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Abstract 

An improved optimization algorithm was designed for finding these 
solutions of discontinuous portfolio optimization models in stock 
market quickly and efficiently. By introducing crossover operations, 
an innovative particle swarm optimization algorithm (CPSO) based on 
optimal and sub-optimal locations was proposed. Then in performance 
test the algorithm performed better than some existed improved 
particle swarm optimization algorithms, and overcome the flaw of 
premature. Finally, CPSO was applied in stock market, and in 
simulation experiment optimization values of two portfolio models 
under different expected return rates were obtained. 
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1. Introduction 

Particle swarm optimization algorithm (PSO) was proposed by Kennedy 
and Eberhart [1] in 1995. It is a kind of evolutionary computation technique 
motivated by the behavior of organisms such as fish schooling or bird 
flocking. In the PSO system, a number of particles coexist and cooperate to 
get the optimal solution in complicated search space. Compared with other 
evolutionary algorithms, PSO has simple structure and very few parameters 
to adjust. Meanwhile it has shown a faster convergence rate on some high-
dimension problems. However, when solving these problems with more local 
extreme values, PSO is easy to be trapped by poor local minima, and shows 
slower convergence rate in later iterations. In order to overcome these 
disadvantages, lots of relevant researches were derived (see [2-6] and the 
references therein). 

During recent about six years, some studies on applying the standard 
PSO and its modified algorithms to the portfolio selection and relevant fields 
have been carried out gradually. Apart from solving the classical M-V model, 
Liu et al. [7] studied an optimal stocks portfolio model using PSO, Chen et 
al. [8] analyzed a class of portfolio models through the modified PSO, and 
other relevant researches on portfolio optimization based on CVaR [9] and 
sel-financing portfolio model [10], etc. 

Motivated and inspired by the research work mentioned above, in this 
paper, firstly develop an improved particle swarm optimization algorithm 
based on crossover operation and optimal and sub-optimal locations. Then 
apply the improved algorithm to solve the model with real data from the 
Hong Kong Stock Market, and actual return rates of different portfolios are 
given in numerical experiments. Some main results in detail are showed later. 

2. An Improved Particle Swarm Optimization Algorithm 

In the standard PSO, each iteration position of every particle is obtained 
from two optimal positions according to its own and its neighboring-
particle’s experiences. Inspired by the idea of particle swarm optimization 
proposed in [6], consider optimal and sub-optimal positions of each particle 
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in the process of iteration, meanwhile introduce crossover operation for 
overcoming premature. The improved particle swarm optimization algorithm 
is denoted by CPSO, and its process is as follows. 

Suppose that the search space is D dimensional, and number of particle 
swarm is M. The past optimal and sub-optimal positions of ith particle of the 

swarm are represented by ( )11
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where w is particle inertia weight, 1c  and 2c  are cognitive and social scaling 

parameters, respectively. From (1)-(4), get iteration formula of particle’s 
velocity as follows: 
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and iteration formula of particle’s position is given by 

 ( ) ( ) ( ).11 ++=+ tVtXtX ididid  (6) 

Next, consider iteration formulas of particle’s past optimal and sub-
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optimal positions and global optimal and sub-optimal positions, which are 
seen in [6]. Then, the crossover operations in genetic algorithm are 
introduced for strengthening ability of searching for the best solution. 

Make two-point crossover operation on particle’s past optimal and sub-
optimal positions, its process is as follows: 

[ ];01 rDd ∗=  

[ ];02 rDd ∗=  

for  1dm =  to 2d  

( );, jmim ZZswap  

end (7) 

where D is the dimension of particle swarm, 0r  is a random number in the 

interval ( ),1,0  [ ]  denotes that round toward infinity, and ( )jmim ZZswap ,  

denotes that exchange mth positions of iZ  and .jZ  

Then, do algebraic crossover operation on global optimal and sub-
optimal positions, and its formula is: 
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where a is a random number in the interval ( ),1,0  iY  and jY  are two father 

particles, and correspondingly 1
iY  and 1

jY  are two son particles. Then keep 

particles with better fitness values by comparing farther and son particles. 

Now, demonstrate the detailed algorithm flow of CPSO as follows: 

Step 1: Initialize positions and velocities of all particles, and set iteration 
count ;0=t  

Step 2: Evaluate the fitness values of current particles; 

Step 3: Update optimal and sub-optimal positions of each particle, and 
global optimal and sub-optimal positions; 
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Step 4: Do two-point crossover operation on particle’s past optimal and 
sub-optimal positions obtained in Step 3 by (7), and make comparison and 
replacement; 

Step 5: Do algebraic crossover operation on global optimal and sub-
optimal positions obtained in Step 3 by (8), and make comparison and 
replacement; 

Step 6: Update iteration velocity and position of each particle by (1)-(6), 
and ;1+= tt  

Step 7: Turn to Step 2 when t is less than the maximal iteration count, 
unless end the process. 

3. Algorithm Tests and Analyses 

Here, choose the following functions to test the performance of CPSO: 

(1) Rosenbrock: 

( ) ( ( ) ( ) ) [ ]∑
−

=
+ −∈−+−=

1

1

222
1 .30,30,1100

n

i
iiii xxxxxf  

The function reaches global minimal value 0 when .1...,,2,1,1 −== nixi  

(2) Rastrigin: 

( ) ( ( ) ) [ ]∑
=

−∈+π−=
n

i
iii xxxxf

1

2 .12.5,12.5,102cos10  

The function reaches global minimal value 0 when ....,,2,1,0 nixi ==  

(3) Griewank: 

( ) [ ]∑ ∏
= =

−∈+⎟
⎠
⎞

⎜
⎝
⎛−=

n

i

n

i
i

i
i x

i
xxxf

1 1

2 .600,600,1cos4000
1  

The function reaches global minimal value 0 when ....,,2,1,0 nixi ==  



Guang He 170 

In the system of CPSO, take ,221 == cc  and get w as follows: 

( ) ( ),1 minmaxmin wwT
tTwtw −⋅

−
−+=  

where T and t are maximal and present iteration counts, respectively, and 

maxw  and minw  are maximal and minimal values of inertia weight, 

respectively, then set .4.0,9.0 minmax == ww  

Then, choose PSO, IPSO developed in [5], OSL-PSO proposed in [6] 
and CPSO as test algorithms, and compare their optimization results. Take 

,10=D  1000=T  and ,160,80,40,20=M  respectively, and calculate 

each selection for 50 times independently, then average them. The related 
results are showed in Table 1. 

Table 1. Optimization results of three test functions 

Function M PSO IPSO OSL-PSO INPSO 

20 21.3351 10.5172 6.0433 1.3117 

40 15.6461 1.2446 0.1500 0.1030 

80 1.6683 0.1922 0.0230 0.0066 
Rosenbrock 

160 1.1445 0.0598 1.1348E-12 0.0001 

20 6.6214 3.2928 0.9505 0.5970 

40 2.7401 2.6162 0.1281 0.0995 

80 2.3373 1.7054 0.0249 0.0000 
Rastrigin 

160 1.4410 0.8001 2.2204E-15 0.0000 

20 0.0905 0.0784 0.0332 0.0301 

40 0.0760 0.0648 0.0097 0.0295 

80 0.0649 0.0594 0.0006 0.0167 
Griewank 

160 0.0566 0.0507 0.0000 0.0102 

From data in Table 1, it is seen that CPSO outperforms significantly PSO 
and IPSO in tests of three functions. Compared with OSL-PSO, except 
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160=n  optimization values of CPSO are better than those of OSL-PSO in 
test of Rosenbrock function; in test of Griewank function, CPSO obtains 
better value when ;20=n  and in test of Rastrigin function, CPSO performs 
much better than OSL-PSO. To sum up, when dimension of search space 

,10=D  CPSO displays effective optimization ability. 

Furthermore, in order to test the operation speed of CPSO, compare it 
with that of the standard PSO. Take ,40=M  and calculate each value for 
50 times independently, and average them. These results are showed in Table 
2. 

Table 2. Time complexities of two algorithms (second) 

Function Algorithm Best value Worst value Mean value 

PSO 6.2340 6.3590 6.2929 
Rosenbrock 

INPSO 6.7707 7.6040 7.2365 

PSO 6.2030 6.5000 6.3422 
Rastrigin 

INPSO 6.9377 7.4863 7.1478 

PSO 6.6880 6.9850 6.8500 
Griewank 

INPSO 7.7810 8.1880 8.0219 

It follows from Table 2 that PSO runs faster than CPSO in all tests, but 
the differences between them are small. Moreover, from results showed in 
Table 1, it is worth that CPSO improves optimization ability significantly by 
adding a little running time. 

4. Applications in Stock Market 

In this section, CPSO will be applied in stock market by numerical 
simulation experiments. 

Assume that an investor owns a wealth ,0M  which is going to be 

invested in m stocks ....,,2,1, miSi =  Let iR  be the random return rate of 

,iS  and ir  be the mathematical expectation of .iR  Define the expected 
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return of a portfolio ( )mxxxx ...,,, 21=  as follows: 
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The experiments use the real data from the Hong Kong Stock Market. 
The closing prices of 10 blue-chip stocks dated from 6/18/2008 to 6/18/2010 
are collected. Set the number of the trading days in the investment period to 
be 60, and the number of trading days prior to the investment day to be 80. 
Two classical optimization models: Konno’s model and Cai’s model are 
chosen, and the feasible region of ( )mxxxx ...,,, 21=  is 
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where ρ denotes the expected return rate. 

Konno’s model: 
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Cai’s model: 
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It is easy to see that the risk function in Cai’s model is discontinuous, so 
consider applying CPSO to solve it. In simulation experiments, set ,10 =M  

the dimension of search space ,10=D  the number of maximal iteration 
,100=T  and the number of swarm .40=n  These optimization results of 

two models under short-term expected return rate (5%) and long-term 
expected return rate (20%) are listed in Table 3 and Table 4, respectively. 
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Table 3. Optimization values under short-term expected return rate 

Algorithm Konno’s model Cai’s model 

PSO 0.0916 0.0499 

CPSO 0.0459 0.0228 

Table 4. Optimization values under long-term expected return rate 

Algorithm Konno’s model Cai’s model 

PSO 0.2664 0.1748 

CPSO 0.1003 0.0429 

From data in Table 3 and Table 4, when expected return rate is given, the 
values at risk calculated by CPSO are all smaller than those calculated by 
PSO, and CPSO performs better in risk control. Moreover, the values at risk 
of Cai’s model are less than those of Konno’s model, which indicates that the 
former could reduce more losses while gain same return rate. 

5. Conclusions 

In order to avoid premature, a modified particle swarm optimization 
algorithm (CPSO) is developed based on crossover operations and the 
particle’s optimal and sub-optimal locations. By algorithm tests and analyses, 
CPSO performs better than some existed algorithm, and avoid being trapped 
by poor local minima. In simulation experiments, CPSO is applied to solve 
optimization values under different expected return rates of two portfolio 
models. Furthermore, how to combine other intelligent algorithms to improve 
ability is the next work. 
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