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Abstract 

In this paper, considered as the second one of the two-part paper, we 
discuss a structure of mathematical theory which would be convenient 
for description of biological systems accentuating to more degree 
multiscale aspects of modelling. In the first part, we have discussed 
two levels of modelling. The first one has been related to electronic 
structure and the second one has been related to atomic level of 
description. The third level of description considered here is called 
functional and is related to scale larger than atomic one. Models 
related to such a scale are designed to description of selective 
functions of biological systems. In order to join of all descriptions 
introduced in both parts of the two-part paper, one proposes 
application of collection of dynamical systems with dimensional 
reduction as a multiscale method of modelling. Within this method, a 
scale of averaging applied in modelling is formalized. By this step, we 
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obtain convenient conditions for unification of discrete and continuum 
descriptions and a framework for whole structure for theory describing 
biological systems. Role of mechanics of reactive nanostructures is 
accentuated. By this step, we try to change the point of view that 
biology is related predominantly to chemistry. 

1. Introduction 

In the first part [1] of the two-part paper, we have discussed methods      
of modelling related to electronic and atomic scales. Consequently, the     
paper [1] has been devoted to introduction of attractor responsible for 
selforganization of molecular structures considered at the most elementary 
level corresponding to dynamics of electrons. To this end, the description is 
based on vacuum medium mechanics instead of quantum mechanics. In the 
paper [1], one also discusses description related to atomic scale where 
biological structures are formed. One accentuates role of attractor and 
integrity of molecular structures within methods of modelling. 

In this paper, one introduces the third level of modelling related to scale 
larger than atomic one and designed to description of functionality of 
molecular biological structures. Consequently, in this paper, one accentuates 
to larger degree role of multiscale aspects in theoretical description. 

The most known multiscale method of modelling is related to mechanics 
of composites and allows us to average some structures from smaller scale to 
larger one. However, in case of biological structures, we have to do with 
various mechanisms close to atomic scale where dynamics of processes is 
large. Then traditional averaging over approximately static structure is not so 
appropriate. 

We have also to do with another difficulty. Continuum mechanics which 
is applied usually to larger scales has infinite-dimensional fields. Thereby, 
when we average more complex processes described by molecular dynamics 
to more simple continuum description, we do not reduce the dimension of the 
problem. This inconvenience follows from fact that scale of averaging is not 
expressed formally. 
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Having in mind above obstacles on the way towards modelling of 
biological systems, we propose in this paper a method of multiscale 
modelling called collection of dynamical systems with dimensional reduction 
which seems to be appropriate to discussed ends. We distinguish furthermore 
particular scale of modelling by defining of reactive nanostructures. By     
this step, we try to indicate that biological processes are not related 
predominantly to chemistry but rather to stable structures which cooperate 
with chemical reactions in order to have at their disposal possibility of fluent 
change of structures. 

2. Modelling of Processes at Functional Level of Description 

2.1. Introductory remarks 

Functional properties of molecular systems are manifested usually by 
groups of atoms. Then atoms within groups cooperate in order to realize        
a task. This cooperation frequently consists in organized change of 
conformations. Functionality is manifested at various scales. Let us mention 
role of muscles which are responsible for macroscopic motion. We can 
consider motion at single cell scale manifested by motion of a bacteria. We 
can also observe motion at molecular scale. Let us mention ATP synthase 
and rotation of their parts for instance. 

Above discussion accentuates fact that functionality is related to various 
scales and particular tasks for this functionality can be represented by 
selective properties of molecular systems in relation to scale associated with 
external interaction. 

Modelling of such a functionality with the aid of full atomic description 
could be enormously complex. Therefore, selective modelling should be 
applied to this end. Then we should be able to approximate our biological 
system in order to concentrate efforts on its chosen properties. However, 
maintaining of relations with more elementary descriptions is important. 

Specificity of biological systems leads frequently to difficult questions. 
Let us mention a problem related to evolution. How a macroscopic function 
of a living organism appears as an adaptation property to environment.         
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In other words, how transmission of information from environment to 
mechanisms responsible for evolutionary changes happens. 

Let us mention the simple question why the polar bear is white. The 
question is simple but the answer is in my opinion extremely difficult. We 
should determine mechanism of intention of such a change going through all 
scales related to mathematical models and ask which electronic process         
in molecules can express intention of corresponding reconstruction of the 
molecular system. 

At this moment, we are not able to pose such a question since we have 
not at our disposal any theory which would be able to describe processes     
in all scales and would have determined the most elementary evolutionary 
mechanisms. In other words, now we have at our disposal descriptive 
evolution theory without any mechanisms responsible for such an evolution. 
Furthermore, modelling of selective functions is now rather arbitrary since 
methods of modelling are not unified. Let us mention an example. 

Evolution of DNA by mutations applied also in theoretical models is in 
fact observed property which is introduced into model phenomenologically. 
However, physical mechanism of generation of mutations is not clear. 
Frequently, statistical approach is applied in order to justify this way of 
evolution. In order to treat stochasticity in mutations as mechanism of 
evolution, we should have justification of the stochastic distribution from 
smaller scale processes. By this point of view, one suggests that stochastic 
evolution is generated by lower scale physical laws which have stochastic 
manifestation at the atomic level. 

The aim of this section is to characterize a methodology in construction 
of a multiscale theoretical description which would be able by its further 
development to approach to above discussed questions. 

2.2. Collection of dynamical systems with dimensional reduction 

Method of collection of dynamical system with dimensional reduction is 
previously elaborated for mechanics of materials [2]. In this paper, we adapt 
and include it into general concept of modelling of biological systems. 
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General aim of the collection of dynamical systems with dimensional 
reduction is to elaborate methods of dimensional reduction of an elementary 
dynamical system (EDS). The elementary dynamical system represents 
description of physical processes on an assumed elementary level and               
is characterized usually by considerable complexity. By means of the 
dimensional reduction, we obtain a simplified model based on theoretical 
foundations provided by the EDS. 

Let ϕ be variables of EDS and f represents external interactions acting on 
such a system. Then we introduce the elementary dynamical system in the 
form 

 ( )., fϕϕ L=�  (1) 

Transition to a larger scale of averaging is connected with a simplification of 
this model, corresponding to reduction of degrees of freedom. Our concept  
of this simplification consists in division of the elementary dynamical  
system (1) into subsystems. Subsystems are distinguished by determination 
of groups of variables { },α= hh ϕϕ  .AhI∈α  Then our initial variable takes 

the form { },hϕϕ =  { },...,,1 PIh P =∈  where P is a number of subsystems. 

Determination of subsystems allows one to introduce new variables. 
They have a reduced number of degrees of freedom and describe 
approximately behaviour of each subsystem. New variables are introduced 
by a mapping TTT VV →=π  which transforms processes ( ) TVt ∈ϕ  

determined on a time interval T into processes determined on the reduced 
level of description ( ) .TVt ∈d  

External interactions acting on the dimensionally reduced dynamical 
system have to correspond to those ones introduced for the elementary 
dynamical system. Such a correspondence is introduced by a mapping 

TTTf FF →π :  which transforms processes of external interactions. 

The dimensional reduction procedure { }appSDSDR TfT ,,, ππ=  

consists of four elements. Determination of new variables and external 
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interactions with the help of Tπ  and fTπ  is a first step in postulating of a 

skeletal dynamical system SDS. The ( )CSDS  represents a set of dynamical 

systems with elements depending on constants C. Final form of the 
dimensionally reduced dynamical system RDS is obtained by identification 
of the best constants C  by comparison of solutions of the elementary 
dynamical systems and solutions depending on C which are obtained from 
equations of the skeletal dynamical systems. Then we obtain =RDS  

( ).CSDS  The set of all methods of approximation and identification applied 

for obtaining C  is denoted by app and is viewed as fourth component of the 
dimensional reduction procedure. 

Discussion of particular form of the dimensional reduction procedure 
will be carried out in next sections in relation to reactive nanostructures. 

2.3. Balance of mass and energy for collection of dynamical systems 

In order to postulate a form of the skeletal dynamical system, we have to 
introduce a set of assumptions which enable us to transfer fundamental 
physical laws expressed by balance of mass and energy equations into the 
reduced level. They are transferred from the EDS level. 

Let { }{ },hϕ=ΠM  PIh∈  stand for space of solutions of the elementary 

dynamical system with distinguished groups of variables hϕ  related to hth 

subsystem. We introduce the following set of assumptions: 

1. There exists a function ( ) { }hhhhh mmm β= ...,,1ϕ  which assigns a set 

of masses for the hth subsystem. The total mass of this subsystem is then 

∑= i hih mm .  We have also that ∑ =βh h N ,  where N is the total number of 

masses in the whole system. The function PRm →ΠM:~  with property 

{ }( ) { }hh mm =ϕ~  determines distribution of masses in subsystems and 

,: Rm →ΠM  { }( ) hh mm Σ=ϕ  determines the total mass related to (1). 

2. There exists a function ,:~ PRE →ΠM  { }( ) { }hh EE =ϕ
~  which 
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determines distribution of energy assigned to subsystems and ,: RE →ΠM  

{ }( ) ∑= h hh EE ϕ  determines the total energy related to (1). 

3. There exists a family of mappings ,: RJij →ΠM  ,, PIji ∈  

{ }( ) ijhij JJ =ϕ  called flux of mass from jth subsystem to ith subsystem and 

,0=+ jiij JJ  .0=iiJ  

4. There exists a family of mappings ,: RWij →ΠM  ,, PIji ∈  

{ }( ) ijhij WW =ϕ  called flux of energy from jth subsystem to ith subsystem 

and ,0=+ jiij WW  .0=iiW  

5. A source of mass is determined by a function ,: pRc →ΠM  

{ }( ) { }.ih cc =ϕ  { }( )hii cc ϕDπ=  can be considered for each subsystem of 

the whole system and stands for a source of mass in the ith subsystem. 

6. A source of energy is determined by a function ,: PRR →ΠM  

{ }( ) { }.ih RR =ϕ  { }( )hii RR ϕDπ=  can be considered for each subsystem of 

the whole system and stands for a source of energy in the ith subsystem. 

Let PG II ⊂  be a set of indexes which distinguishes a group of 

subsystem. Then GPO III −=  determines subsystems which are external 

with respect to our group. 

By means of above introduced assumptions, we are able to carry out 
analysis of interchange of mass between subsystems as well as to consider 
possible sources of mass which appear within subsystems. This leads to 
expressing the balance of mass equation for collection of dynamical systems 
in the following form: 

( ) ( )∑ ∑ ∑
∈ ∈ ∈∈

+++−
G G OGIi Iji IjIi

jiijijii JJJcm
, ,

�  

( )∑ ∑
∈ ∈

=−++
O OIji Ii

iiij cmJ
,

.0�  (2) 
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Total sum of masses interchanged between subsystems, within the 
distinguished group by ,GI  without any interchange with an external 

subsystem is equal to zero. Consequently, we obtain then ∑ ∈ =
GIji ijJ, .0  

Option of GI  is arbitrary. Accordingly, we can express the balance of 

mass equation connected with an arbitrary group of subsystems represented 
by GI  with the help of the formula 

 ∑ ∑
∈ ∈

=













+−

G OIi Ij
ijii Jcm .0�  (3) 

The terms ijJ  describe interchange of mass with an external system 

indexed by elements of .OI  As a result, equation (3) is not entirely 

determined. This, in turn, necessitates introducing an additional condition 

 ,, Oijij IjJJ ∈=  (4) 

where ijJ  is given and expresses an assumed form of efflux of mass. 

The balance of energy equation has similar structure as the balance of 
mass equation and is given by 

 ∑ ∑
∈ ∈

=













+−

G OIi Ij
ijii WRE 0�  (5) 

with additional conditions 

 ,, Oijij IjWW ∈=  (6) 

where ijW  represents an assumed form of efflux of energy. 

Balance of mass and energy equations given by (3)-(6) is a starting point 
for postulating the skeletal dynamical system. This is realized by option of 
new variables and representations of functions which appear in (3)-(6). These 
functions are parameterized then by a set of constants which should be next 
identified. 
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2.4. Continuum skeletal dynamical system 

Wide application of continuum mechanics in biology necessitates 
discussion of way of appearing of this theory within the collection of 
dynamical systems. Foundations of continuum mechanics have been 
discussed by many authors, see for instance [3, 4]. 

We would like to introduce fundamental notions of continuum 
mechanics in connection with the elementary dynamical system. Continuum 
is defined by means of geometrical terms. Therefore, we introduce an 
additional assumption related to properties of subsystems distinguished 
within EDS as follows: 

Geometrical objects of various dimensions can be assigned to each 

subsystem by means of mappings ,P
ex EG →= ΠM  ( ) ,2: PE

L eG →ΠM  

( ) ,2: PE
S eG →ΠM  ( ) ,2: PE

V eG →ΠM  where eE2  stands for family 

of all subsets of the Euclidean space .eE  The map xG  assigns some 

distinguished points to subsystems, LG  introduces one-dimensional, SG  

two-dimensional, VG  three-dimensional geometrical objects considered as 

subsets of eE  and accompanied by distinguished subsystems. 

Assumption introduced above gives possibility of discussion of 
geometrical objects associated with EDS. In particular, we can discuss 
position vectors related to EDS by means of mappings .xG  This also gives a 

possibility of considering kinematics and other elementary notions of 
continuum mechanics in relation to the elementary dynamical system. 

For defining a body, we consider the mapping { }( ) { },hhV KG =ϕ  where 

hK  is a three-dimensional subset of .eE  Let { }Ph IhK ∈= ,K  and 

{ }KM =K  stand for all families of hK  obtained by means of .VG  Then 

.: KVG MM →Π  We assume also that ,∅=hg KintKint ∩  ,, PIhg ∈  

where int is operation of taking interior of a set. 
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Definition 1. The body associated with the elementary dynamical system 

( )f,ϕϕ L=�  is defined with the help of mapping VG  as ∪ PIh hK∈ϕ = .B  

Deformation is connected with evolution of points with respect to 
reference configuration. In order to describe deformation, we consider the 
function xG  which assigns a distinguished point hχ  to each subsystem. 

Consequently, we have that { }{ }.: hxG χ→ΠM  We interpret { }hχ  as 

distinguished positions associated with subsystems. 

Let { }a
hmh ImH ∈χ=χ ,  and ahV  be a linear space. The set a

hI  

represents indexes of subsystems mK  which interact with .hK  Then           

we introduce the function { } ahhh VHa →χ:  and {{ } } →∈χ Ph IhHa ,:  

{{ { }( )} }Pmh Iha ∈χ ,  as a function of kinematical dependence between 

subsystems. By this function, the gradient of deformation and strain tensor 
can be introduced. 

The space { }{ }PhhD IhaV ∈χ= ,,  characterizes deformation determined 

by a finite number of parameters. Let us define the space κV  of deformation 

functions κχ  of the body B  with respect to a given configuration κ as 

{ }C∈κλκλ=χχ= −
κκκ ,,: 1DV  in accordance with classical formulation 

of continuum mechanics [3]. Let furthermore, κχ →α VVD:  be a function 

and { }( ),, hh aχα=χ χκ
K  ( ) ,hh χ=χκ XK  where hX  is a value of hχ  in a 

reference configuration. 

Definition 2. The deformation function associated with the distinguished 

family of subbodies K  is a function K
κχ  which has the form =χκ

K  

{ }( )., hh aχαχ  

Definition 3. The motion of the body B  associated with the family of 

sets K  is a continuous map [ ] { }.,0: K
κχ→χ Tt  
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Let us consider a function ,: P
K RT →M  { }( ) { }hh TKT =  which 

represents temperature. Let furthermore P
b
h II ⊂  and { }., b

hnTh InTH ∈=  

Then we introduce function hb  by analogy to ha  as { } bhThh VHb →:  and 

{ }{ } ( ){ }{ }.: nhTh TbHb →  

Determination of the value hT  is not so direct as defining .hχ  In the last 

case, we use geometrical interpretation. We cannot do this in the case of 
temperature. Discussed problem is connected with precise definition of       
the mapping Tπ  considered as component of the dimensional reduction 

procedure. Such a definition allows one to distinguish the part of evolution of 
the system which is responsible for definition of temperature. 

Let { }{ },,, PhhTM IhbTV ∈=  ( ) ( ){ }.: Bχ∈= xxTVTM  Let us consider 

a function TMTMT VV →α :  and { }( )., hhT bTT α=K  

Definition 4. The temperature field KT  associated with the distinguished 
family of subbodies K  is the field obtained with the help of the function Tα  

as { }( )., hhT bTT α=K  

We have obtained definition of the body, deformation function and 
motion of the body using an elementary dynamical system. The mappings 

,VG  xG  determine connections between EDS and continuum description. 

Furthermore, temperature is connected with EDS by means of the mapping 
.Tπ  

The spaces DV  and TMV  are finite dimensional. As a result, we have 

obtained also finite-dimensional spaces ( )DVχα  and ( ).TMT Vα  This follows 

that finite-dimensional fields are considered on continuum only. 

In order to introduce a continuum skeletal dynamical system, we must 
have at our disposal balance of mass and energy equations also associated 
with the elementary dynamical system. Previously we have defined functions 

,~m  ,ijJϕ  ,ϕc  ,ϕE  ,ijWϕ  ϕR  which introduce masses, efflux of mass 
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between subsystems, source of mass, energy, efflux of energy and source of 
energy related to subsystems, respectively. These functions, indexed here by 
ϕ, are introduced in connection with the elementary dynamical system. 

Let us consider the mapping { }{ }hmm →ΠM:~  which determines a set 

of masses related to collection of dynamical systems. Let { }{ }hM M=M  

and MKM MM →:  be a mapping which assigns masses to each .hK  

Masses hM  related to continuum model are defined by means of the relation 

,~miGM V DD =  where i is an identity mapping. Thereby, a system of 

masses related to continuum is introduced by means of the mapping m~  
defined on elementary dynamical system. 

We have defined body B  associated with the elementary dynamical 

system. We define subbody also denoted by ∪h hK ,=B  ,BIh ∈  where 

PB II ⊂  is an arbitrary subset of .PI  Let us introduce ( ) ∑ ∈=
BIh hMM .B  

Thereby, mass related to subbodies is defined as a kind of measure on the 
body. 

The function { }{ }hK EME →:  determines distribution of energy on 

the family { }hK  and { }( )hhh KEE Dπ=  assigned to each hK  is defined by 

means of the relation .ϕ= EiGV DDE  

Source of mass PRc →Πϕ M:  and source of energy PRR →Πϕ M:  

are defined now as ,: P
K RC →M  P

K RR →M:  by means of relations 

ϕ= ciGC V DD  and .ϕ= RiGR V DD  These quantities can be defined for 

subbodies with the help of formulas ( ) ∑= h h ,EBE  ( ) ∑= h hCC ,B  ( )BR  

∑= h hR .  

We assume without discussion of details that TE += E  is considered 
as a sum of internal energy and kinetic energy for continuum. 
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Interchange of mass and energy is described by efflux of mass 
RJ ij →Πϕ M:  and efflux of energy .: RW ij →Πϕ M  These quantities 

are defined for continuum as ,: RKKJ jiij →×  where ijJ  is determined 

by means of ( ) ijVjViij JiGGJ ϕ=× DD  and ,: RKKW jiij →×  where we 

obtain ijW  from ( ) .ijVjViij WiGGW ϕ=× DD  

Let us consider furthermore boundary of the body as .hh K∪∂=∂B  

We define ( ) ∑ −∈∈=∂
BPB IImIi imJJ ,B  and ( ) ∑ −∈∈=∂

BPB IImIi imWW ,B  

as quantities referred to boundary of the body. Let BB ∂⊂∂ s  be defined as 

( ),BB ∂∂=∂ ∈ ∩∪ hIhs Ks  .Bs II ⊂  We assume that pair of indexes { }mi,  

is associated with sB∂  if sB∂  is a border between subsystems i and m. Then 

( ) ∑=∂ mi ims JJ , .B  

Using terms of continuum associated with the elementary dynamical 
system introduced above, we can express balance of mass equation for 
continuum which corresponds to (3) as 

 ( ) ( ) ( ) 0=−∂+ BBB CJM�  (7) 

with the additional condition as a counterpart of (4) and satisfied for arbitrary 
,BB ∂⊂∂ s  

 ( ) ( )ss JJ BB ∂=∂  (8) 

for a given ( ).sJ B∂  

The balance of energy equation corresponding to (5) and now expressed 
in terms of continuum is assumed in the following form 

 ( ) ( ) ( ) ( ) 0=−∂++ BBBTB RWE ��  (9) 

with the additional condition corresponding to (6) and satisfied for arbitrary 
subboundary BB ∂⊂∂ s  of the body ,B  
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 ( ) ( )ss WW BB ∂=∂  (10) 

for a given ( ).sW B∂  

Considered above equations of balance of mass and energy are the first 
stage for postulating of form of the skeletal dynamical system. In the next 
step, we assume representations of quantities introduced in (7)-(10). They are 
parameterized by some constants which have to be identified. Identification 
of these constants is realized with the help of solutions of the elementary 
dynamical system. 

Continuum fields on the body are introduced by means of previously 
determined discrete fields with the help of mappings similar to χα  and Tα  

for deformation and temperature. They should fulfill well known integral 
relations between densities and discrete values of quantities on each subbody. 
Consequently, discussed here continuum mechanics is characterized by 
finite-dimensional spaces of fields. In classical case, such spaces are infinite-
dimensional. This difference is important. Derived equations are finite-
dimensional and we do not apply discretization methods. In discussed case, a 
continuum model with finite-dimensional fields is inherently connected with 
determination of degree of averaging what is expressed by option of sets hK  

and the skeletal dynamical system. As a result we introduce by this, 
formalization of scale of averaging. Such a fact is important for description 
of processes associated with phenomena relating to several scales. Thereby 
this is also important for biological systems. 

Introduced formulation of continuum mechanics admits integration of       
it with molecular dynamics. This integration consists in fact that we use      
EDS determined by molecular dynamics equations and continuum skeletal 
dynamical system in the framework of the dimensional reduction procedure. 

Let us note that connections of molecular dynamics and continuum 
mechanics are discussed in literature. Such considerations are carried out 
usually in the context of statistical mechanical calculations supported by 
molecular dynamics [5, 6]. Considerable achievement for cooperation of both 
theories is given by Prrinello and Rahman in [7]. 



On a Structure of Mathematical Theory … 91 

3. Mechanics of Reactive Nanostructures as a 
Functional Level for Modelling 

3.1. Introductory remarks 

Biological structures are frequently similar to solids. It means that role  
of chemical reactions is not so dominant as frequently is commented. 
Sometimes they say that biology is a chemistry. However, biological 
processes create very stable structures which are not similar to chemical 
reactions. Let us mention DNA for instance. The DNA molecule takes part in 
chemical reactions. However, this molecule is viewed predominantly as a 
relatively stable structure which can undergo some changes. We observe also 
that higher level of evolution is associated with creation of more dense 
molecular structures. We observe for instance in single cell increasing 
number of various compartments when evolution is continued. This makes 
structure of cell more dense and stable. In larger scale, an animal is perceived 
rather as solids like object than a chemically reacting system. 

Above comments suggest a change of traditional point of view which 
treats biological systems predominantly as reacting system. On the other 
hand, stable structures within biological systems are characterized by large 
flexibility related to conformations and also with respect to possibility of 
changing this structure in order to evolve. 

Possibility of fluent change of structures is realized just by chemical 
reactions. Thereby, we should see biological systems as a set of stable 
structures with possibility of realization of some structural changes, 
cooperating with chemical reactions. Thereby, this point of view suggests 
that chemical reactions are important but are considered now in a larger 
context. Accentuating role of stable structures, we introduce to larger degree 
molecular physics together with theoretical chemistry into description of 
biological systems. 

Taking into account above discussion, we introduce concept of molecular 
reactive structure as an important object in mathematical modelling of 
biological systems. 
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3.2. Definition of the molecular reactive structure 

Large part of molecules in cell does not change their chemical 
composition for a time. However, such molecules can undergo structural 
transformations and take part in chemical reactions. Thus, they are similar     
to catalysts. However, category of catalysts is functionally directed to 
controlling chemical reactions. We would like to define molecular reactive 
structures as all stable with respect to composition molecules which can take 
part in chemical reactions but their functions can be various. In particular, 
they can be enzymes or they can create larger, solids like structures. 

We formulate definition of the molecular reactive structure considering 
molecule as a set of material points corresponding to nuclei of atoms. We 
introduce notation ( )RS  for a system of the material points representing 

molecule and R for its current configuration. We introduce notation from the 
set theory for systems like S. Thus, two subsystems SSS =21 ∪  create a 
new molecule represented by S. 

Let { },iRS RR =  RSIi ∈  stand for positions of material points within 

the reactive structure .RSS  The configuration RSR  can undergo transition 
between catchment regions during evolution. We admit, in general, 
transitions for the molecular reactive structure which do not destroy an 
admissible structure of interatomic bonds. 

Let us introduce a relation RSRS II ×⊂αB  which consists of pairs of 

nuclei which are joined by interatomic bond ( )., jib RR  Existence of such 

bonds can be determined by means of methods of quantum chemistry [8] for 
instance. 

Let BA  be a set of all relations αB  which represents an admissible 

structure of interatomic bonds within .RSS  The term “admissible” 

corresponds to current requirements related to described structure. Thus, we 
can accept the case when the set BA  consists of one element only. Then all 

interatomic bonds cannot be changed with respect to the relation classifying 
them. However, we can accept the situation when a reorganization of 
interatomic bonds structure without unwanted changes happens. 
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With the help of the set ,BA  we introduce a relation between relations. 

Thus, ,α′α ≡ BB A  when ., BABB ∈α′α  

We accept potential energy hypersurface and notion associated with it for 
further considerations. Domain CV  of the potential energy can be divided 

into catchment regions αC  connected with minima αc  of V as αα= CC ∪V  

[10, 11]. If the molecule RSS  interacts with other particles during a chemical 

reaction, then the configuration space is extended. As a result, the potential 
energy ( )ERSVV RR ,=  depends on additional variables ER  representing 

a system of external molecules .ES  Decomposition of CV  into catchment 

regions depends now on ER  and we have ( ).ECC Rαα =  

Let us assume that { }( )tERS RR ,  represents process of a chemical 

reaction. At an initial instant ,It  the molecules RSS  and ES  are separated. 

At a final instant ,Ft  they are also separated. This can be expressed by the 

fact that ( ) ( ) ( )EERSRSttERS VVV FI RRRR +=| ,,  in a neighbourhood of 

initial and final positions of this molecular system. We introduce a set of 
admissible processes ( ) RSE t A∈R  satisfying discussed above conditions 

with respect to RSS  and which ensures realization of this reaction process. 

Definition 5. We call a molecule RSS  the molecular reactive structure if 

configurations RSR  induced by all admissible processes ( ) RSE t A∈R  are 

contained within domain ( )( )∪ CI EC tC∈α α= RV  between initial and final 

instants It  and .Ft  Furthermore, then we also have α′α ≡ BB A  for each 

pair CI∈α′α,  which appears during evolution of the configuration RSR  

through various catchment regions. 

This definition expresses fact that the molecular reactive structure takes 
part in a chemical reaction but interatomic bonds can undergo evolution 
without destroying their admissible structure only. Thereby, deformation and 
structural transformations of the molecule RSS  are admissible. 
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3.3. Skeletal dynamical system for reactive nanostructures 

We have introduced molecular reactive structures using atomic level          
of description. However, we can discuss reactive structures also by more 
averaged descriptions. 

Let us consider behaviour of actin cytoskeleton [12, 9]. This molecular 
structure undergoes considerable reorganization in order to realize motility  
of cell. In particular, cytogel into cytosol transformation is realized by 
destruction of a meshwork of actin filaments. Assembly of contractile actin-
myosin filaments is organized within cell for generation of active stress. 
Such a medium can be described by means of continuum models [9] in a  
very averaged way. Then the problem is to postulate form of constitutive 
equations taking into account high controllability of this medium. 

Elementary mechanisms of reorganization of the actin cytoskeleton are 
related to single molecules. Actin filaments are assembled from monomers 
[12]. Protein molecules take part in regulation of these processes [9, 13, 14]. 

Above concise discussion suggests that considered here processes are 
related to single molecules or to a system of such molecules which can 
undergo a reorganization. Thus, evolution of this system depends on the 
properties of single molecules as well as on processes responsible for the 
reorganization. 

Direct modelling of single molecules considering all atoms is too 
complicated for description of the multimolecular processes. Therefore, it 
seems to be the most appropriate to elaborate models of single molecules 
which describe evolution of groups of atoms within them in an averaged 
way. Then we have to use a nanoscale level of averaging properties of 
intramolecular processes. Furthermore, we should be able to describe 
mentioned above processes of reorganization as well as interactions with 
external chemical reactions. 

We can encounter in literature some models which consider reduced 
number of degrees of freedom for describing evolution of molecules. Let us 
mention for instance the papers [15-17]. 
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Particular properties of reactive nanostructures have to follow from 
smaller scale considerations. Consequently, reactive nanostructures should be 
placed in our multiscale method of modelling. We tend towards construction 
of a skeletal dynamical system for our reactive nanostructures. To this end, 
we should distinguish first a set of new variables related to the reduced level 
of description. 

In many cases, during modelling, we are able to distinguish slowly and 
quickly varying processes realized within considered system. We assume that 
this is the case for evolution of our molecule modelled. Thus we consider 
thermal vibrations as quickly varying processes and structural transformation 
or a deformation of the molecule as the slowly varying one. Such division of 
processes, we call SQ-decomposition. We introduce variables which reflect 
this property, by means of a set of mappings defined to this end. 

We consider, as previously, a molecule ( )RSS R  modelled by means of a 

set of material points. We distinguish subsystems within such a molecule as 
( ) ({ })∪ AIh hjhRS SS ∈= RR  composed of determined groups of atoms. 

Let us note that many small molecules appear in biological systems 
repeatedly, what gives a hope to obtain a degree of universality in division 
into subsystems. 

We introduce three kinds of variables on the dimensionally reduced level 
of description. The first one represents configurational variables { }hph Q=Q  

and velocities ,hh Qw �=  which approximately describe evolution of the 

whole group of particles within hth subsystem. They describe slowly varying 
processes. We introduce also the configuration space { } { }{ }hC QQ ==V  

and the corresponding phase space { }{ }., hhD wQ=V  

The second kind of variables hθ  describes in an averaged way quickly 

varying processes and is related directly to balance of energy equation. The 
third group of variables hη  is related to quickly varying processes and needs 

postulating additional evolution equations. 
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Let us introduce spaces of processes { }( ){ }TtIit RSiiT ∈∈= ,:, vRV  

related to atomic level of description and 

{ }( ){ },,:, TtIht AhhDT ∈∈= wQV  

{ }( ){ },,: TtIht AhT ∈∈θ=θV    { }( ){ }TtIht AhT ∈∈=η ,:ηV  

and ,TTDTT ηθ ××= VVVV  where T is a time interval. 

New variables are obtained by means of the mappings ,: TTT VV →π  

QTSTT π×π=π  and ,: DTTST VV →π  .: TTTQT ηθ ×→π VVV  

Structure of the mappings STπ  and QTπ  is obtained by using 

decomposition of variables. In order to illustrate this, let us take a set of time 
instants kttt <<< "10  which belong to the time interval [ ],,0 KttT =  

,0 TttK +=  and let { }....,,1,0 KIK =  By means of these instants, we 

divide the time interval into the sum ,kk TT ∪=  [ ],,1 kkk ttT −=  ....,,1 Kk =  

Then for each k, we can calculate the value of kR~  as 

 ( )∫=
kTk

k dttT .1~ RR  (11) 

A value ( )00
~ tRR =  is assigned to .0=k  With the aid of sequence of 

values { },~
kR  ,KIk ∈  we can generate a function ( ) ({ }),~~

kRt RR J=  where 

RJ  is an approximation procedure which tries to lower second order 

derivative as far as it is possible for ( ).~ tR  Now, we are able to decompose 

the variable ( )tR  into two summands 

 ( ) ( ) ( ).~ ttt RRR δ+=  (12) 

Thus, ( )tR~  represents the slowly varying part of ( )tR  and ( )tRδ  its quickly 

varying part. 

We assume that the mapping RJ  satisfies the condition ( )∫ −
kT

dtRR ~  

∫ ≈δ=
kT

dt ,0R  where ”“≈  means equality with an admissible error. In 
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general, methods of determining of RJ  are an open problem. In the          

paper [18], one considers a numerical example of procedure of such a 
decomposition. 

Let ({ }( )) { }( )ttAt RRRRRR ��� δδ= ,~,,~,  be mapping which realizes SQ-

decomposition. We assume further that there exist mappings Sπ  and Qπ  

which give direct assignation of new reduced variables to those obtained by 
means of .tA  We would say that Sπ  and Qπ  take into account also a space 

averaging imposed on previously obtained time averaging introduced by .tA  
As a result, we obtain 

 { } { }.,, tQtSQTSTT AA DD ππ=ππ=π  (13) 

Similar SQ-decomposition can be carried out for forces f. To this end, we 
calculate the following time averaged quantities 

 ( )∫=
kTk

k dttT .1~ ff  (14) 

Then we have ( ) ( )kft ff ~~
J=  with the help of an approximation procedure 

.fJ  Finally, we obtain the decomposition 

 ( ) ( ) ( ).~ ttt fff δ+=  (15) 

Let ( )( ) { ( ) ( )}tttBt fff δ= ,~  and ( )( ) ,StSf tB ff =π D  ( )( ) .QtQf tB ff =π D  

Thereby, we obtain the general form of the map Tfπ  by 

 { }tQftSfTf BB DD ππ=π ,  (16) 

and ( )( ) { }( )., tt QSTf fff =π  

In general, it is expected that mappings Tπ  and Tfπ  are not entirely 

independent. We postulate that there exists a relation ( )TfTL ππ ,R  which 

joins considered two mappings. By this relation, we accentuate fact that it is 
possible that averaging methods applied to processes described by variables 
of the dynamical system and processes related to forces can be consistent to 
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some degree. At this moment, we do not analyse this possibility in details. In 
discussed here case, we assume that IL =R  or in other words, the same 

procedures are represented by Tπ  and .Tfπ  

Discussed above SQ-decomposition is similar to some degree to the 
Parinello Rahman method applied in molecular dynamics [7]. 

In order to construct a skeletal dynamical system, we have to postulate 
form of total energy E  of the system modelled. We assume that 

 ( )∑ ∑ +==
h h

hhh VE ,TE  (17) 

where ∑= h hTT  is kinetic energy corresponding to slowly varying 

processes and 

 ( )∑ ∑ +Φ=+=
h h

QQhShh VVV E  (18) 

is decomposed into parts related to slowly and quickly varying processes. 
Furthermore, we assume that 

 ( ),, QhhShShSh aCV QγγΨ=  (19) 

 ( ),, hhQhQhQh aCV θδδ θΨ=  (20) 

where Qha  and haθ  are functions of kinematical dependence between 

subsystems related to hQ  and hθ  correspondingly. They are defined in 

similar way as this is done in subsection related to continuum mechanics for 
deformation function and temperature. We admit dependence δγ QhSh CC ,  on 

hhh ηQ ,, θ  in the sequel. 

Let us consider temporarily a given constant values of variables { }., ηθ  

By such a step, we can introduce the properties of the function =Φ~  
{ }( ) ( )Qη,θΦ  defined in (18) which depends now on configurational 

variables only. We also assume that { }hQQ =  stands for minimum of this 

function. 
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Let ,: CCRA VV →  CCTA VV →:  be mappings which realize the 

same rotation and translation for each component of Q belonging to the 

configuration space .CV  Then the transformation 

 ( ) ( )QQQ TR AA +=  (21) 

represents rigid transformation of the configuration .Q  In other words, we 

have defined rigid motion of the molecule S on the dimensionally reduced 
level. 

Let [ ]Q  stand for class of elements which are determined by using of all 

RA  and TA  in (21) for given Q  and M  be set of all manifolds in .CV  We 

introduce a set of representatives of the equivalence classes in the form 

 [ ] [ ]{ }.,,: 11 M∈≠⇒∈= HHH QQQQQ  (22) 

The set H represents deformations of the molecule S determined on the 
dimensionally reduced level of description. H is viewed to be manifold since 
deformation of the molecule is considered as a continuous process. 

The domain of the function Φ~  can be expressed as a fiber bundle [19]: 

 ( ) ,, HFH RfC ∈×= QQV  (23) 

where f×  stands for symbol of generalized Cartesian product of H and          

a chosen fiber ( )QRF  identified with the equivalence class [ ].Q  H is 

considered as basis of the fiber bundle. 

We assume that the function Φ  has the following properties for each 
given values of { }:, ηθ  

 { }( ) ( ) { }( ) ( )1,, QηQη θΦ=θΦ  (24) 

for all Q, 1Q  belonging to the same RF  and this is the case for all .RF  In 

other words, the function Φ  does not change its value during a rigid motion. 

Let [ ] Rs ⊂∗,0  be an interval. The steepest descent path ( ) [ ]∗⋅ sP ,0:,Q  
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CV→  with the origin Q is defined as a path tangent to the vector 

.
~

Qg
∂
Φ∂−=  Then we assume also that ( ) QQ =0,p  and at the end of each 

path, we have a critical point ( )∗= sp ,Qc  and then ( ) .
~

0cQ =
∂
Φ∂  

Two points Q, 1Q  are called equivalent if ( ) ( ).,, 1
∗∗ = spsp QQ  In 

other words, equivalent points are origins of steepest descent paths having 
the same ends as a critical point. 

Definition 6. Equivalence classes of the relation defined by the steepest 

descent path are called catchment regions associated with the function .~Φ  

As a result of defining the equivalence relation in ,CV  we obtain 

decomposition of the domain of the function Φ~  as follows: 

 { }( )∪
α

α θ= ,, ηCCV  (25) 

where αC  are the catchment regions. 

The catchment regions depend on { }η,θ  since the function Φ~  is defined 

for given { }., ηθ  Thus, evolution of these variables can lead to qualitative 

changes of the catchment region division given in (25). 

The kinetic energy term ( )Qhh a�,wTT =  depends on slowly varying 

variables only and inertia characteristics. Let us calculate .hT�  To this end, 

we assume that the function hT  has properties ( ) ,0
2

hq
hqhp

h

hp

h w
www ∂∂

∂
≈

∂
∂ TT

 

( ) Qh
Qh

h

Qh

h a
aa

�
��

02

2

∂

∂
≈

∂
∂ TT  expressed by means of the Taylor expansion. Finally, 

we obtain 
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( ) ( ) kqjp
kq

Qh

jp

Qh

Qh

h
hphq

hqhp
h

h QQ
Q
a

Q
a

a
wwww

���
��
��

�
�

�
��

∂

∂

∂

∂

∂

∂
+

∂∂
∂

= 00 2

22 TT
T  

krjqhjqkrhphqhpq QQIwwM ���� +=  

( ) ( ) .jqkrhjqkrhqhphpq QQIQwM ����� +=  (26) 

We use usual summation by means of the symbol Σ  for indexes of 
subsystems GIh ∈  and OIm ∈  which are related to main division into 

subsystems. For the remaining indexes, the summation convention is applied. 

Taking into account SQ-decomposition, we modify the general balance 
of energy equation (5) into the form 

 ( )∑ ∑
∈ ∈

=













++−−

G OIi Ii
QijSijQiSii WWRRE .0�  (27) 

Thereby, sources of energy considered within subsystems and efflux of 
energy are decomposed into two parts. 

We assume that γShC  and δQhC  are constants at this stage of derivation. 

Furthermore, we postulate particular forms of hqShqSh QfR �=  and =ShmW  

.mqShmqQf �−  Then taking into account (17)-(20) and (26), the balance of 

energy (27) is now expressed by means of the formula 

∑
∈

µ
µ

µ
µ










∂
∂

∂
Ψ∂

+
∂
Ψ∂

GIh
js

js

Qh

Qh

Sh
Shhq

hq

Sh
Sh QQ

a
aCQQC ��  





θ

θ∂
∂

∂
Ψ∂

+θ
θ∂

Ψ∂
+ θ

θ

ν
ν

ν
ν j

j
h

h

Qh
Qhh

h

Qh
Qh

a
aCC ��  

( ) ( ) QhhqShqjskrhjskrhqhphpq RQfQQIQwM −−++ ������  

( ) 0=






+−+ ∑
∈ OIm

QhmmqShmq WQf �  (28) 
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with additional conditions corresponding to (6), 

 .,, OGQhmQhm ImIhWW ∈∈=  (29) 

Owing to particular form of ShmW  assumed, an additional condition for this 

quantity appears and will be discussed below. 

At this moment, we admit again dependence of ,µShC  νQhC  on 

previously considered variables. We assume that terms 0≠Φ µµ ShShC�  and 

.0≠Φ νν QhQhC�  We take into account these terms in the balance of energy 

equation. Consequently, next transformed version of (28) is given by 

∑ ∑
∈ ′

′

′

µ′
µ′

µ
µ












+

∂
∂

∂
Ψ∂

+
∂
Ψ∂

GIh h
hphpq

hq

hQ

hQ

hS
hS

hq

Sh
Sh wMQ

a
aCQC �  

h
h

Qh
Qhhq

h
Shqkrhqkrh CQfQI θ

θ∂
Ψ∂

+





−+ ν

ν
′

′∑ ����  

µµ
θ

θ

ν
ν Ψ+θ

θ∂
∂

∂
Ψ∂

+ ShShj
j
h

h

Qh
Qh Ca

aC ��  







+−Ψ+ ∑
∈

νν

OIm
QhmQhQhQh WRC�  

∑ ∑
∈ ∈′

′+
O GIm Ih

mqkrmqkrh QQI ���  

∑ ∑
∈ ∈

=







−

∂
∂

+
O GIm Ih

mqShmq
mq
Sh QfQ

V ,0�  (30) 

where additional terms dependent on mqQ  are taken into account. 

We would like to introduce friction terms as well as effects following 
from stochastic forces as a result of molecule-solvent interaction. Thus we 
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assume existence, on the dimensionally reduced level, of additional forces 
.hqhqwc  Furthermore, the function Φ  can be modified by averaging of 

effects of the stochastic forces. This is postulated by extension of the 
function Φ  into the function SE Φ+Φ=Φ  in (18). SΦ  depends on hqQ  

only for this derivation. This function will be plotted with variables Sηη,,θ  

in the sequel, where Sη  is an internal variable which takes into account 

solvent properties during evolution of the system. 

Let us assume that time processes are independent. Then we obtain the 
equations describing slowly varying processes 

∑
′

′

′

µ′
µ′

µ
µ ∂

Φ∂
+

∂
∂

∂
Ψ∂

+
∂
Ψ∂

h hq
S

hq

hQ

hQ

hS
hS

hq

Sh
Sh QQ

a
aCQC  

 ∑
′

′ =++−+
h

krhqkrhhphpqShqhqhq QIwMfwc 0���  (31) 

with the additional condition 

 ∑ ∑ ∑ ∈∈≡=+
∂
∂

h h h
OGSmqShmqkrhmqkr

mq
Sh ImIhffQIQ

V .,,��  (32) 

We introduce also the equation which expresses previously introduced 
notation in the form 

 ., Ghqhq IhwQ ∈=�  (33) 

The last term in (31) contains second time derivatives of krQ  with index k 

which can be found in .OI  This induces necessity of considering furthermore 

the following additional condition 

 Omqmq ImwQ ∈= ,�  (34) 

for determining values of mqQ�  which do not belong to the system .GI  
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We obtain also from (30), using (31) and (32), the equation describing 
averaged evolution of quickly varying processes 

∑





θ

θ∂
∂

∂
Ψ∂

+θ
θ∂

Ψ∂ θ
θ

ν
ν

ν
ν

h
j

j
h

h

Qh
Qhh

h

Qh
Qh

a
aCC ��  

0=






+−Ψ+Ψ+ ∑

∈
ννµµ

OIm
QhmQhQhQhShSh WRCC ��  (35) 

with the additional condition 

 OGQhmQhm ImIhWW ∈∈= ,,  (36) 

motivated by considerations related to (6). 

Since GI  is not defined precisely, we assume that equations (35), (36) 

are valid for all GI  and thereby for all parts of the molecule composed from 

distinguished subsystems. This necessitates in turn defining a family of 
conditions of type (36). 

Let { }.,,, hhQhhh aa θθ= QH  Above introduced equations have an 

excessive number of variables. Therefore, additional constitutive equations 
must be introduced. They are assumed in the following forms: 

 ( ) ( ),,,,, QhhShShhShShSh aCV QηηC µµµ Ψ= H  (37) 

 ( ) ( ),,,,, hhQhShhQhQhQh aCV θννν θΦ= ηηC H  (38) 

( ),,,, ShhWhQhmQhm WW ηηC H=  (39) 

( ),,,, Shhhh A ηηCη Hηη=�  (40) 

where Sη  represents additional internal state variables which describe effects 

of interactions of the molecule with solvent. We introduce also the evolution 
equation for these internal state variables by 

 ( ).,,, ShhSSS A ηηCη H=�  (41) 
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Equations (31)-(41) determine skeletal dynamical system for the reactive 
nanostructure. Identification of introduced constants should be realized by 
means of comparison of solutions of molecular dynamics equations and SDS 
equations. The comparison of solutions can be carried out by means of a 
metric { }0: ∪+→×ρ RVV TTDR  determined in space of processes .TV  

Then the function IH  defined by 

( ) ( ( ) ( )( ) ( ( ) ( ) ( ))),,,,,inf, 000 ttH TfTDRI fCdff
C

πππρ=
∈

ϕϕϕϕ
C

 (42) 

where d is a solution of SDS equations, should be weakly dependent on 
quantities ,0ϕ  f related to elementary dynamical system for obtaining a good 

approximation. C  stands for a set of admissible constants C. 

Let us note that there is a challenge to introduce for such a type of 
description of reactive nanostructures variables which would represent 
presence of attractor in electronic structure. We have done such a step 
previously in [1] for modification of potential in molecular dynamics 
description. Similar effect should be present in above discussed function 
having role of a potential. 

3.4. Chemical reactions with reactive nanostructures 

We distinguish two kinds of chemical reactions. The first one is related 
to reactions with particles which are not defined as reactive nanostructures. 
We would say that they influence behaviour of the nanostructure. As a result, 
we are interested mainly in effects which they cause. Therefore, description 
of such reactions is suggested by terms responsible for external interactions. 
Consequently, we introduce the following additional equations: 

( ) ,,,,, ORCShhSmqSmq Imff ∈= ηηηH  (43) 

 ( ) ,,,,, ORCShhQhmQhm ImWW ∈= ηηηH  (44) 

( ),,,, RCShhRCRC A ηηηη H=�  (45) 

where RCη  represents internal state variables which describe process of 
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approaching, bonding and releasing of the external particles. They influence 
evolution of the system directly by Smqf  which can be viewed as a 

modifying factor related to Φ  and also by interchange of energy expressed 
by .QhmW  

The second kind of chemical reactions is related to joining of various 
reactive nanostructures as well as various forms of reorganization or 
fragmentation within a system of them. Then we are interested in description 
of more detailed mechanisms governing such processes. Therefore, the 
notion of the molecular recognition should be transferred from atomic level 
of description into the nanoscale description. 

We consider the reaction abba →+  denoted by ,R  and RC  is the 

corresponding catchment region defined on the reduced level of description. 

Let us consider a set ,DSU V⊂  { }wQD ,=  and SU∈0D  stand for 

an initial condition for evolution of .D  Let ( ) { }( )tt Sηηλ ,,θ=  stand for a 

process related to evolution of the remaining variables which have an effect 
on form of Φ  and thereby also on the corresponding catchment region .RC  

Consequently, together with evolution of λ, we consider also evolution of 
( ).λRC  

We define the set ( )SUA  as a set of all processes ( )tλ  which do not 

change qualitatively the catchment region ( )( )tCR λ  during evolution and 

( ) SUt ∈,0DD  for each t and ( )tλ  considered. This condition ensures that 

processes ( )tλ  do not disturb realization of the reaction .R  

Definition 7. We say that two molecules a and b undergo the molecular 
recognition with respect to reaction ,R  with probability p, if they find 

themselves in a state ,0 SU∈D  where DSU V⊂  is a maximal set satisfying 

the condition that there exists kt  such that for each ,0 SU∈D  we have 

( ( ( ( ))( )) ( )( ) { }( ) ( )) 1,,,0 ≤=∈θ∧∈π pUtCtt SSRC ALP ηηtλDD  and P  
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is a probability measure related to this problem. The set SU  is called the 

range of selection. 

The probability p and stochastic forces ( )tL  applied in this definition 

express connections with solvent interactions. It also means that we admit a 
stochastic effect in equations describing evolution of the nanostructure. 

The range of selection enables to formulate conditions for realization of 
the reaction R  expressed in terms of the nanoscale model. Furthermore, it 
gives possibility of discussion of integrity in reactive nanostructures. 

Form of the set SU  could be also considered as a phenomenological 

postulate. Then phenomenological, nanoscale models of assembling or 
reorganization of reactive nanostructures could be formulated neglecting 
detailed atomic processes. 

4. Characterization of Integrity of Molecular Reacting Systems 

We observe that chemical reactions in living organisms are highly 
organized and create an integrated system. The definition of the molecular 
recognition allows one to formulate integrity property for a chain of chemical 
reactions. 

We define a chain of chemical reactions { }αCR  by means of the formula 

 { } .,1 CRi Idaba ∈α+→+ α+ααα  (46) 

Thus, the characteristic property of the chain of reactions consists in fact that 
the product 1+αa  of the reaction αCR  is a substrate for the next reaction 

.1+αCR  The substrate 1+αb  is taken from an environment. 

Values of positions and velocities of nuclei of atoms belonging to 
molecules αa  and αb  at the time instant t are denoted by { } { }( )( ).,, tba ααvR  

Let αU  stand for the range of selection for the reaction .αCR  Let us consider 

a time interval [ ]ααα =∆ kp tt ,  connected with a stage of realization of the 
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chain of reactions. We assume that an instant for inception of the reaction 

αCR  belongs to .α∆  

Definition 8. We say that the chain of the chemical reactions { },αCR  

CRI∈α  has the integrity property if { } { }( ) ( ) ααα ∈Utba ,, vR  for some 

α∆∈t  for each .CRI∈α  

The range of selection is of fundamental importance for this definition. 
Each step of realization of the chain of reactions has to be preluded by 
molecular recognition. This has to be interpreted as a necessary condition for 
precise realization of this system of chemical reactions. 

The mathematical definition of the molecular recognition enables us to 
discuss problem of integrity of larger system of chemical reactions. Thereby, 
we have accentuated role of notion of molecular recognition. We can define 
it for various systems and various scales as it was shown for reactive 
nanostructures. 

At this stage of description, it seems that the integrity property needs 
further investigations. This is related especially to the case where we 
manifest in description variables related to lower scale. Let us mention again 
generalization of molecular dynamics towards potentials dependent on 
electronic variables considered in [1]. It is expected that similar step can be 
done for molecular structures in order to improve considerations related to 
properties of the system induced by presence of attractor on the most 
elementary level. Then integrity should find its manifestation in more 
averaged models. 

5. Final Remarks 

Two papers [1] and this one present a structure of theory which would  
be convenient for modelling of biological systems. This theoretical approach 
is created with intention of providing a possibility of description of 
biological systems which is especially adjusted to such objects. In particular, 
one accentuates necessity of considering of integrity and multiscale aspects 
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of biological systems. Furthermore, an effort is done in order to obtain a 
theoretical description which would be able to unify models of various 
phenomena which happen in biological systems within one theoretical 
scheme. This in turn can be important in a future when we expect to obtain 
possibility of doing of complex numerical simulations. They have to be 
based on stable theoretical foundations. 

It is shown in the paper [1] how the most elementary theory called 
vacuum medium mechanics is developed in order to localize mechanisms of 
selforganization in molecular physics. At this stage of development, the 
chain state of electrons is considered as a driven force for evolution. 

Furthermore, multiscale method of modelling considered in this paper 
called collection of dynamical systems with dimensional reduction is aimed at 
providing possibility of description of dynamics at various scales together 
with possibility of transition between them. Within this approach, the          
role of reactive nanostructures is accentuated as particularly convenient to 
description of functionality in molecular processes. 

This multiscale method should be able to describe evolutionary 
properties of biological systems expressed in larger scales where hitherto 
constructed theories related to evolution usually act. In other words, 
evolutionary phenomena should be obtained by means of the dimensional 
reduction procedure having at the most elementary level mechanisms of 
selforganization based on vacuum medium mechanics. 

Both mentioned above approaches are the main elements of structure of 
theory elaborated for modelling of biological systems. 

Further development of this theoretical structure should be continued 
towards more detailed modelling of single electron in order to obtain the best 
quantitative theory as far as it is possible. Then construction of atomic and 
molecular physics on this basis would have good qualitative properties for 
description of evolution. 
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Multiscale modelling should be continued towards specification of more 
details of models at various scales. At the atomic level, we should construct 
models which take into account dependence of potentials on electronic 
variables. Nanoscale models should be able to select particular properties of 
molecular systems which are responsible for functionality. 

Efficient transition between scales by dimensional reduction procedure  
is important. This is so since numerical simulations of complex molecular 
objects change type of dimensional reduction when change of quality of 
phenomena happens. This will happen frequently during chemical reactions 
and structural transformations. Consequently, we should elaborate also 
efficient transition between various dimensional reduction procedures on the 
same level of description during numerical simulations. 

Summarizing, it is my hope that this way of construction of mathematical 
theory can be useful for further development of theoretical biology. 
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