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Abstract 

Three of the main strategies used in controlling the spread of 
infectious diseases are immunization, quarantine of exposed people 
who have been in contact with an infectious animal or person, and 
isolation of infected and infectious people. In this paper we analyze 
the effectiveness of quarantine and isolation strategies in an SEQIJR 
model originally proposed by Gumel et al. [1] for the SARS epidemics 
in 2003 in Beijing, Hong Kong, Canada and Singapore. Numerical 
simulations of the model are presented using parameter values for the 
SARS epidemics. The effects of strategies on the basic reproductive 
rate ( )0R  are examined. The model includes changes of population 

due to natural births and deaths, and disease deaths. The numerical 
simulations show that a low level of nosocomial infection and a high 
level of isolation are required if isolation is to be an effective method 
for reducing the estimated numbers of deaths to acceptable levels. The 
simulations also show that quarantine is not expected to be an effective 
method for reducing the estimated numbers of deaths unless a high 
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level of quarantine can be implemented. The results show that death 
rates can be reduced to reasonable levels even for values of 0R  

greater than but close to 1. 

1. Introduction 

The SEQIJR model [1] of an infectious disease is a mathematical model 
which separates a population into the six categories of susceptible (S), 
exposed (E), quarantined (Q), infectious (I), isolated (J) and recovered (R). A 
susceptible person is a person who does not have the disease but can catch it, 
an exposed person is someone who has come into contact with an infectious 
person, an infectious person is a person who has the disease and can give it to 
another person, a recovered person is someone who has had the disease but 
no longer has it. A quarantined person is an exposed person who has been 
removed from contact with susceptible people and an isolated person is an 
infectious person who has been removed from contact with susceptible 
people. It is assumed that a recovered individual cannot become infected 
again, and that an exposed person has no disease symptoms (is 
asymptomatic). 

Some of the strategies that can be used to control an infectious disease 
include immunization of susceptible people, quarantine of exposed people, 
isolation of infectious people, use of personal protective equipment by 
susceptible people, and closure of centers such as schools and shops where 
large numbers of susceptible people could become exposed to the disease. 
Each of these strategies has its limitations. For example, no effective vaccine 
may be available in sufficient quantities, there may be limited facilities 
available for quarantine and isolation, closure of shops can have significant 
economic effects etc. In addition, quarantined and isolated individuals can 
still infect other people because hospital staff are required to take care of 
these two groups and hospital-based (nosocomial) spread of a disease can be 
an important source of disease transmission [2, 3]. 

In the worldwide severe acute respiratory syndrome (SARS) epidemic of 
November 2002-July 2003 there were more than 8,000 infected people with 
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774 fatalities directly attributable to SARS [4]. It is believed that the trans-
mission of SARS was effectively controlled by basic public health measures, 
including rapid case detection, case isolation, contact tracing, and good 
infection control through, e.g., hand-washing and use of personal protective 
equipment [5]. Another measure that was believed to be useful in preventing 
infections was the quarantine of asymptomatic but potentially infectious 
individuals [6, 7]. 

Many authors have developed mathematical models to analyze the SARS 
epidemic and to suggest effective methods of control. Gumel et al. [1] used 
an SEQIJR model to analyze the SARS epidemics in Beijing, Hong Kong, 
Singapore and Toronto (Canada). Models were also developed for China [8, 
9], Hong Kong [10, 11, 12], Singapore [10, 13], Taiwan [9, 14] and Toronto 
[10]. Several authors [2, 3] showed that nosocomial spread was an important 
method of SARS transmission. Yan and Zou [15, 16] used optimal control 
theory to examine optimal quarantine and isolation policies for the SEQIJR 
model proposed by Gumel et al. [1] for the SARS epidemic in Beijing. They 
used two controls, a rate of quarantine of exposed individuals and a rate of 
isolation of infectious individuals. They used a cost function which included 
costs associated with numbers of exposed, quarantined, infectious and 
isolated individuals and costs of implementing the quarantine and isolation 
policies. 

In this paper we examine the effectiveness of quarantine and isolation 
policies for an SEQIJR model. In particular, we are interested in analyzing 
conditions under which quarantine or isolation policies can reduce the 
numbers of people who contract the disease and the numbers of deaths in a 
given time period to a reasonable level. We examine two possible control 
methods for quarantine, namely, the rate of quarantine of exposed individuals 
and the rates of infection of susceptible individuals by quarantined 
individuals. Similarly, for isolation, we examine two possible controls for 
isolation, namely, the rate of isolation of infectious individuals and the rates 
of infection by isolated individuals. As stated above, the analysis is based on 
an SEQIJR model proposed by Gumel et al. [1] for the SARS epidemics of 
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2003. However, in the present paper, it is also assumed that the total 
population can change through births and deaths. 

The outline of the paper is as follows. In Section 2 we describe the 
SEQIJR model and discuss possible strategies for controlling disease spread 
using quarantine and isolation. We also give analytical formulae for the two 
equilibrium points (disease-free and endemic) and define the basic 
reproductive rate .0R  In Section 3 we use Matlab to obtain numerical 

solutions of the differential equations for a range of values for the four 
control methods in order to find how the numbers of people with the disease 
and the numbers of disease deaths depend on these four methods. The 
numerical studies are carried out for parameter values suggested by Gumel et 
al. [1] for four regions affected by the SARS outbreaks of 2003, namely 
Beijing, Hong Kong, Singapore and Toronto. In the final section we give a 
discussion of results and conclusions. 

2. The SEQIJR Model 

2.1. The model equations 

The system of equations for the SEQIJR model that we use is given in 
equations (1)-(8). Definitions of the parameters used in the model are given 
in Table 1 and the values for the four regions are shown in Table 2. The 
equations for S, E, Q, I, J, R and the parameter definitions and values are 
adapted from Gumel et al. [1]. We have added two extra equations to allow 
the total population RJIQESN +++++=  to be a function of time and 

to compute the total number of disease deaths ( ).tD  These extra equations are 

for the total population size ( )tN  at time t and the total number of deaths due 

to disease ( )tD  at time t: 

( )
,SN

JQEIS
dt
dS JQE μ−

ε+ε+ε+β
−Π=  (1) 

( )
( ) ,11 EkN

JQEIS
Pdt

dE JQE μ++γ−
ε+ε+ε+β

+=  (2) 
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( ) ,21 QkEdt
dQ μ+−γ=  (3) 

( ) ,1121 IdEkdt
dI μ+σ++γ−=  (4) 

( ) ,2222 JdQkIdt
dJ μ++σ−+γ=  (5) 

,21 RJIdt
dR μ−σ+σ=  (6) 

,21 NJdIdPdt
dN μ−−−+Π=  (7) 

.21 JdIddt
dD +=  (8) 

Table 1. Parameters for the SEQIJR model (rates are per day) 

Parameters Definition 

Π Rate of inflow of susceptible individuals into a region or 
community 

μ The natural death rate 

P Rate of inflow of asymptomatic individuals 

β Infectiousness and contact rate between a susceptible and an 
infectious individual 

Eε  Modification parameter associated with infection from an 
exposed individual 

Qε  Modification parameter associated with infection from a 
quarantined individual 

Jε  Modification parameter associated with infection from an 
isolated individual 

1γ  Rate of quarantine of exposed asymptomatic individuals 

2γ  Rate of isolation of infectious symptomatic individuals 
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1σ  Rate of recovery of symptomatic individuals 

2σ  Rate of recovery of isolated individuals 

1k  Rate of development of symptoms in asymptomatic individuals 

2k  Rate of development of symptoms in quarantined individuals 

1d  Rate of disease-induced deaths for symptomatic individuals 

2d  Rate of disease-induced deaths for isolated individuals 

Source: Adapted from Gumel et al. [1]. 

Table 2. Parameter values for four regions (rates are per day) 

Parameters Beijing Hong Kong Singapore Toronto 

Π 408 221 136 136 

P 0 0 0 0 

μ 0.000034 0.000034 0.000034 0.000034 

β 0.15 0.1 0.21 0.2 

Eε  0 0 0 0 

Qε  0 0 0 0 

Jε  0.82 0.84 0.2 0.36 

1γ  0.1 0.1 0.1 0.1 

2γ  0.5 0.5 0.5 0.5 

1σ  0.0413 0.0337 0.0337 0.0337 

2σ  0.0431 0.0386 0.0386 0.0386 

1k  0.1 0.1 0.1 0.1 

2k  0.125 0.125 0.125 0.125 

1d  0.0055 0.0079 0.0079 0.0079 

2d  0.0041 0.0068 0.0068 0.0068 

Source: Adapted from Gumel et al. [1]. 
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2.2. Disease control strategies 

An examination of the SEQIJR model shows that strategies for reducing 
the epidemic could include the following types of approach: 

1. Reducing the number of susceptible people. This could be achieved 
by an effective vaccine. If the vaccine is 100% effective, then this 
could be included in the model by an extra term representing a direct 
transfer rate of individuals from the S population into the R 
population. 

2. Reducing the infection rate of susceptible individuals by infected 
individuals (reducing the value of the parameter β). A reduction in β 
could be achieved by immunization by a vaccine that is not 100% 
effective or by reducing the amount of contact between susceptible 
and infected individuals, e.g., by closing centers of congregation such 
as schools, shopping centers, factories etc. 

3. Quarantine of exposed individuals or isolation of infected individuals. 
These effects are included in the model through the parameters 

21 ,, γεγ Q  and .Jε  We will look at the effects of these parameters in 

this paper. 

4. Reducing death rates from the disease by appropriate medical 
treatment, i.e., reducing the parameters 1d  and .2d  

5. Preventing the entry of exposed people from outside, i.e., reducing the 
value of the parameter P. However, it is unlikely that it is possible to 
make 0=P  due to the large amount of travel between countries and 
the difficulty of detecting exposed individuals who are assumed to be 
asymptomatic. 

In this paper, we will look at the effects of controlling the values of the 
quarantine and isolation rate parameters 1γ  and 2γ  and the quarantine and 

isolation infection rate parameters Qε  and .Jε  In practice, each of these 

parameters will have lower and upper bounds. The upper bounds on 1γ  and 
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2γ  will mainly be due to the limitations on the facilities available for first 

identifying exposed and infectious individuals and then housing them in 
appropriate quarantine and isolation facilities. The infection rate parameters 

Qε  and Jε  are a measure of the effectiveness of quarantine and isolation in 

preventing infection of susceptible individuals through nocosomial infection 
in the isolation hospitals and quarantine facilities. 

We will aim to minimize the number of people who contract the disease 
in a given period, e.g., 1000 days, by selecting optimal values for ,, 21 γγ  

Qε  and Jε  subject to upper and lower bounds on each of the four control 

parameters. In addition, we will not accept a solution if the numbers of 
isolated and quarantined individuals exceeds reasonable limits on the 
facilities available for quarantine and isolation. The mathematical problem 
can then be stated as: 

For given T, ( ) ( ) ( ) ( ) ( ) ( ) ( )TDTRTJTITQTETF
JQ

+++++=
εεγγ ,,, 21

min  

subject to ,,,, 222111 JJJQQQ ULULULUL ≤ε≤≤ε≤≤γ≤≤γ≤  

( ) ( ) ,0,0 JQ VtJVtQ ≤≤≤≤  

     where Tt ≤≤0  (9) 

and where the SEQIJR model differential equations in equations (1)-(8) are 
satisfied and where QU  and JU  are upper limits on the maximum numbers 

of quarantined and isolated individuals, respectively, at any given time.  

We note that, if the disease death rates 1d  and 2d  remain constant, then 

minimizing the total number of people who contract the disease is effectively 
the same as minimizing the death rate. 

2.3. Equilibrium solutions and the basic reproductive rate ( )0R  

There are two equilibrium solutions for the above model which can be 
identified as a “disease-free” equilibrium and an “endemic” equilibrium. If 
we introduce “decay” parameters for the E, Q, I and J populations defined 
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by: 

,,, 112211 μ++σ+γ=μ+=μ++γ= dDkDkD IQE  

,22 μ++σ= dDJ  (10) 

and consider the special case 0=P  (no incoming exposed individuals), the 
equilibrium solutions can be written in the form: 

( ),1 ∗∗ α−Π
μ

= IS S  where ,EES D α=α  (11) 

,∗∗ α= IE E  where ,
1k

DI
E =α  (12) 

,∗∗ α= IQ Q  where ,1
E

Q
Q D α

γ
=α  (13) 

,∗∗ α= IJ J  where ,22

J

Q
J D

k α+γ
=α  (14) 

,∗∗ α= IR R  where ,21 JR ασ+σ=α  (15) 

( ),1 ∗∗ α−Π
μ

= IN N  where ,21 JN dd α+=α  (16) 

where there are two possible values for ∗I  given by: 

 ( ) ( ).1,0 021 −
α−

Π== ∗∗ RBII
NI

 (17) 

The constant 0R  in equation (17) can be identified as the basic reproductive 

rate, which gives the number of secondary infections that occur when an 
infected person enters a disease-free population, i.e., if ,10 <R  then the 

number of infected people decreases and if ,10 >R  then the number of 

infected people increases. It is defined by: 

 ,0
S
IBR

α
=  where ( )JQQEEIB ε+αε++αεβ= 1  (18) 

can be identified as the equilibrium rate of new infections per infectious 
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individual. Note that from equation (16), Nα  is the death rate due to disease 

at equilibrium. It is clear that an endemic equilibrium can only occur if 
,NIB α>  i.e., if the rate of new infections is greater than the death rate 

from the disease at equilibrium. Since it is also necessary that ∗S  and ∗N  
are non-negative, it can be seen from equation (11) that the endemic 

equilibrium can only occur if the birth rate .2
∗α>Π IS  Note that, since 

,NRJIQES =+++++  non-negative S, E, Q, I, J, R imply non-

negative N. 

It can be shown by the usual method of analyzing the eigenvalues of the 
Jacobian of the linearized model that the two equilibrium points have the 
following properties: 

1. The first solution is a disease-free equilibrium. For ,10 <R  it is 

asymptotically stable. The other solution has negative populations and 
therefore does not exist. 

2. For ,10 >R  the disease-free equilibrium is not asymptotically stable. 

For NIB α>  and ,2
∗α>Π IS  the second solution has positive S, E, 

Q, I, J, R populations and is asymptotically stable. This solution is an 
endemic disease equilibrium. 

In analyzing strategies for eliminating diseases, some authors concentrate 
on the value of 0R  and the equilibrium solutions and their asymptotic 

stability. However, the fact that the disease eventually disappears is not 
always acceptable in practice as the number of disease deaths might become 
excessive even though the disease eventually disappears. An examination of 
the dynamic behavior of the solution when the endemic equilibrium exists 
shows that the endemic equilibrium solution is often attained only after an 
extremely long time, e.g., 100,000 days, and after a sequence of recurring 
epidemics [17]. Therefore, we believe that it is usually necessary to examine 
the detailed dynamical behavior of a disease model as well as the equilibrium 
solutions and the value of .0R  



An Analysis of Quarantine and Isolation in an SEQIJR Model 163 

3. Numerical Solutions 

3.1. Optimal solutions 

We have used Matlab to numerically integrate the equations (1)-(8) using 
the ode45 solver. From the numerical solutions we can compute the objective 
function ( )TF  in equations (9) for given T, Qεγγ ,, 21  and Jε  for parameter 

values for the four regions given in Table 2. We then used the Matlab 
nonlinear optimization function fminbnd to solve the optimization problem in 
equations (9) but without the state variable constraints on ( )tQ  and ( ),tI  i.e., 

to minimize ( )TF  subject to upper and lower bounds on the four control 

parameters. We found that in all cases examined the results were the same, 
namely that 1γ  and 2γ  must be at their upper limits and Qε  and Jε  at their 

lower limits, i.e., the maximum possible number of individuals should be 
quarantined and isolated and the infection rates from the quarantined and 
isolated individuals must be kept as low as possible. We next looked at the 
sensitivity of ( )TF  and the disease deaths ( )TD  and the basic reproductive 

rate 0R  to variations in each of the four parameters. 

3.2. Effectiveness of isolation 

In order to study the effectiveness of isolation, we assumed that values 
for all other parameters in the equations were as given in Table 2. We then 
calculated the numbers of people contracting the disease and the disease 
deaths in a given period (typically 1000 days) and the values of 0R  for a 

range of the 2γ  and Jε  values subject to upper and lower bounds on the two 

parameters. As in Section 3.1, we found that the minima for people who had 
the disease and for disease deaths always occurred when 2γ  was at the upper 

limit and Jε  at the lower limit. We therefore decided to look at the effects of 

the two parameters separately. 

3.2.1. Effectiveness of isolation infective rate Jε  as a control 

We looked at the changes in the numbers of diseased people in 1000 
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days as the value of Jε  was varied from 0.1-0.5. Typical results of the 

computations are shown in Figures 1-5 and Table 3. We have only shown 
results for Beijing and Hong Kong as the results for Singapore and Toronto 
were similar to Beijing. Figure 1 shows how the numbers of diseased 
individuals and disease deaths in 1000 days in Beijing vary as the isolation 
infective rate Jε  is changed for a fixed isolation rate .5.02 =γ  The values 

for the quarantine parameters were taken as 1.01 =γ  and EQ ε=ε 15.0  with 

3.0=εE  [15, 16]. All other parameters were assumed to have values given 

for Beijing in Table 2. Figure 3(a) shows the variation in the basic 
reproductive rate values 0R  under the same conditions. The actual values 

computed for disease deaths ( )( ),1000D  total disease ( )( )1000F  and 0R  are 

shown in Table 3 for .7.0,5.0,3.02 =γ  This table also includes maximum 

values for exposed ( )( ),tE  quarantined ( )( ),tQ  infectious ( )( )tI  and isolated 

( )( )tJ  for [ ]1000,0∈t  days. It can be seen that the disease numbers become 

“reasonable” (hundreds or thousands) only for 11.0<εJ  for .7.0,5.02 =γ  

For higher values the model predicts disease population numbers of the order 
of hundreds of thousands or millions. For the actual values estimated by 
Gumel et al. [1] of 82.0=εJ  for Beijing, the numbers of deaths predicted 

by the model would be of the order of millions if isolation was the only 
policy used to control the disease. A value of 11.0<εJ  requires that 

nosocomial (hospital-based) infections must be strictly controlled. The 
results for Hong Kong are shown in Figures 2 and 3(b). The behaviour of the 
results are similar to those for Beijing but with one major difference. For 
Beijing there is a sharp decrease in the disease for .15.0≈εJ  For Hong 

Kong this sharp decrease occurs for .3.0≈εJ  An examination of the 

parameter values in Table 2 shows that the most likely cause of the 
difference is that the infective rate from infectious individuals β has the value 
0.15 in Beijing and 0.1 in Hong Kong. This change means that the 0R  value 

for Hong Kong would be approximately two thirds of the value for Beijing. 
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Figure 1. Beijing Total Diseased People and Disease Deaths in 1000 Days as 
Function of Isolation Infective Rate .Jε  ,5.02 =γ  ,1.01 =γ  ,3.0=εE  

.045.015.0 =ε=ε EQ  

 

 

 

 

Figure 2. Hong Kong Total Diseased People and Disease Deaths in 1000 
Days as Functions of Isolation Infective Rate .Jε  ,5.02 =γ  ,1.01 =γ  

,3.0=εE  .045.015.0 =ε=ε EQ  



Sanoe Koonprasert, Sutawas Janreung and Elvin J. Moore 166 

 
Figure 3. Basic Reproductive Rates ( )0R  for Beijing and Hong Kong as 

Functions of Isolation Infective Rate .Jε  ,5.02 =γ  ,1.01 =γ  ,3.0=εE  

.045.015.0 =ε=ε EQ  

A comparison of the 0R  values in Figures 1, 2 and 3 shows that the 

marked declines in death rates occur for .10 >R  10 >R  implies that the 

number of infections initially increases. However, as the number of 
susceptible people becoming infected increases, the infection rate will reach 
a maximum and then begin to decline. For 0R  close to 1, this decline occurs 

early enough for the total number of infected people to remain low. 

3.2.2. Effectiveness of isolation rate ( )2γ  as a control 

We looked at the changes in the total numbers of diseased people in 1000 
days in Beijing and Hong Kong as the value of 2γ  was varied from 0.3-0.7. 

Typical results of the computations are shown in Figures 4 and 5 and in 
Table 3. In the figures, the values of other quarantine and isolation 
parameters were taken as ,2.0=εJ  1.01 =γ  and EQ ε=ε 15.0  with 

.3.0=εE  All other parameters were assumed to have the values in Table 2. 

For Beijing the number of diseased people is always in the hundreds of 
thousands for .2.0=εJ  For Hong Kong the value of 2.0=εJ  gives a 

number of diseased people less than 500 for .4.02 >γ  It can be seen that the 

numbers of diseased people vary much more slowly with 2γ  than they do 
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with .Jε  This suggests that reducing the infection rate from isolated people 

will be a more effective method of reducing the disease than increasing the 
rate of isolation of infectious people. 

 
Figure 4. Beijing and Hong Kong Total Diseased People in 1000 Days as 
Functions of Isolation Rate .2γ  ,2.0=εJ  ,1.01 =γ  ,3.0=εE  EQ ε=ε 15.0  

.045.0=  

Table 3. Deaths, Total Diseased, ,0R  Maximum Values of E, Q, I, J in 1000 

days as Functions of Isolation Rate 2γ  and Isolation Infective Rate Jε  for 
Beijing Parameters 

 
Quarantine parameters: Quarantine rate ,1.01 =γ  Exposed infection rate ,3.0=εE  

Quarantine infection rate .045.0=εQ  
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Figure 5. Beijing and Hong Kong Basic Reproductive Rates ( )0R  as 

Functions of Isolation Rate .2γ  ,2.0=εJ  ,1.01 =γ  ,3.0=εE  EQ ε=ε 15.0  

.045.0=  

Table 4. Deaths, Total Diseased, ,0R  Maximum Values of E, Q, I, J in 1000 

days as Functions of Quarantine Rate 1γ  and Quarantine Infection Rate Qε  

for Beijing Parameters 

 
Isolation parameters: Isolation rate ,5.02 =γ  isolation infection rate ,2.0=εJ  

Exposed infection rate .3.0=εE  

3.3. Effectiveness of quarantine 

To study quarantine we followed a similar procedure to that for isolation. 
We first did an optimization including both parameters 1γ  and .Qε  As 

expected, the minimum numbers of diseased people and disease deaths 
occurred when 1γ  was at its upper limit and Qε  at its lower limit. We then 
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looked at the separate effects of the two parameters. Typical results obtained 
for Beijing by varying the quarantine infective rate Qε  and the quarantine 

rate 1γ  are shown in Table 4. The results show clearly that for the SEQIJR 

model considered in this paper, quarantine would not be an effective method 
of controlling the disease. 

4. Discussion and Conclusions 

The results in Section 3 show clearly that isolation is a more effective 
method of reducing the number of disease cases than quarantine. For the 
parameters used in this analysis, quarantine appears to have little practical 
value. If anything, our analysis may overestimate the usefulness of 
quarantine because we have assumed a value of 3.0=εE  (following [15, 

16]) instead of 0=εE  (Gumel et al. [1]). Clearly, if ,0=εE  then quarantine 

cannot directly affect the infection rate, although it can indirectly because 
quarantined people are likely to be closely monitored for appearance of the 
disease with a consequent earlier transfer to isolation if they become 
symptomatic. In the analysis of the SEQIJR model in this paper, we have 
assumed that ,0=P  i.e., no exposed people are entering the population from 
outside. If the population is initially disease-free, then quarantine could be 
useful if all entering exposed people could be quarantined. In earlier times, 
quarantine was a useful strategy because the number of travellers was small 
and everyone from a suspect origin could be quarantined until they were 
found to be disease free. In modern times, quarantine of exposed people is 
much more difficult because of the greatly increased mobility of people and 
the economic importance of tourism and international trade. However, a 
selective quarantine involving an aggressive searching of contacts of 
infectious people or of people from infectious regions is a useful method for 
reducing the spread of a disease, especially in its early stages. 

The results for isolation show that, for the parameter values used, the 
deaths from the disease and the total number of people contracting the 
disease can only be reduced to acceptable levels by very strict control of 
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infection in isolation wards 11.0( <εJ  for Beijing parameter values) and by 

a very active identification and isolation of infectious individuals ( ).5.02 >γ  

If these policies are implemented early in the disease cycle, then the model 
suggests that isolation can keep the disease at a very low level even for a 
highly infectious disease. However, once a sizeable number of individuals 
become infected, then isolation facilities are likely to be swamped and a large 
number of deaths might be expected unless other measures are taken. For 
example, if the values of 5.02 =γ  and 8.0≈εJ  for Beijing and Hong Kong 

and 36.0=εJ  for Toronto given by Gumel et al. [1] are correct, then the 

model suggests that in all 3 regions the numbers of people dying from the 
disease would reach hundreds of thousands in 1000 days. These death rates 
are clearly unacceptable and fortunately did not occur. Of the four regions, 
only Singapore had a sufficiently low value of 2.0=εJ  for isolation to help 

keep disease rates at acceptable levels. If the model and parameter values are 
correct, then it is clear that factors other than quarantine and isolation must 
have been the main factors in controlling the disease in the four regions. 
Looking at the formula (equation (18)) for the basic reproductive rate 0R  it 

is clear that reduction of the parameter β is likely to be a major weapon in 
controlling a disease. As stated earlier, factors such as immunization, basic 
hygiene, closure of centres of concentration of people can all be used to 
reduce the value of β. Although it is not included in the SEQIJR model of 
this paper, an effective vaccine can be used to directly transfer people from 
the susceptible to the recovered class. 

The results suggest that a study of the actual dynamics of the disease is 
important, i.e., that the equilibrium solutions and the basic reproductive rate 
( )0R  only give partial information. Our results show that disease death rates 

can be kept to reasonable levels even when .10 >R  However, this is only 

possible for values of 0R  close to 1. We have also found [17] that the 

dynamic approach to the endemic equilibrium of the model can take a long 
time and can show a sequence of recurring epidemics before the equilibrium 
is reached. 
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