same rotation and translation for each component of Q belonging to the

configuration space VC. Then the transformation

Q = 4z(Q) + 47(Q) (21)

represents rigid transformation of the configuration Q. In other words, we

have defined rigid motion of the molecule S on the dimensionally reduced
level.

Let [Q] stand for class of elements which are determined by using of all
Ag and Ay in (21) for given Q and M be set of all manifolds in V. We
introduce a set of representatives of the equivalence classes in the form

H={Q:Q.Q cH=[Q]#[Q] H e M (22)

The set H represents deformations of the molecule S determined on the
dimensionally reduced level of description. H is viewed to be manifold since
deformation of the molecule is considered as a continuous process.

The domain of the function ® can be expressed as a fiber bundle [19]:
Ve =Hxp FR(Q), QeH, (23)

where x, stands for symbol of generalized Cartesian product of / and

a chosen fiber Fg(Q) identified with the equivalence class [Q]. H is

considered as basis of the fiber bundle.

We assume that the function @ has the following properties for each

given values of {0, n}:

o({6, n})(Q) = ©({6, n})(Q) 24)

for all Q, Q; belonging to the same Fj and this is the case for all Fp. In

other words, the function @ does not change its value during a rigid motion.

Let [0, s"] < R be an interval. The steepest descent path P(Q, -) : [0, s™]
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— V- with the origin Q is defined as a path tangent to the vector

g = —g%. Then we assume also that p(Q, 0) = Q and at the end of each

path, we have a critical point ¢ = p(Q, s*) and then g%(c) =0.

Two points Q, Q; are called equivalent if p(Q, s*) = p(Qy, s*). In

other words, equivalent points are origins of steepest descent paths having

the same ends as a critical point.

Definition 6. Equivalence classes of the relation defined by the steepest
descent path are called catchment regions associated with the function @.

As a result of defining the equivalence relation in 1_)(;, we obtain

decomposition of the domain of the function @ as follows:

Ve = Jcatfo. ), (25)

where C, are the catchment regions.

The catchment regions depend on {0, 1} since the function @ is defined
for given {0, n}. Thus, evolution of these variables can lead to qualitative
changes of the catchment region division given in (25).

The kinetic energy term 7 = 7(wy, Gp;,) depends on slowly varying

variables only and inertia characteristics. Let us calculate 7° - To this end,

ey
aWhp aWhpath

we assume that the function 7, has properties (0) Wy

oT, 9T,
ath aaéh

(0)agy, expressed by means of the Taylor expansion. Finally,

we obtain
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627h a Th ( )8th 6th

Ty = =2 (0)wy iy, + 0,01
OWipOWig T dady, 00, 00

= Mhpqwhqwhp + Ihjqerijkr

= (Mhpq Whp )th + ([hjqerkr ) qu : (26)

We use usual summation by means of the symbol X for indexes of

subsystems /4 € I and m € Ip which are related to main division into

subsystems. For the remaining indexes, the summation convention is applied.

Taking into account SQ-decomposition, we modify the general balance
of energy equation (5) into the form

D VE—Rgi—Roj+ D (Wi + Woy) | = 0. 27)
ieIG iE[O

Thereby, sources of energy considered within subsystems and efflux of
energy are decomposed into two parts.

We assume that Cgy,, and Cpys are constants at this stage of derivation.
Furthermore, we postulate particular forms of Rg, = f; Sthhq and Wy, =

— fShqumcp Then taking into account (17)-(20) and (26), the balance of

energy (27) is now expressed by means of the formula

Z C GIPSh Q al}’Sh“ 8th
S 004, S Bagy 005 <
hEIG

Mo Mony oa
+ Copy aeQ 9h+Cth aaihv 699}19}

+ (M Wip)Ong + Unjske Ot ) Qs — SsngOng — Ron

+ D (~SstmgOmg + Wonm)p =0 (28)

melp
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with additional conditions corresponding to (6),
Wonm = Womm» h€lg, melg. (29)
Owing to particular form of Wg;,, assumed, an additional condition for this
quantity appears and will be discussed below.
At this moment, we admit again dependence of Cg,, Cpjy on
previously considered variables. We assume that terms CShu‘D shp * 0 and

Cth(Dth # 0. We take into account these terms in the balance of energy
equation. Consequently, next transformed version of (28) is given by

6‘1’5,1“ ath’ .
2 { S 00, 6Q +Z S Bagy 00 + Mipqhp
helg

L], Moy -
+ Zl Whalr Ol — fShq}th + Cony aGQ =0,
h'

+C oY, th aaeh
O ~"dag, 09,

61 + CSh},L\PShM

+ ComWony — Ron + Z Wonm

melp
+ Z Z [h'mqerermq
melp h'elg
oV
2 2135 Fhmg |Omg =0, (30)
0mg
melg helg

where additional terms dependent on Q,,, are taken into account.

We would like to introduce friction terms as well as effects following
from stochastic forces as a result of molecule-solvent interaction. Thus we
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assume existence, on the dimensionally reduced level, of additional forces
ChgWhg- Furthermore, the function @ can be modified by averaging of
effects of the stochastic forces. This is postulated by extension of the
function @ into the function @y = ® + g in (18). ®g depends on Oy,
only for this derivation. This function will be plotted with variables 6, n, ng
in the sequel, where mg is an internal variable which takes into account

solvent properties during evolution of the system.

Let us assume that time processes are independent. Then we obtain the

equations describing slowly varying processes

oY o¥ oapn  Od
Sh +Z - siw Yagn | 0P

CShe 304, 0hq dagy 00p, 5th
+ ChgWhg — Ssng + MupgWp + Zlh’hqerkr =0 (31)
hl

with the additional condition

av. ) i} i}
Z S + Zlhmqerkr = ZfShmq = meqa helg, melg. (32)
h h

We introduce also the equation which expresses previously introduced

notation in the form
th = th, h (S IG' (33)

The last term in (31) contains second time derivatives of Oy, with index &k
which can be found in /. This induces necessity of considering furthermore

the following additional condition
qu = qua me [O (34)

for determining values of qu which do not belong to the system /.
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We obtain also from (30), using (31) and (32), the equation describing
averaged evolution of quickly varying processes

MNopy - Y, o
¥on ¥ony dagy,
Zh: Com g9, O+ Com a0, 0, 9

+ CspyPsny + ComYony — Ron + Z Wonm | =0 (35)
melp

with the additional condition

Wth ZWth, he]G, me]o (36)

motivated by considerations related to (6).

Since I is not defined precisely, we assume that equations (35), (36)
are valid for all /; and thereby for all parts of the molecule composed from
distinguished subsystems. This necessitates in turn defining a family of
conditions of type (36).

Let Hj, = 1{Qy, agy, Oy, agp}. Above introduced equations have an

excessive number of variables. Therefore, additional constitutive equations
must be introduced. They are assumed in the following forms:

Vsi = Cspu(Cspyps His N> Ms) s (Qus apn ) (37
Vo = Comv(Conys Hps Mis Ns) PCony (O, agp), (38)
Wonm = Wonm(Cwins Hps Mi> Ms)s (39
M, = Ay(Cops Hpo Mps M), (40)

where ng represents additional internal state variables which describe effects

of interactions of the molecule with solvent. We introduce also the evolution

equation for these internal state variables by

g = 4As(Cg, Hy, Mp, Mg)- (41)
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Equations (31)-(41) determine skeletal dynamical system for the reactive
nanostructure. Identification of introduced constants should be realized by
means of comparison of solutions of molecular dynamics equations and SDS
equations. The comparison of solutions can be carried out by means of a
metric ppg : Vr x Vp — R, U {0} determined in space of processes Vp.

Then the function H; defined by

Hi(go, f) = géfc por(nr(e(eg, ) (1)), d(C, n(eo), n /7 (£)(2)), (42)

where d is a solution of SDS equations, should be weakly dependent on

quantities @, frelated to elementary dynamical system for obtaining a good

approximation. C stands for a set of admissible constants C.

Let us note that there is a challenge to introduce for such a type of
description of reactive nanostructures variables which would represent
presence of attractor in electronic structure. We have done such a step
previously in [1] for modification of potential in molecular dynamics
description. Similar effect should be present in above discussed function
having role of a potential.

3.4. Chemical reactions with reactive nanostructures

We distinguish two kinds of chemical reactions. The first one is related
to reactions with particles which are not defined as reactive nanostructures.
We would say that they influence behaviour of the nanostructure. As a result,
we are interested mainly in effects which they cause. Therefore, description
of such reactions is suggested by terms responsible for external interactions.
Consequently, we introduce the following additional equations:

]_(qu = meq(Hhv My Ns» nRC)a melp, (43)
Wonm = Womm(Hp, Mps s> Mre)» m € 1o, (44)
e = Agc(Hps Mps Mss Mre)s (45)

where mpc represents internal state variables which describe process of
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approaching, bonding and releasing of the external particles. They influence
evolution of the system directly by J_(qu which can be viewed as a
modifying factor related to @ and also by interchange of energy expressed

The second kind of chemical reactions is related to joining of various
reactive nanostructures as well as various forms of reorganization or
fragmentation within a system of them. Then we are interested in description
of more detailed mechanisms governing such processes. Therefore, the
notion of the molecular recognition should be transferred from atomic level
of description into the nanoscale description.

We consider the reaction a + b — ab denoted by R, and Cy is the

corresponding catchment region defined on the reduced level of description.

Let us consider a set Ug < V), D ={Q, w} and D, € Uy stand for

an initial condition for evolution of D. Let A(¢) = {6, 0, ng}(¢) stand for a
process related to evolution of the remaining variables which have an effect

on form of @ and thereby also on the corresponding catchment region (_?R.
Consequently, together with evolution of A, we consider also evolution of
Cr(n).

We define the set A(Ug) as a set of all processes A(¢) which do not
change qualitatively the catchment region Cp(A()) during evolution and
D(Dy, t) € Ug for each ¢ and A(¢) considered. This condition ensures that
processes A(¢) do not disturb realization of the reaction R.

Definition 7. We say that two molecules a and b undergo the molecular
recognition with respect to reaction R, with probability p, if they find
themselves in a state Dy € Ug, where Ug — Vy is a maximal set satisfying

the condition that there exists #; such that for each Dy € Ug, we have

P(nc(D(Dyg, L(1))(1)) € CR(M1)) A {6, m, n5}(r) € A(Us)) = p <1 and P
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is a probability measure related to this problem. The set Uy is called the

range of selection.

The probability p and stochastic forces L£(¢) applied in this definition
express connections with solvent interactions. It also means that we admit a

stochastic effect in equations describing evolution of the nanostructure.

The range of selection enables to formulate conditions for realization of
the reaction R expressed in terms of the nanoscale model. Furthermore, it

gives possibility of discussion of integrity in reactive nanostructures.

Form of the set Ug could be also considered as a phenomenological

postulate. Then phenomenological, nanoscale models of assembling or
reorganization of reactive nanostructures could be formulated neglecting

detailed atomic processes.
4. Characterization of Integrity of Molecular Reacting Systems

We observe that chemical reactions in living organisms are highly
organized and create an integrated system. The definition of the molecular
recognition allows one to formulate integrity property for a chain of chemical

reactions.
We define a chain of chemical reactions {CR, } by means of the formula
Ay + by = ags1 +{dyi}, o € Icg. (46)
Thus, the characteristic property of the chain of reactions consists in fact that

the product a,,; of the reaction CR, is a substrate for the next reaction

CRy 11 The substrate b, is taken from an environment.

Values of positions and velocities of nuclei of atoms belonging to

molecules a, and b, at the time instant ¢ are denoted by {R, v}({a,,, by })(?).
Let U, stand for the range of selection for the reaction CR,. Let us consider

a time interval A, = [tp(x, Iro] connected with a stage of realization of the
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chain of reactions. We assume that an instant for inception of the reaction

CR,, belongsto A,.

Definition 8. We say that the chain of the chemical reactions {CR, },
a € Icp has the integrity property if {R, v}({a,, by })(t) € U, for some

t € Ay foreach o € Icp.

The range of selection is of fundamental importance for this definition.
Each step of realization of the chain of reactions has to be preluded by
molecular recognition. This has to be interpreted as a necessary condition for

precise realization of this system of chemical reactions.

The mathematical definition of the molecular recognition enables us to
discuss problem of integrity of larger system of chemical reactions. Thereby,
we have accentuated role of notion of molecular recognition. We can define
it for various systems and various scales as it was shown for reactive

nanostructures.

At this stage of description, it seems that the integrity property needs
further investigations. This is related especially to the case where we
manifest in description variables related to lower scale. Let us mention again
generalization of molecular dynamics towards potentials dependent on
electronic variables considered in [1]. It is expected that similar step can be
done for molecular structures in order to improve considerations related to
properties of the system induced by presence of attractor on the most
elementary level. Then integrity should find its manifestation in more

averaged models.
5. Final Remarks

Two papers [1] and this one present a structure of theory which would
be convenient for modelling of biological systems. This theoretical approach
is created with intention of providing a possibility of description of
biological systems which is especially adjusted to such objects. In particular,

one accentuates necessity of considering of integrity and multiscale aspects
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of biological systems. Furthermore, an effort is done in order to obtain a
theoretical description which would be able to unify models of various
phenomena which happen in biological systems within one theoretical
scheme. This in turn can be important in a future when we expect to obtain
possibility of doing of complex numerical simulations. They have to be

based on stable theoretical foundations.

It is shown in the paper [1] how the most elementary theory called
vacuum medium mechanics is developed in order to localize mechanisms of
selforganization in molecular physics. At this stage of development, the

chain state of electrons is considered as a driven force for evolution.

Furthermore, multiscale method of modelling considered in this paper
called collection of dynamical systems with dimensional reduction is aimed at
providing possibility of description of dynamics at various scales together
with possibility of transition between them. Within this approach, the
role of reactive nanostructures is accentuated as particularly convenient to

description of functionality in molecular processes.

This multiscale method should be able to describe evolutionary
properties of biological systems expressed in larger scales where hitherto
constructed theories related to evolution usually act. In other words,
evolutionary phenomena should be obtained by means of the dimensional
reduction procedure having at the most elementary level mechanisms of

selforganization based on vacuum medium mechanics.

Both mentioned above approaches are the main elements of structure of

theory elaborated for modelling of biological systems.

Further development of this theoretical structure should be continued
towards more detailed modelling of single electron in order to obtain the best
quantitative theory as far as it is possible. Then construction of atomic and
molecular physics on this basis would have good qualitative properties for

description of evolution.
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Multiscale modelling should be continued towards specification of more
details of models at various scales. At the atomic level, we should construct
models which take into account dependence of potentials on electronic
variables. Nanoscale models should be able to select particular properties of

molecular systems which are responsible for functionality.

Efficient transition between scales by dimensional reduction procedure
is important. This is so since numerical simulations of complex molecular
objects change type of dimensional reduction when change of quality of
phenomena happens. This will happen frequently during chemical reactions
and structural transformations. Consequently, we should elaborate also
efficient transition between various dimensional reduction procedures on the

same level of description during numerical simulations.

Summarizing, it is my hope that this way of construction of mathematical

theory can be useful for further development of theoretical biology.
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