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Abstract 

In this paper, we introduce and study the second kind twisted ( )qh, -

Euler numbers ( )h
wqnE ,,  and polynomials ( ) ( ).,, xE h

wqn  

1. Introduction 

Many mathematicians have studied Euler numbers and Euler 
polynomials. Euler polynomials possess many interesting properties and are 
arising in many areas of mathematics and physics. In this paper, we introduce 
the second kind twisted ( )qh, -Euler numbers and polynomials. Throughout 

this paper, we use the following notations. By pZ  we denote the ring of 

p-adic rational integers, Q  denotes the field of rational numbers, pQ  denotes 

the field of p-adic rational numbers, C  denotes the complex number field, 
and pC  denotes the completion of algebraic closure of .pQ  Let pν  be the 
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normalized exponential valuation of pC  with ( ) .1−ν−
== ppp p

p
p  When 

one talks of q-extension, q is considered in many ways such as an 
indeterminate, a complex number ,C∈q  or p-adic number .pq C∈  If 

,C∈q  then we normally assume that .1<q  If ,pq C∈  then we normally 

assume that 1
1

1 −
−

<− p
p pq  so that ( )qxqx logexp=  for ,1≤px  

[ ] [ ] ,1
1: q

qqxx
x

q −
−==    cf. [1, 2, 3, 4, 5, 6]. 

For 

( ) { },functionabledifferentiuniformlyis: ppp ggUDg CZZ →|=∈  

Kim defined the fermionic p-adic integral on pZ  as follows: 

 ( ) ( ) ( ) ( )∫ ∑
<≤

∞→− −=μ
p Npx

x
N

xgxdxg
Z

0
1 1lim  cf. [1, 2]. (1.1) 

From (1.1), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∑
−

=

−−
−−− −+μ−=μ+

p p

n

l

lnn lgxdxgIxdnxg
Z Z

1

0

1
111 .121  

 (1.2) 

2. The Second Kind Twisted ( )qh, -Euler Numbers and Polynomials 

Our primary aim in this section is to define the second kind twisted 

( )qh, -Euler numbers ( )h
wqnE ,,  and polynomials ( ) ( )xE h

wqn ,,  and to investigate 

their properties. In this section, we assume that .Z∈h  Let NpNp CT 1≥= ∪  

,lim NpN C∞→=  where { }1=|=
N

N
p

p
wwC  is the cyclic group of order 

.Np  For ,pTw ∈  we denote by ppw CZ →φ :  the locally constant function 
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.xwx  In (1.2), if we take ( ) ( ) ( ) ,12 txhx
w eqxxg +φ=  then we easily see 

that 

( ) ( ) ( )∫ +
=μφ −

+

p
th

t
txhx

w
ewq
exdeqx

Z
.

1
2

21
12  

Let us define the second kind twisted ( )qh, -Euler numbers wqnE ,,  and 

polynomials ( )xE wqn ,,  as follows: 

( ) ( ) ( ) ( )∫ ∑
∞

=
−

+ =μφ
p n

n
h

wqn
tyhy

w n
tEydeqy

Z 0
,,1

12 ,!  (2.1) 

( ) ( ) ( ) ( ) ( )∫ ∑
∞

=
−

++ =μφ
p n

n
h

wqn
txyhy

w n
txEydeqy

Z 0
,,1

12 .!  (2.2) 

By (2.1) and (2.2), we obtain the following Witt’s formula. 

Theorem 1. For pTw ∈  and ,Z∈h  we have 

( ) ( ) ( ) ( )∫ =μ+φ −
p

h
wqn

nhx
w Exdxqx

Z
,12 ,,1  

( ) ( ) ( ) ( ) ( )∫ =μ++φ −
p

xEydxyqy h
wqn

nhy
wZ

.12 ,,1  

Let q be a complex number with 1<q  and w be the Np th root of 

unity. By the meaning of (1.3) and (1.4), let us define the second kind twisted 

( )qh, -Euler numbers ( )h
wqnE ,,  and polynomials ( ) ( )xE h

wqn ,,  as follows: 

( )∑
∞

=
=

+ 0
,,2 ,!1

2

n

n
h

wqnth

t

n
tE

ewq
e  (2.3) 

( ) ( )∑
∞

=
=

+ 0
,,2 .!1

2

n

n
h

wqn
xt

th

t

n
txEe

ewq
e  (2.4) 
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By above definition, we obtain 

 ( ) ( )∑
∞

= +
=

0
2,, 1

2
!

l

xt
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wql e
ewq
e

l
txE  

( )
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( )∑ ∑
∞
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−
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

0 0
,, .!

l

ll

n

nlh
wqn l

txE
n
l

 

By using comparing coefficients ,!l
t l

 we have the following theorem. 

Theorem 2. For any positive integer n, we have 

( ) ( ) ( )∑
=

−⎟
⎠
⎞

⎜
⎝
⎛=

n

k

knh
wqk

h
wqn xE

k
n

xE
0

,,,, .  

Over five decades ago, Carlitz [1] defined q-extensions of the classical 
Bernoulli numbers nB  and Bernoulli polynomials ( )xBn  and proved 

properties analogues to those satisfied by nB  and ( ).xBn  Carlitz’s q-Bernoulli 

numbers qnn ,β=β  can be determined inductively by [1], 

( )
⎩
⎨
⎧

>
=

=β−+β=β
,1if,0
,1if,1

1,10 k
k

qq k
k  

with the usual convention about replacing kβ  by .kβ  For the second kind 

twisted ( )qh, -Euler numbers, we obtain the following theorem. 

Theorem 3. The second kind twisted ( )qh, -Euler numbers ( )h
wqnE ,,  are 

defined, respectively, by 

( ( ) ) ( ( ) )
⎩
⎨
⎧

>
=

=−++
,0,0
,0,2

11 ,, nif
nif

EEwq nh
wq

nh
wq

h  

with the usual convention about replacing ( ( ) )nh
wqE ,  by ( )h

wqnE ,,  in the 

binomial expansion. 
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Proof. From (2.3), we obtain 

( ) ( ( ) )
( )

∑ ∑
∞

=

∞

=
−

===
+ 0 0

,,,
,

!!
2

n n

tEn
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which yields 

( )
( ) ( ( ) ) ( ( ) ) .2 11 ,,, tEtEhtEtth h

wq
h

wq
h

wq eewqeeewq −+− +=+=  

Using Taylor expansion of exponential function, we have 

{ ( ( ) ) ( ( ) ) }∑
∞

=
−++=

0
,, !112

n

n
nh

wq
nh
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The result follows by comparing the coefficients. ~ 

Because 

( ) ( ) ( ) ( ) ( ) ( )∑
∞

=
==

∂
∂

0
,,,, ,!,,

n

n
h

wqn
h
wq

h
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it follows the important relation 

( ) ( ) ( ) ( ).,,1,, xnExEdx
d h

wqn
h

wqn −=  

We also obtain the following integral formula: 

( ) ( ) ( ( ) ( ) ( ) ( ))∫ −=−
b

a
h
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h
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h

wqn aEbEndxxE .1
,,,,,,1  
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we have the following addition theorem. 

Theorem 4. The second kind twisted Euler polynomial ( ) ( )xE h
wqn ,,  

satisfies the following relation: 

( ) ( ) ( ) ( )∑
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It is easy to see that 
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Hence, we have the below distribution relation. 

Theorem 5. For m an odd positive integer and ,N∈n  we have 
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