JP Journal of Algebra, Number Theory and Applications
Volume 29, Number 1, 2013, Pages 91-106
Published Online: May 2013
Available online at http://pphmj.com/journals/jpanta.htm
Published by Pushpa Publishing House, Allahabad, INDIA

A NOTE ON THE ALGORITHM OF DIFFERENTIATION VII FOR EQUIPPED POSETS

Agustín Moreno Cañadas and Hernán Giraldo
Department of Mathematics
National University of Colombia
Colombia
e-mail: amorenoca@unal.edu.co
Institute of Mathematics
University of Antioquia
Colombia
e-mail: heragis@matematicas.udea.edu.co

Abstract

As a fourth part of a series of papers concerning morphisms of equipped posets. In this paper, the authors discuss some categorical properties of the short generalized version of the algorithm of differentiation VII for equipped posets introduced by Rodriguez and Zavadskij in [4].

1. Introduction

The algorithm of differentiation VII (D-VII) was introduced in 2003 by Zavadskij to classify equipped posets of tame and finite growth © 2013 Pushpa Publishing House
2010 Mathematics Subject Classification: 16G20, 16G60, 16G30.
Keywords and phrases: algorithm of differentiation, categorical equivalence, category, equipped poset, functor, Gabriel quiver, poset, quiver, representations of posets.
Communicated by K. K. Azad
Received December 9, 2012
representation type [5, 6]. Soon afterwards, Rodriguez and Zavadskij defined a short version of this algorithm [4]. Such a version allows to describe D-VII as a composition of functors whose categorical properties can be investigated more easily. Actually, in [2], Cañadas gave the categorical properties of D-VII by establishing suitable categorical equivalences induced by the short version of such algorithm. To do that, some subsets of equipped posets considered in the original version were deleted. The purpose of this paper is to describe categorical properties of the short generalized version of the algorithm VII without such changes.

Authors refer to the interested reader to [1, 2] and [3] to precise notation and definitions. However, for the sake of clarity, we include here main definitions and notation for categories of equipped posets.

A poset (\mathcal{P}, \leq) is called equipped if all the order relations between its points $x \leq y$ are separated into strong (denoted $x \unlhd y$) and weak (denoted $x \preceq y$) in such a way that

$$
\begin{equation*}
x \leq y \unlhd z \text { or } x \unlhd y \leq z \text { implies } x \unlhd z \text {, } \tag{1}
\end{equation*}
$$

i.e., a composition of a strong relation with any other relation is strong.

In general, relations \unlhd and \preceq are not order relations. These relations are antisymmetric but not reflexive. In particular, \preceq is not reflexive (meanwhile \unlhd is transitive) [4].

We let $x \leq y$ denote an arbitrary relation in an equipped poset (\mathcal{P}, \leq). The order \leq on an equipped poset \mathcal{P} gives rise to the relations \prec and \triangleleft of strict inequality: $x \prec y$ (respectively, $x \triangleleft y$) in \mathcal{P} if and only if $x \preceq y$ (respectively, $x \unlhd y$) and $x \neq y$.

A point $x \in \mathcal{P}$ is called strong (weak) if $x \unlhd x$ (respectively, $x \preceq x$). These points are denoted \circ (respectively, \otimes) in diagrams. We also denote $\mathcal{P}^{\circ} \subseteq \mathcal{P}$ (respectively, $\mathcal{P}^{\otimes} \subseteq \mathcal{P}$) the subset of strong points (respectively, weak points) of \mathcal{P}. If $\mathcal{P}^{\otimes}=\varnothing$, then the equipment is trivial and the poset \mathcal{P} is ordinary.

Remark 1. Note that, if $x \preceq y$ in an equipped poset (\mathcal{P}, \leq) and there exists $t \in \mathcal{P}$ such that $x \leq t \leq y$, then $x, y \in \mathcal{P}^{\otimes}, \quad x \preceq t$ and $t \preceq y$. Otherwise, if $x \unlhd t$ or $t \unlhd y$, then by definition, it is obtained the contradiction $x \unlhd y$.

If \mathcal{P} is an equipped poset and $a \in \mathcal{P}$, then the subsets of \mathcal{P} denoted $a^{\vee}, a_{\wedge}, a^{\nabla}, a_{\Delta}, a^{\nabla}, a_{\mathbf{\Delta}}, a^{\curlyvee}$ and a_{\curlywedge} are defined in such a way that

$$
\begin{aligned}
& a^{\vee}=\{x \in \mathcal{P} \mid a \leq x\}, \quad a_{\wedge}=\{x \in \mathcal{P} \mid x \leq a\}, \\
& a^{\nabla}=\{x \in \mathcal{P} \mid a \unlhd x\}, \quad a_{\Delta}=\{x \in \mathcal{P} \mid x \unlhd a\}, \\
& a^{\nabla}=a^{\vee} \backslash a, \quad a_{\Delta}=a_{\wedge} \backslash a, \\
& a^{\curlyvee}=\{x \in \mathcal{P} \mid a \preceq x\}, \quad a_{\curlywedge}=\{x \in \mathcal{P} \mid x \preceq a\} .
\end{aligned}
$$

Subset $a^{\vee}\left(a_{\wedge}\right)$ is called the ordinary upper (lower) cone associated to the point $a \in \mathcal{P}$ and subset $a^{\nabla}\left(a_{\triangle}\right)$ is called the strong upper (lower) cone associated to the point $a \in \mathcal{P}$, whereas subsets $a^{\boldsymbol{V}}$ and a_{Δ} are called truncated cones (upper and lower) associated to the point $a \in \mathcal{P}$.

In general, subsets a^{\curlyvee} and a_{\curlywedge} are not cones. Note that, if $x \in \mathcal{P}^{\circ}$, then $x^{\curlyvee}=x_{\curlywedge}=\varnothing$.

The diagram of an equipped poset (\mathcal{P}, \leq) may be obtained via its Hasse diagram (with strong (\circ) and weak points (\otimes)). In this case, a new line is added to the line connecting two points $x, y \in \mathcal{P}$ with $x \triangleleft y$ if and only if such relation cannot be deduced of any other relations in \mathcal{P}. In Figure 1, we show an example of this kind of diagrams.

$1^{\curlyvee}=\{1,3,4,8\}$	$1^{\nabla}=\{7\}$
$2^{\curlyvee}=\{2,4,7\}$	$2^{\nabla}=\{5,6,8\}$
$3^{\curlyvee}=\{3,7\}$	$3^{\nabla}=\varnothing$
$4^{\curlyvee}=\{4,7,8\}$	$4^{\nabla}=\varnothing$
$5^{\curlyvee}=\varnothing$	$5^{\nabla}=\{5,8\}$
$6^{\curlyvee}=\{6,8\}$	$6^{\nabla}=\varnothing$
$7^{\curlyvee}=\{7\}$	$7^{\nabla}=\varnothing$
$8^{\curlyvee}=\{8\}$	$8^{\nabla}=\varnothing$

Figure 1
For an equipped poset (\mathcal{P}, \leq) and $A \subset \mathcal{P}$, we define the subsets $A^{\nabla}, A^{\curlyvee}$ and A^{\vee} in such a way that

$$
A^{\nabla}=\bigcup_{a \in A} a^{\nabla}, \quad A^{\curlyvee}=\bigcup_{a \in A} a^{\curlyvee}, \quad A^{\vee}=\bigcup_{a \in A} a^{\vee} .
$$

Subsets $A_{\Delta}, A_{\curlywedge}$ and A_{\wedge} are defined in the same way.
If \mathcal{P} is an equipped poset, then a chain $C=\left\{c_{i} \in \mathcal{P} \mid 1 \leq i \leq n\right.$, $c_{i-1}<c_{i}$ if $\left.i \geq 2\right\} \subseteq \mathcal{P}$ is a weak chain if and only if $c_{i-1} \prec c_{i}$ for each $i \geq 2$. If $c_{1} \prec c_{n}$, then we say that C is a completely weak chain. Moreover, a subset $X \subset \mathcal{P}$ is completely weak if $X=X^{\otimes}$ and weak relations are the only relations between points of X. Often we let $\left\{c_{1} \prec c_{2} \prec \cdots \prec c_{n}\right\}$ denote a weak chain which consists of points $c_{1}, c_{2}, \ldots, c_{n}$. An ordinary chain C is denoted in the same way (by using the corresponding symbol $<$).

For an equipped poset \mathcal{P} and $A, B \subset \mathcal{P}$, we write $A<B$ if $a<b$ for each $a \in A$ and $b \in B$. Notation $A \prec B$ and $A \triangleleft B$ are assumed in the same way.

Let $F \subset G$ be an arbitrary quadratic field extension with $G=F(\mathbf{u})$ for some fixed element $\mathbf{u} \in G$. Then each element $x \in G$ can be written uniquely in the form $\alpha+\mathbf{u} \beta$ with $\alpha, \beta \in F$ in this case (analogously to the case $(F, G)=(\mathbb{R}, \mathbb{C})) \alpha$ is called the real part of x and β is the corresponding imaginary part of x.

The complexification of a real vector space can be generalized to the case (F, G), where $G=F(\mathbf{u})$ is a quadratic extension of F. In this case, we assume that \mathbf{u} is a root of the minimal polynomial $t^{2}+\mu t+\lambda, \quad \lambda \neq 0$ $(\lambda, \mu \in F)$. In particular, if U_{0} is an F-space, then the corresponding complexification is the G-vector space U_{0}^{2} also denoted \tilde{U}_{0}. As in the case (\mathbb{R}, \mathbb{C}), we write $U_{0}^{2}=U_{0}+\mathbf{u} U_{0}=\tilde{U}_{0}$.

To each G-subspace W of \tilde{U}_{0}, it is possible to associate the following F-subspaces of U_{0},

$$
W^{+}=\operatorname{Re} W_{F}=\operatorname{Im} W_{F} \text { and } W^{-}=\operatorname{gen}\left\{\alpha \in U_{0} \mid(\alpha, 0)^{t} \in W\right\} \subset W^{+},
$$ and for a G-space Z, we have the following property:

$$
\tilde{Z}^{+}=F(Z) \text { is called the } F \text {-hull of } Z \text { such that } Z \subset F(Z) \text {. }
$$

The category of representations of an equipped poset over a pair of fields (F, G) is defined as a system of the form

$$
\begin{equation*}
U=\left(U_{0} ; U_{x} \mid x \in \mathcal{P}\right), \tag{2}
\end{equation*}
$$

where U_{0} is a finite dimensional F-space and for each $x \in \mathcal{P}, U_{x}$ is a G-subspace of \tilde{U}_{0} such that

$$
\begin{aligned}
& x \leq y \Rightarrow U_{x} \subset U_{y}, \\
& x \unlhd y \Rightarrow F\left(U_{x}\right) \subset U_{y} .
\end{aligned}
$$

For each $x \in \mathcal{P}$, we let U_{x} denote the radical subspace of U_{x} such that $\underline{U_{X}}=\sum_{z \triangleleft X} F\left(U_{z}\right)+\sum_{z \prec x} U_{z}$.

We let rep \mathcal{P} denote the category whose objects are the representations of an equipped poset \mathcal{P} over a pair of fields (F, G). In this case, a morphism $\varphi:\left(U_{0} ; U_{x} \mid x \in \mathcal{P}\right) \rightarrow\left(V_{0} ; V_{x} \mid x \in \mathcal{P}\right)$ between two
representations U and V is an F-linear map $\varphi: U_{0} \rightarrow V_{0}$ such that

$$
\tilde{\varphi}\left(U_{x}\right) \subset V_{x} \text { for each } x \in \mathcal{P},
$$

where $\tilde{\varphi}: \tilde{U}_{0} \rightarrow \tilde{V}_{0}$ is the complexification of φ, i.e., the application G-linear induced by φ and defined in such a way that if $z=x+\mathbf{u} y \in \tilde{U}_{0}$, then $\tilde{\varphi}(z)=\varphi^{2}(z)=\varphi(x)+\mathbf{u} \varphi(y)$. The composition between morphisms of rep \mathcal{P} is defined in a natural way.

The short generalized version of the algorithm of differentiation VII (denoted VII_{s}) was defined by Rodriguez and Zavadskij in the following way $[1,2,4]$:

A triple of points (a, b, c) of an equipped poset \mathcal{P} is said to be VII_{s}-suitable if the points a, c are weak, b is a strong point incomparable with a, c and

$$
\mathcal{P}=a^{\nabla}+b_{\Delta}+\{a \prec X \prec c \prec Y\},
$$

where $\{a \prec X \prec c \prec Y\}$ is a completely weak set containing arbitrary subsets X, Y (probably empty). Actually, in [2], it is assumed that $Y=\varnothing$ to obtain categorical properties of the algorithm of differentiation VII. In this paper, such properties are discussed in the case $Y \neq \varnothing$.

The derived or (a, b, c)-derived equipped poset with relations $\mathcal{P}_{(a, b, c)}^{\prime}$ of the poset \mathcal{P} is a pair

$$
\mathcal{P}_{(a, b, c)}^{\prime}=\left(\mathcal{P}_{(a, b, c)}^{(s)} \mid \Sigma_{(a, b, c)}\right),
$$

where

$$
\mathcal{P}_{(a, b, c)}^{(s)}=(\mathcal{P} \backslash c)+\left\{c^{-}, c^{+}\right\}
$$

is an equipped poset such that the pairs $c^{-} \prec c^{+}, X \prec c^{+}$and $c^{-} \prec Y$ are completely weak, $a \triangleleft c^{+}, \quad c^{-}<b$ and the partial order in $\mathcal{P}_{(a, b, c)}^{(s)}$ is induced by these relations and by the initial order in $\mathcal{P} \backslash c$, it is assumed that each of the points c^{+}, c^{-}inherits the order relations of the point c with the points of the subset $a^{\nabla}+b_{\Delta}$. Further, $\Sigma_{(a, b, c)}$ is a set of two formal relations

$$
\Sigma_{(a, b, c)}=\left\{c^{+} \subset \tilde{a}+\hat{Y} ; b(a+X) \subset c^{-}\right\}
$$

which means that the category rep $\mathcal{P}_{(a, b, c)}^{\prime}$ is a full subcategory of the category whose objects W satisfy the relations

$$
W_{b} \cap W_{X} \subset W_{c^{-}}, \quad W_{c^{+}} \subset F\left(W_{a}\right)+\hat{W}_{Y},
$$

where

$$
\begin{align*}
& U_{X}=\sum_{x \in X} U_{x}, \quad U_{X}^{+}=\sum_{x \in X} U_{X}^{+}, \\
& \hat{U}_{X}=\bigcap_{x \in X} U_{X}, \quad\left(\hat{U}_{X}\right)^{-}=\bigcap_{x \in X} U_{x}^{-}, \tag{3}\\
& U_{\varnothing}=0, \quad \hat{U}_{\varnothing}=U_{0} . \tag{4}
\end{align*}
$$

Figure 2 shows a diagram for this differentiation:

Figure 2
The functor of differentiation $D_{(a, b, c)}: \operatorname{rep} \mathcal{P} \rightarrow \operatorname{rep} \mathcal{P}_{(a, b, c)}^{\prime}$ is defined by the following identities for an object $U^{\prime}=D_{(a, b, c)}(U)$:

$$
\begin{align*}
& U_{0}^{\prime}=U_{0}, \\
& U_{c^{+}}^{\prime}=U_{c}+F\left(U_{a}\right), \\
& U_{c^{-}}^{\prime}=U_{c} \cap U_{b}, \\
& U_{x}^{\prime}=U_{x} \text { for the remaining points } x \in \mathcal{P}_{(a, b, c)}^{\prime}, \\
& \varphi^{\prime}=\varphi \text { for a linear map-morphism } \varphi: U_{0} \rightarrow V_{0} . \tag{5}
\end{align*}
$$

If \mathcal{P} is an equipped poset and $A \subset \mathcal{P}$, then $P(A)=P(\min A)=\left(F ; P_{X}\right.$ $\mid x \in \mathcal{P}), P_{x}=G$ if $x \in A^{\vee}$ and $P_{x}=0$ otherwise. In particular, $P(\varnothing)=$ ($F ; 0, \ldots, 0$).

If $a, b \in \mathcal{P}^{\otimes}$, then $T(a)$ and $T(a, b)$ denote indecomposable objects with matrix representation of the following form:

$$
T(a)=\begin{gathered}
a \\
\hline \begin{array}{l}
1 \\
\mathbf{u}
\end{array}
\end{gathered}, \quad a \in \mathcal{P}^{\otimes}, \quad T(a, b)=\begin{array}{c|c}
a & b \\
\hline 1 & 0 \\
\mathbf{u} & 1 \\
\hline
\end{array} \text { with } a \prec b .
$$

If we consider the notation used in (2) for objects in $\operatorname{rep} \mathcal{P}$, then the object $T(a)$ may be described in such a way that $T(a)=\left(T_{0} ; T_{X} \mid x \in \mathcal{P}\right)$, where $T_{0}=F^{2}$ and

$$
T_{x}= \begin{cases}\tilde{T}_{0}=G^{2}, & \text { if } x \in a^{\nabla}, \\ G\left\{(1, \mathbf{u})^{t}\right\}, & \text { if } x \in a^{\curlyvee}, \\ 0, & \text { otherwise },\end{cases}
$$

where $(1, \mathbf{u})^{t}$ is the column of coordinates with respect to an ordered basis of T_{0}.

On the other hand, representation $T(a, b)$ may be described in such a way that $T(a, b)=\left(T_{0} ; T_{X} \mid x \in \mathcal{P}\right)$, where $T_{0}=F^{2}$ and

$$
T_{x}= \begin{cases}G\left\{(1, \mathbf{u})^{t}\right\}, & \text { if } a \preceq x \prec b \\ \tilde{T}_{0}=G^{2}, & \text { if } x \in a^{\nabla} \cup b^{\vee} \\ 0, & \text { otherwise }\end{cases}
$$

If $a \in \mathcal{P}^{\otimes}$ and $B \subset \mathcal{P}$ is a subset completely weak such that $a \prec B$, then we let $T(a, B)$ denote the representation of \mathcal{P} which satisfies the following conditions with $T_{0}=F^{2}$:

$$
T_{x}= \begin{cases}G\left\{(1, \mathbf{u})^{t}\right\}, & \text { if } x \in a^{\curlyvee} \backslash B, \\ \tilde{T}_{0}=G^{2}, & \text { if } x \in a^{\nabla}+B^{\vee}, \\ 0, & \text { otherwise }\end{cases}
$$

In particular, $T(a, \varnothing)=T(a)$.
Note that, if $Y=\varnothing$ in an equipped poset \mathcal{P} with a triple of points $(a, b, c) \mathrm{VII}_{s}$-suitable, then $P^{\prime}(a)=P(a)$, and $T^{\prime}(a, c)=T^{\prime}(a)=T(a)$.

2. Preliminaries Results

In [4] was proved the following theorem:
Theorem 2. Let (a, b, c) be a VII_{s} triple of points of an equipped poset \mathcal{P} and $\mathcal{P}_{(a, b, c)}^{\prime}=\left(\mathcal{P}_{(a, b, c)}^{S}, \Sigma_{(a, b, c)}\right)$ the corresponding derived equipped poset with relations. Then the short generalized differentiation functors $D_{(a, b, c)}$ induce bijections between indecomposables,

$$
\text { Ind } \mathcal{P} \backslash[T(a, c), T(a, Y)] \rightleftarrows \text { Ind } \mathcal{P}_{(a, b, c)}^{\prime} \backslash[T(a, Y)]
$$

The following results were proved in [2]:
Lemma 3. Let $X_{1} \subset \cdots \subset X_{n}, \quad Y_{1} \subset \cdots \subset Y_{n}, X_{i} \subset \tilde{U}_{0}, \quad Y_{i} \subset \tilde{V}_{0}$ be two chains of G-subspaces. Furthermore, let $X \subset U_{0}, Y \subset V_{0}$ and φ be two F-subspaces and an F-linear map, respectively, such that $\varphi \in[X, Y]$
and $\tilde{\varphi}\left(X_{i}\right) \subset Y_{i}$ for $1 \leq i \leq n$, then $\varphi \in \sum_{i=1}^{n+1}\left[\left(\tilde{X}+X_{i-1}\right)^{-}, Y \cap Y_{i}^{-}\right]$, where $X_{0}=0$ and $Y_{n+1}^{-}=V_{0}$.

Lemma 4. Let U and V be two representations of an equipped poset $\mathcal{P}=a^{\nabla}+b_{\Delta}+\{a \prec X \prec c\}$, where $a, c \in \mathcal{P}^{\otimes}, b \in \mathcal{P}^{\circ}$ is a strong point incomparable with a and $c,\{a \prec X \prec c\}$ is a completely weak set containing an arbitrary set X (eventually empty). Then for an F-linear map $\varphi: U_{0} \rightarrow V_{0}$, we have the following equivalences:
(a) $\varphi \in{ }_{U}\langle T(a)\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{c}\right)^{-}, V_{a}^{+}\right], \tilde{\varphi}\left(U_{c}\right) \subset V_{a}$,
(b) $\varphi \in{ }_{U}\langle T(a, c)\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{a+X}\right)^{-}, V_{a}^{+} \cap V_{c}^{-}\right]$,

$$
\tilde{\varphi}\left(U_{c}\right) \subset \tilde{V}_{a}^{+} \cap \tilde{V}_{c}^{-}, \tilde{\varphi}\left(U_{a+X}\right) \subset V_{a} \cap \tilde{V}_{c}^{-}
$$

(c) $\varphi \in{ }_{U}\langle P(a)\rangle_{V} \Leftrightarrow \varphi \in\left[U_{b}^{+}, V_{a}^{-}\right]$,
where if $X \subset U_{0}, Y \subset V_{0}$ are the corresponding subspaces of the finite dimensional k-vector spaces U_{0} and V_{0}, then $[X, Y]$ is a subspace of $\operatorname{Hom}_{k}\left(U_{0}, V_{0}\right)$ such that

$$
\varphi \in[X, Y] \text { if and only if } X \subset \operatorname{Ker} \varphi \text { and } \operatorname{Im} \varphi \subset Y .
$$

For a category \mathcal{A}, we let $\left\langle U_{i} \mid i \in I\right\rangle_{\mathcal{A}}$ denote the ideal consisting of all morphisms passed through finite direct sums of the objects U_{i}. That is, if $\varphi: U \rightarrow V \in\left\langle U_{i} \mid i \in I\right\rangle_{\mathcal{A}}$, then there exist morphisms $f, g \in \mathcal{A}$ such that $\varphi=U \xrightarrow{f} \underset{i}{\oplus} U_{i}^{m_{i}} \xrightarrow{g} V$ with $m_{i}=0$ for almost all i.

Corollary 5. Let U and V be the representations of an equipped poset $\mathcal{P}=a^{\nabla}+b_{\Delta}+\left\{a \prec c_{1} \prec \cdots \prec c_{n}\right\}$, where $\left\{a \prec c_{1} \prec \cdots \prec c_{n}\right\}$ is a completely weak chain incomparable with the strong point b. Then for an F-linear map $\varphi: U_{0} \rightarrow V_{0}$, we have the following equivalences if $1 \leq i \leq n$ $\left(U_{c_{0}}=U_{a}\right):$
(a) $\varphi \in{ }_{U}\left\langle T\left(a, c_{i}\right)\right\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{c_{i-1}}\right)^{-}, V_{a}^{+} \cap V_{c_{i}}^{-}\right]$,

$$
\tilde{\varphi}\left(U_{c_{n}}\right) \subset \tilde{V}_{c_{i}}^{-}, \tilde{\varphi}\left(U_{c_{i}}\right) \subset \tilde{V}_{a}^{+} \cap \tilde{V}_{c_{i}}^{-}, \tilde{\varphi}\left(U_{c_{i-1}}\right) \subset V_{a} \cap \tilde{V}_{c_{i}}^{-}
$$

(b) $\varphi \in{ }_{U}\langle T(a)\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{c_{n}}\right)^{-}, V_{a}^{+}\right], \tilde{\varphi}\left(U_{c_{n}}\right) \subset V_{a}$.

Lemma 4 allows us to conclude the following result.
Lemma 6. $\varphi \in{ }_{U^{\prime}}\langle T(a)\rangle_{V^{\prime}}$ if and only if $\tilde{\varphi}\left(U_{a+X}\right) \subset V_{a}$, and $\varphi \in$ $\left[\left(U_{b}+U_{a+X}\right)^{-}, V_{a}^{+}\right]$.

If we fix two objects $U, V \in \mathcal{R}$ being $\mathcal{R}=\operatorname{rep} \mathcal{P}$, then assuming the following notation:

$$
R=\mathcal{R}(U, V), \quad R^{\prime}=\mathcal{R}^{\prime}\left(U^{\prime}, V^{\prime}\right), \quad I={ }_{U}\langle T(a), T(a, c)\rangle_{V} \quad \text { is the ideal }
$$ which consists of morphisms passing through objects $T(a)$ and $T(a, c)$ in \mathcal{R}. Further, $I^{\prime}={ }_{U^{\prime}}\langle T(a)\rangle_{V^{\prime}}$ is the ideal which consists of morphisms passing through the object $T(a)$ in \mathcal{R}^{\prime}.

Since $\varphi=\varphi^{\prime}, \quad R \subset R^{\prime}$ and for two arbitrary objects $U, V \in \mathcal{R}$ the following inclusions hold:

$$
I \subset I^{\prime} \subset R^{\prime}, \quad I \subset R \subset R^{\prime}
$$

Proposition 7. $R \bigcap I^{\prime}=I$ and $R+I^{\prime}=R^{\prime}$.

Lemma 8. For each object $W \in \operatorname{rep} \mathcal{P}_{(a, b, c)}^{\prime}$, there exists an object $U \in \operatorname{rep} \mathcal{P}$ such that $U^{\prime} \simeq W \oplus T^{m}(a)$ for some $m \geq 0$.

Proof. Suppose that $W \in \operatorname{rep} \mathcal{P}_{(a, b, c)}^{\prime}$, we present subspace $W_{c^{+}}$in the form $\quad W_{c^{+}}=\underline{W_{c^{+}}} \oplus K_{c^{+}} \quad$ with $\quad K_{c^{+}}=L_{b} \oplus R_{c^{+}} \oplus K_{b_{c^{+}}}, \quad \tilde{K}_{c^{+}}^{-}=\tilde{K}_{c^{+}}^{-} \cap$
$W_{b} \oplus L_{b}, L_{b}$ a complement, $R_{c^{+}} \cap W_{b}=0, R_{c^{+}} \cap \tilde{W}_{c^{+}}^{-}=0$ and $K_{b_{c^{+}}} \subset$ $W_{b} \cap W_{c^{+}}$.

We write subspace $K_{b_{c^{+}}}$in the form $K_{b_{c^{+}}}=K_{b_{c^{+}}} \cap F\left(W_{a} \cap W_{b}\right) \oplus Z_{*}$. Therefore, if we fix a basis of the complement $Z_{*}=G\left\{e_{b_{j}} \mid 1 \leq j \leq t\right\}$, then it is possible to define a new F-subspace E_{0} such that $E_{0}=F\left\{e_{q_{j}^{a}}, e_{r_{j}^{a}}\right\}$. If we now build a subspace $R_{a_{*}}$ such that $R_{a_{*}}=N_{a_{*}}=G\left\{e_{q_{j}^{a}}+\mathbf{u} e_{r_{j}^{a}}\right\}$, then the representation $U \in \operatorname{rep} \mathcal{P}$ given by the following formulas satisfies the required condition:

$$
\begin{align*}
& U_{0}=E_{0} \oplus W_{0}, \\
& U_{x}=W_{x}+R_{a_{*}}^{\left(c_{\curlywedge} \backslash c\right) \cap\{x\}}, \\
& U_{c}=U_{c_{\curlywedge} \backslash c}+W_{c^{-}}+L_{b}+R_{c^{+}}+G\left\{e_{q_{j}^{a}}+e_{b_{j}}\right\}, \\
& U_{x}=W_{x}+F\left(R_{a_{*}}^{a^{\nabla} \cap\{x\}}\right) \text { for the remaining points } x \in \mathcal{P} . \tag{6}
\end{align*}
$$

We are done.
The representation reduced derived W of a representation $U \in \operatorname{rep} \mathcal{P}$ denoted $W=U^{\downarrow}$ (unique up to isomorphisms) is the maximal direct summand of U^{\prime} without direct summands of the form $T(a)$, namely,

$$
U^{\prime}=U^{\downarrow} \oplus T^{m}(a)
$$

In [4], it is proved that $\left(W^{\uparrow}\right)^{\downarrow} \simeq W$ and $\left(U^{\downarrow}\right)^{\uparrow} \simeq U$ if U and W are reduced objects, where $W^{\uparrow}=U$ is the object obtained in Lemma 8. Therefore, Theorem 2, Proposition 7 and Lemma 8 prove the following main result concerning differentiation VII_{s} for equipped posets with a triple of points VII_{s}-suitable and $Y=\varnothing$.

A Note on the Algorithm of Differentiation VII for Equipped Posets 103
Theorem 9. Let \mathcal{P} be an equipped poset with a triple of points (a, b, c) VII_{s}-suitable. Then the functor of differentiation

$$
D_{(a, b, c)}: \operatorname{rep} \mathcal{P} \rightarrow \operatorname{rep} \mathcal{P}_{(a, b, c)}^{\prime},
$$

defined by formulae (5) induces an equivalence between the quotient categories

$$
\mathcal{R} / \mathcal{J} \xrightarrow{\sim} \mathcal{R}^{\prime} / \mathcal{J}^{\prime},
$$

where $\mathcal{R}=\operatorname{rep} \mathcal{P}, \mathcal{R}^{\prime}=\operatorname{rep} \mathcal{P}_{(a, b, c)}^{\prime}$ and

$$
\mathcal{J}=\langle T(a), T(a, c)\rangle_{\mathcal{R}}, \quad \mathcal{J}^{\prime}=\langle T(a)\rangle_{\mathcal{R}^{\prime}} .
$$

In particular, the functor induces mutually inverse bijections between classes of indecomposables

$$
\operatorname{Ind} \mathcal{P} \backslash[T(a), T(a, c)] \rightleftarrows \operatorname{Ind} \mathcal{P}_{(a, b, c)}^{\prime} \backslash[T(a)]
$$

realized by the operations \uparrow and \downarrow.
Corollary 10. If $\Gamma(\mathcal{R})$ and $\Gamma\left(\mathcal{R}^{\prime}\right)$ are the Gabriel quivers of the categories \mathcal{R} and \mathcal{R}^{\prime}, then

$$
\Gamma(\mathcal{R}) \backslash[T(a), T(a, c)] \simeq \Gamma\left(\mathcal{R}^{\prime}\right) \backslash[T(a)] .
$$

3. Differentiation VII_{s} with $Y \neq \varnothing$

In this section, we discuss categorical properties of the algorithm of differentiation $D_{(a, b, c)}$ for a poset \mathcal{P} such that $\mathcal{P}=a^{\nabla}+b_{\Delta}+\{a \prec X$ $\prec c \prec Y\}$ with $Y \neq \varnothing$. To do that, we consider the full subcategory $\mathcal{L} \subset \operatorname{rep} \mathcal{P}$ whose objects $U \in \mathcal{L}$ satisfy the condition $U_{a}^{+} \subset \bigcap_{y \in Y} U_{y}^{-}$ (clearly, objects $U^{\prime} \in \mathcal{L}^{\prime} \subset \operatorname{rep} \mathcal{P}_{(a, b, c)}^{\prime}$ satisfy this condition). In this case, $T(a, Y), T(a, c) \in \mathcal{L}, T(a) \notin \mathcal{L}$. Furthermore,

$$
T^{\prime}(a)=T(a), \quad P^{\prime}(a)=P(a), \quad T^{\prime}(a, c)=T^{\prime}(a, Y)=T(a, Y) .
$$

For a poset $\mathcal{P}=a^{\nabla}+b_{\Delta}+\{a \prec X \prec c \prec Y\}, \quad Y \neq \varnothing$, Lemma 4 has the following interpretation:

Lemma 11. Let U and V be the representations of an equipped poset \mathcal{P} with a suitable triple of points VII_{s}-suitable (a, b, c). Then if $X^{\prime}=a+X$, $Y^{\prime}=a+X+c+Y$, then the following equivalences hold for an F-linear map $\varphi: U_{0} \rightarrow V_{0}$:
(a) $\varphi \in{ }_{U}\langle T(a, Y)\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{c}\right)^{-}, V_{a}^{+}\right], \tilde{\varphi}\left(U_{Y^{\prime}}\right) \subset \tilde{V}_{a}^{+}$, furthermore $\tilde{\varphi}\left(U_{X^{\prime}+c}\right) \subset V_{a}$,
(b) $\varphi \in{ }_{U}\langle T(a, c)\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{X^{\prime}}\right)^{-}, V_{a}^{+} \cap V_{c}^{-}\right]$,

$$
\tilde{\varphi}\left(U_{Y^{\prime}}\right) \subset \tilde{V}_{c}^{-}, \tilde{\varphi}\left(U_{c} \curlyvee\right) \subset \tilde{V}_{a}^{+} \cap \tilde{V}_{c}^{-}, \tilde{\varphi}\left(U_{X^{\prime}}\right) \subset V_{a} \cap \tilde{V}_{c}^{-}
$$

(c) $\varphi \in U_{U^{\prime}}\langle T(a, Y)\rangle_{V^{\prime}} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{X^{\prime}}\right)^{-}, V_{a}^{+}\right]$,

$$
\tilde{\varphi}\left(U_{Y^{\prime} \backslash c}\right) \subset \tilde{V}_{a}^{+}, \tilde{\varphi}\left(U_{X^{\prime}}\right) \subset V_{a}
$$

Fixing two objects $U, V \in \mathcal{L}$ with $\mathcal{L} \subset \operatorname{rep} \mathcal{P}$ and defining L, L^{\prime} as R, R^{\prime} in the case $Y=\varnothing$, we define $J={ }_{U}\langle T(a, Y), T(a, c)\rangle_{V}$ as the ideal consisting of morphisms passing through objects $T(a, c)$ and $T(a, Y)$ in \mathcal{L}. We let $J^{\prime}={ }_{U^{\prime}}\langle T(a, Y)\rangle_{V^{\prime}}$ denote the ideal consisting of morphisms passing through the indecomposable $T(a, Y)$ in \mathcal{L}^{\prime}.

Since $\varphi=\varphi^{\prime}, L \subset L^{\prime}$ and for arbitrary objects $U, V \in \mathcal{L}$, the following inclusions hold:

$$
J \subset J^{\prime} \subset L^{\prime}, \quad J \subset L \subset L^{\prime} .
$$

Corollary 12. $L \cap J^{\prime}=J$.
Proof. Suppose that $\varphi \in L \cap J^{\prime}$. Then $\tilde{\varphi}\left(U_{x}\right) \subset V_{x}$, for each $x \in \mathcal{P}$, in particular, $\tilde{\varphi}\left(U_{c}\right) \subset V_{c}$. Lemma 11 allows to conclude $\varphi \in\left[\left(U_{b}+U_{X^{\prime}}\right)^{-}\right.$,
$\left.V_{a}^{+}\right]$. Therefore, $\varphi \in\left[\left(U_{b}+U_{c}\right)^{-}, V_{a}^{+}\right]+\left[\left(U_{b}+U_{X^{\prime}}\right)^{-}, V_{a}^{+} \cap V_{c}^{-}\right]$. Since φ can be written as a sum of the form $\varphi=\varphi_{1}+\varphi_{2}$, where $\varphi_{1}, \varphi_{2} \in J$, Lemmas 3 and 11 allow us to conclude $\varphi \in J$.

Arguments used in the proof of Proposition 7 prove the following result for an equipped poset \mathcal{P} which can be written in the form $\mathcal{P}=a^{\nabla}+b_{\Delta}+$ $\{a \prec X \prec c \prec Y\}, Y \neq \varnothing:$

Proposition 13. $L+J^{\prime}=L^{\prime}$.
Lemma 14. For each object $W \in \mathcal{L}^{\prime}$, there exists an object $U \in \mathcal{L}$ such that $U^{\prime} \simeq W \oplus T^{m}(a, Y)$ for some $m \geq 0$.

Proof. We describe space $W_{c^{+}}$as in Lemma 8, then the conclusion can be obtained by using the same arguments described in such lemma. Actually, space U_{0} and subspace U_{x}, for each point $x \in \mathcal{P} \backslash a^{\nabla}+Y$, have the form described in formulas (6). In this case, for each point $x \in a^{\nabla}+Y$, subspace U_{X} is presented in the form:

$$
\begin{equation*}
U_{x}=W_{x}+F\left(R_{a_{*}}^{\left(a^{\nabla}+Y\right) \cap\{x\}}\right) . \tag{7}
\end{equation*}
$$

Corollary 12, Proposition 13 and Lemma 14 prove the following theorem.

Theorem 15. Let \mathcal{P} be an equipped poset with a triple of points $(a, b, c), \mathrm{VII}_{s}$-suitable (a, b, c). Then the functor of differentiation

$$
D_{(a, b, c)}: \operatorname{rep} \mathcal{P} \rightarrow \operatorname{rep} \mathcal{P}_{(a, b, c)}^{\prime}
$$

defined by formulae (5) induces an equivalence between the quotient categories

$$
\mathcal{L} / \mathcal{J} \xrightarrow{\sim} \mathcal{L}^{\prime} / \mathcal{J}^{\prime},
$$

where

$$
\mathcal{J}=\langle T(a, c), T(a, Y)\rangle_{\mathcal{L}}, \quad \mathcal{J}^{\prime}=\langle T(a, Y)\rangle_{\mathcal{L}^{\prime}}
$$

Corollary 16. If $\Gamma(\mathcal{L})$ and $\Gamma\left(\mathcal{L}^{\prime}\right)$ are the Gabriel quivers of the categories \mathcal{L} and \mathcal{L}^{\prime}, then

$$
\Gamma(\mathcal{L}) \backslash[T(a, c), T(a, Y)] \simeq \Gamma\left(\mathcal{L}^{\prime}\right) \backslash[T(a, Y)]
$$

References

[1] A. M. Cañadas, Morphisms in categories of representations of equipped posets, JP J. Algebra Number Theory Applications 25(2) (2012), 145-176.
[2] A. M. Cañadas, Some categorical properties of the algorithm of differentiation VII for equipped posets, JP J. Algebra Number Theory Applications 25(2) (2012), 177-213.
[3] A. M. Cañadas and H. Giraldo, Completion for equipped posets, JP J. Algebra Number Theory Applications 26(2) (2012), 173-196.
[4] C. Rodriguez Beltran and A. G. Zavadskij, On corepresentations of equipped posets and their differentiation, Rev. Colombiana Mat. 41 (2007), 117-142.
[5] A. G. Zavadskij, Tame equipped posets, Linear Algebra Appl. 365 (2003), 389-465.
[6] A. G. Zavadskij, Equipped posets of finite growth, Representations of Algebras and Related Topics, AMS, Fields Inst. Comm. Ser. 45 (2005), 363-396.

