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Abstract

Let T be a k-quasi-=-class A operator on a complex Hilbert space H if

(T2 |-|T**)T* 20, where k is a natural number. In this

paper, we prove that the spectral mapping theorem for Weyl spectrum
holds for k-quasi-x-class A operators. Also, we prove that the Weyl
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type theorems holds for k-quasi-«-class A. We also prove that if T* is
k-quasi-+-class A, then generalized a-Weyl’s theorem holds for T.
Also, we prove that & (T ) — {0} = o4p(T) - {0} holds for k-quasi-»-

class A operator.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators acting on an

infinite dimensional separable Hilbert space H. For positive operators A and
B, write A>B if A-B>0. If A and B are invertible and positive
operators, then it is well known that A > B implies that log A > log B.
However [2], log A > log B does not necessarily imply A > B. A result due
to Ando [6] states that for invertible positive operators A and B,

ri

r
log A >logB if and only if A" > (A2B'A2)2 for all r>0. For an
operator T, let U|T | denote the polar decomposition of T, where U is a

partially isometric operator, |T | is a positive square root of T*T and

ker(T) = ker(U) = ker(| T |), where ker(S) denotes the kernel of operator S.

An operator T e B(H) is positive, T > 0, if (Tx, x) > 0 forall x € H,
and posinormal if there exists a positive A e B(#) such that TT* = T*AT.
Here X is called interrupter of T. In other words, an operator T is called
posinormal if TT* < ¢?T*T, where T* is the adjoint of T and ¢ > 0 [15].
An operator T is said to be heminormal if T is hyponormal and T*T

commutes with TT*. An operator T is said to be p-posinormal if (TT*)P
< cZ(T*T)IO for some ¢ > 0. It is clear that 1-posinormal is posinormal. An

operator T is said to be p-hyponormal, for p € (0, 1), if (T*T)P > (TT")P.
A 1-hyponormal operator is hyponormal which has been studied by many
authors and it is known that hyponormal operators have many interesting
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properties similar to those of normal operators [30]. Furuta et al. [19] have
characterized class A operator as follows. An operator T belongs to class A if

1
and only if (T*|T |T)2 >T°T.

An operator T is said to be paranormal if |T2x|>|Tx|? and

«-paranormal if | T2x | > | T*x[? for all unit vector x e H. Recently,
Duggal et al. [17] have considered the new class of operators: an operator
T e B(H) belongs to «-class A if [ T2 |>|T* 2. The authors of [28] have
extended =-class A operators to quasi-x-class A operators. An operator
T e B(H) is said to be quasi-=-class A if T T2 [T >T*|T* °T and

quasi-«-paranormal if | T*Tx | < | T3x ||| Tx| for all x e H. As a further
generalization, Mecheri [25] has introduced the class of k-quasi-x-class A

operators. An operator T is said to be k-quasi-x-class A operator on a
complex Hilbert space H if T*(|T2|—|T*[>)TX > 0, where k is a natural
number.

An operator T is called normal if T*T =TT* and (p, k)-

quasihyponormal  if T (TP -(TTP)Tk 20 (0<p<lkeN).
Aluthge [1], Campbell and Gupta [11] and Arora and Arora [3] introduced
p-hyponormal, p-quasihyponormal and k-quasihyponormal operators,
respectively.

Aluthge [1] studied p-hyponormal operators for 0 < p < 1. In particular,
~ 1 1
he defined the operator T =|T [2U|T |2 which is called the Aluthge

= ~ 1. _1 ~ ~ ~
transformation and the operator T =|T [2U| T [2, where T =U|T | is the
polar decomposition of T. An operator T is said to be w-hyponormal if

T 127|277
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p-hyponormal < p-posinormal < (p, k) -quasiposinormal,
p-hyponormal < p-quasihyponormal

< (p, k)-quasihyponormal < (p, k)-quasiposinormal
and
hyponormal < k -quasihyponormal < (p, k) -quasihyponormal
< (p, k)-quasiposinormal

for a positive integer k and a positive number 0 < p < 1.

If T € B(H), then we shall write N(T) and R(T) for the null space and

the range of T, respectively. Also, let o(T) and o,(T) denote the spectrum

and the approximate point spectrum of T, respectively. An operator T is
called Fredholm if R(T) is closed, o(T)=dimN(T)<o and B(T) =

dim H/R(T) < 0. Moreover, if i(T)=a(T)—B(T)=0, then T is called
Weyl. The essential spectrum o,(T) and the Weyl oy (T ) are defined by

0e(T)={L € C:T — A is not Fredholm}
and
ow(T)={A e C:T — A is not Weyl},

respectively. It is known that c,(T) < oy (T) < co(T)U acco(T), where
we write acc K for the set of all accumulation points of K < C. If we write
iso K = K\acc K, then we let

ngo(T) ={L €isoo(T):0 < T — L) < o0},
We say that Weyl’s theorem holds for T if
o(T Now (T) = moo(T).
Let cp(T) denote the point spectrum of T, i.e., the set of its eigenvalues.

Let o ,(T) denote the joint point spectrum of T. We note that A € o, (T) if

and only if there exists a non-zero vector x such that Tx = Ax, T"x = Ax. It
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is evident that o j,(T) < oy (T). It is well known that if T is normal, then
Gjp(T)=0p(T). Let T =U|T| be the polar decomposition of T and

A =|1|e" be the complex number, |%|> 0, | e |=1. Then i e cjp(T)

if and only if there exists a non-zero vector x such that Ux:eie,

| T [x =|L|x Let cqy(T) denote the approximate point spectrum of T, i.e.,
the set of all complex numbers A which satisfy the following condition: there
exists a sequence {x,, } of unit vectors in 7+ such that lim,| (T —21)x, || = 0.
It is evident that o,(T) < 64(T). Let ojap(T) be the joint approximate

point spectrum of T. Then A € cjap(T) if and only if there exists a sequence

{X,} of unit vectors such that lim,_o[ (T =A) Xy | = imp e (T =2) Xy |
= 0. Itis evident that o jap(T) = o49(T) forall T e B(H). Itis well known

that for a normal operator T, 6 jap(T) = o4p(T) = o(T).

In [29], Weyl proved that Weyl’s theorem holds for Hermitian operators.
Weyl’s theorem has been extended from Hermitian operators to hyponormal
operators [13], algebraically hyponormal operators [21], p-hyponormal
operators [12] and algebraically p-hyponormal operators [16]. More
generally, Berkani investigated generalized Weyl’s theorem which extends
Weyl’s theorem, and proved that generalized Weyl’s theorem holds for
hyponormal operators [7-9]. In a recent paper [24], the author showed that
generalized Weyl’s theorem holds for (p, k)-quasihyponormal operators.
Recently, Cao et al. [10] proved Weyl type theorems for p-hyponormal
operators. In this paper, we prove that Weyl type theorems holds for k-quasi-

=-class A operators. Especially, we prove that if T is k-quasi-*-class A, then
generalized a-Weyl’s theorem holds for T.

2. Weyl’s Theorem for k-quasi-*-class A Operators

Salah Mecheri has introduced k-quasi-*-class A operators and has proved
many interesting properties of it.
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Lemma 2.1 [25, Lemma 2.1, Theorem 2.3]. (1) Let T € B(H) be

k-quasi-*-class A operator and suppose the range of T K'is not dense and

T, T
S
0 T;

on H = ran(Tk) @ ker(T*k), where T; is »-class A operator, T3k =0 and

o(T) = o(T) U {0}.
(2) Let T € B(H) be a k-quasi-*-class A operator and let M be a closed
T-invariant subspace of H. Then the restriction T |, of T to M is a k-quasi-

*-class A operator.

Lemma 2.2 [25, Theorem 2.5]. Let T € B(H) be a k-quasi-*-class A

operator. If A = 0 and (T —A)x = 0 for some x € H, then (T —1)"x = 0.

Lemma 2.3 [25, Theorem 2.2]. Let T € B(H) be a k-quasi-*-class A
operator. Then T has Bishop’s property (B) (i.e., if f,(z) is analytic on D
and (T —z)f,(z) > 0 uniformly on each compact subset of D, then
f,(z) > 0 uniformly on each compact subset of D), the single valued
extension property and Dunford property (C).

Proposition 2.4. Weyl’s theorem holds for k-quasi-*-class A operator T,

ie., G(T)\G\N (T) = TC00(T).

Proof. Let & € o(T)\oy (T). Then T — & is Weyl and not invertible. If
A is an interior point of o(T), then there exists an open set G such that
L e G c o(T)\ow (T). Hence dimN(T —p) >0 forall p e G and T does

not have the single valued extension property by [18, Theorem 9]. This is a
contradiction. Hence A is a boundary point of o(T), and hence an isolated

point of o(T) by [14, Theorem XI 6.8]. Thus, A € my(T).
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Let A e mpe(T) and E; be the Riesz idempotent for A of T. Then
0 < dimN(T =) < oo,

T=Tlgn @Tl1-g)n
and
o(Tlg,n) =M} o la-g)n)=o(M\r}
We remark T [, H is k-quasi-*-class A operator by Lemma 2.1.

If & =0, then T g, 3 = {A} by [25]. Hence E; H < N(T — 1) and E;
is of finite rank. Since (T —2)[(j_g,)x is invertible, T -2 =0Jg, » @

(T = M)l(1-g, )n is Weyl. Hence & e o(T oy (T).
If A =0, then (T |E0H)k = 0 by [25]. Hence EqH < N(Tk) and
dim EgH < dim N(T*) < k dim N(T) < oo,

Then T |g, % is compact. Since T |(_g,) is invertible, A € o(T \ow (T) by

[14, Proposition X1 6.9]. O

Theorem 2.5. If T is an n-multicyclic k-quasi-*-class A operator, then

the restriction T; of T on ran(Tk) is also an n-multicyclic operator.

Tl T2 Kk %k .
Proof. Let T = o T on H=ran(T") @ ker(T™). Since o(Ty) <
3

o(T) by Lemma 2.1, R(c(T)) = R(c(Ty)). By hypothesis, there exist n

vectors Xy, ..., Xy € H such that
H=\/9(T)xli=12 .,nand g e R(c(T)).

Now let y; = Tkxi, i =1, ..., n. Then we have the following:
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\Vo(M)yili =12, ... n, g € R(c(Ty))
S5 \VoM)yili=1, ... n, g eR(s(T))

=\VoMT*% i =12 .., n, g € R(o(T))

\/TKg(M)xli=12, ... n, g e R(c(T))

ran(T I‘)

and yj, ..., Y, are n-multicyclic vectors of T;. O
Lemma 2.6 [22, Theorem 6]. For given operators A, B, C € B(H),

A C
there is equality oy (A)U oy (B) = oy (M U®), where M. = (0 B]

and & is the union of certain of the holes in oy (M) which happen to be
subsets of oy (A) N oy (B).

The following theorem shows that the spectral mapping theorem for
Weyl spectrum holds for k-quasi-*-class A operators.

Theorem 2.7. If T is k-quasi-*-class A operator, then f (o (T))
= oy (f(T)) for any analytic function f on a neighborhood of o(T).

Proof. We need only to prove that oy (p(T)) = p(ow (T)) for any

LERp)

polynomial p. Since T has the matrix representation T = ( J where

T3
Ty is *-class A operator and T3k = 0, and the spectral mapping theorem for
Weyl spectrum holds for *-class A operator, it follows that

ow (P(T)) = ow (p(T1)) U ow (p(T3))
= p(ow (T1)) U p(ow (T3))
= p(ow (T1)) U ow (T3)
plow (T)).
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It was known [22] if A and B are isoloid and if Weyl’s theorem holds for

A and B, then Weyl’s theorem holds for (é g) & GW[Q gj = oy (A)

We know that the “spectral picture” [26] of the operator T e B(H),
denoted by SP(T), consists of the set c,(T), the collection of holes and
pseudoholes in c,(T), and the indices associated with these holes and

pseudoholes.

A C
In general, Weyl’s theorem does not hold for operator matrix [O B)

A0
even though Weyl’s theorem holds for (0 Bj' Lee showed that (see [23])

following lemma:

Lemma 2.8. If either SP(A) or SP(B) has no pseudoholes and if A is an
isoloid operator for which Weyl’s theorem holds, then for every C € B(H),

) A 0 A C
Weyl’s theorem holds for (0 B) = G\N(O B)'

The following corollary is result from the above lemma.

Corollary 2.9. Weyl’s theorem holds for every k-quasi-*-class A

operator.

Proof. Let T € B(H) be a k-quasi-*-class A operator. Then by

T T
Lemma 2.1, T has the following matrix representation: T = (01 sz on
3

H = ran(Tk)® ker(T*k), where T, is =-class A, and T3 is nilpotent
T, 0

operator. Therefore, Weyl’s theorem holds for (01 T J because Weyl’s
3

theorem holds for =-class A operator and nilpotent operator and both *-class
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A operator and nilpotent operator are isoloid. Hence by Lemma 2.8, Weyl’s

T T
theorem holds for 0 T because SP(T3) has no pseudoholes. O
3

3. Generalized a-Weyl’s Theorem for k-quasi-*-class A Operators

More generally, Aiena and Berkani investigated B-Fredholm theory as
follows [4, 7-9]. An operator T is called B-Fredholm if there exists n € N

such that R(T") is closed and the induced operator
T i RT™M) 2 x > Tx e R(TT)

is Fredholm, i.e., R(Tpy)) = R(T"*1) is closed, a(Tpn)) = dim N(Tp)) < 0
and B(Tpn)) = dim R(T”)/R(T[n]) < oo, Similarly, a B-Fredholm operator T is
called B-Weyl if i(T[n]) = 0. The following result is due to Berkani and Sarih
[9].

Proposition 3.1. Let T € B(H).

(1) If R(T") is closed and T,y is Fredholm, then R(T™) is closed and
[n]
Tim] is Fredholm for every m = n. Moreover, ind Tjyj = ind Try; = ind T.

(2) An operator T is B-Fredholm (B-Weyl) if and only if there exist
T-invariant subspaces M and N suchthat T =T |y © T |y, Where T |y is

Fredholm (Weyl) and T | is nilpotent.
The B-Weyl spectrum ogyy (T) is defined by
opw(T)={A e C:T - is not B-Weyl} < oy (T).
We say that generalized Wey!’s theorem holds for T if
o(T \opw (T) = E(T),

where E(T) denotes the set of all isolated points of the spectrum which are
eigenvalues (no restriction on multiplicity). Note that if the generalized
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Weyl’s theorem holds for T, then so does Weyl’s theorem [8]. Recently, in
[7], Berkani and Arroud showed that if T is hyponormal, then generalized
Weyl’s theorem holds for T.

Proposition 3.2. Generalized Weyl’s theorem holds for k-quasi-*-class A
operator T.

Proof. Let A € o(T )\ogw (T). Then T — A is B-Weyl and not invertible.
Then

T-A=T-Mu &[T -2)In.
where (T — 1)y is Weyl and (T — )|y is nilpotent by Proposition 3.1.
The case M = {0} or N = {0} is easy, so we may assume M = {0} and
N = {0}.

First, we assume A € o(T |y )- In this case, T |y is k-quasi-*-class A by

Lemma 2.1 and
A e o(T [y Now(TIm)=moo(TIm)

by Proposition 2.4. Hence A is an isolated point of o(T |y ) and an
eigenvalue of T|y. Hence A is an eigenvalue of T. On the other hand,

(T = A)|n is nilpotent, so A is an isolated point of o(T). Hence A € E(T).

Second, we assume A ¢ o(T |y ). In this case, (T —X)|y is nilpotent,
and A is an eigenvalue of T |y and T. Since (T —A)[p is invertible, A is an

isolated point of o(T). Hence A € E(T).
Conversely, let A € E(T). Since A is an isolated point of o(T),
T-A=T-MVlgn ® T -Mlg-g)n

where E; denotes the Riesz idempotent for % of T. Then (T —2)|g, 4, is

k-quasi-*-class A by Lemma 2.1 and o(T |g, %) = {A}.
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If & # 0, then T [g, 5 = {A} by [25]. Hence
T-A= O|E;ﬂ'{ ® (T _}“)|(|—E)L)H'
Since (T —A)[(1-g, )x Iis invertible, T —% is B-Weyl by Proposition 3.1.
Hence A € o(T \ogw (T).

If A =0, then (T|g,5)* =0 by [25]. Hence A e o(T \ogy (T) by

Proposition 3.1. O

Theorem 3.3. If T is k-quasi-*-class A, then Weyl’s theorem holds
for T.

Proof. Proposition 3.2 implies that
o(T Nogw (TT) = E(TY).

It is obvious that

[o(T Nopw (T, = o(T \ogw (T)

hence we have to prove
(E(TY)") = E(T).
Let A" € E(T™). Then A is an isolated point of o(T). Let F be the
Riesz idempotent for A" of T*. If A" = 0, then F: is self-adjoint,
{0} = FH = N((T ~2)") = N(T -1)
by [25]. Hence A € E(T). If A" = 0, then T™|g, is (p, k)-quasiposinormal
by Lemma 2.1 and (T" |,:OH)k = 0 by [25]. Hence T Fo=0.LetEg=Fy

k
be the Riesz idempotent for 0 of T. Then TXEy = (T* Fy)* = 0. Hence
T |gyn is nilpotent. Thus, A = 0 € E(T).
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Conversely, let & € E(T). Then A" is an isolated point of o(T™). Let
F,» be the Riesz idempotent for A" of T*. If A =0, then F.+ is self-adjoint

and

{0f# FuH = N(T =2)") = N(T -2)

by [25]. Hence A" e E(T"). Let % =0. Since T"|g,H is (p,k)-

quasiposinormal and o(T" |F, M) = {0}, we have (T* |,:0’H)k =0 by [25].

This implies that T™|g, 7 is nilpotent. Thus, A" = 0 € E(T"). O
Next, we investigate a-Weyl’s theorem [4].

We define T e SF, if R(T) is closed, dimN(T) < o and indT < 0.
Let n§y(T) denote the set of all isolated points A of c,(T) with 0 <

dimker(T —A) < oo. Let cSF_(T) ={MT -1 g SF.} cow(T).
+
We say that a-Weyl’s theorem holds for T if

Rakocevic [27, Corollary 2.5] proved that if a-Weyl’s theorem holds for
T, then Weyl’s theorem holds for T.

Theorem 3.4. If T* is k-quasi-*-class A, then a-Weyl’s theorem holds
for T.

Proof. Since T* has the single valued extension property by Lemma 2.3,
we have o(T) = 6,4(T) and mgo(T) = ndo(T) [4, Corollary 2.45].

Let A csa(T)\csSF,(T). If A is an interior point of o,(T), then there
+

exists an open set G such that A € G csa(T)\cSF_(T). Since T* has the
+
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single valued extension property, ind(T —p)* <0 for all ne C by [4,

Corollary 3.19]. Let p e G. Then T —p e SF,. and ind(T —p)=0. On
the other hand, R(T —pu) is closed, T —pu is not invertible and 0 <

dim N(T — p) < co. Hence 0 < dim N((T —u)*) < o and T™ does not have

a single valued extension property by [18, Theorem 9]. This is a
contradiction. Hence we may assume that A is a boundary point of o(T).

Since T —A € SF_, A is an isolated point of o(T) by [14, Theorem XI

6.8]. Thus, A € mp(T) = n5o(T).

Conversely, A € ndy(T) = mgo(T). Then A" is an isolated point of
o(T™). Let F.+ be the Riesz idempotent for AT of T™ If X" =0, then F

is self-adjoint and
%HszxmﬁzNa—m
by [25]. Since dim N(T — ) < o, Fx* is compact. We decompose
(T =2 =0lg 3 @ (T =) [(1-F )2
Then (T —A)° |('_Fx*)H is invertible and
T-1= Ole*H (T _7”)|(I—Fk*)H-

Hence R(T —1)=(I - Fx*)H is closed and ind(T —X1)=0. Thus,

A e Ga(T)\GSF; (T).
If X* =0, then

*k * k
T lpn =" |pn) =0
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by [25]. Since Ey = Fy is the Riesz idempotent for 0 of T and TkEO =
(T*k Fy)* =0, we have EgH = N(TX). Then

dim EgH < dim N(T*) < k dim N(T) < oo,
This implies Eg is compact. We decompose
T =Tlggn @ Tl-gg)1-
Since T|(j_g,)x Iis invertible, R(T)=R(T [g,) @ (I — Eg)H s closed,

N(T) c EgH and indT =0. Thus, 0 € ca(T)\cSF_(T). O
+

Next, we investigate generalized a-Weyl’s theorem [4].

We define T e SBF, if there exists a positive integer n such that
R(T") is closed, Tjp): R(T") > x — Tx e R(T") is upper semi-Fredholm
(i.e. R(Tj) = R(T™) s closed, dim N(Tjy)) = dim N(T) N R(T") < o0)
and 02 ind Ty, (=indT) [9]. We define GSBF;(T) ={L|T -k ¢ SBF, }
< Ogp- (T). Let E®(T) denote the set of all isolated points A of o,(T)

with 0 < dimker(T —X). We say that generalized a-Weyl’s theorem holds
for T if

ca(T)\cSBF:(T) = E&(T).

Berkani and Koliha [8] proved that if generalized a-Weyl’s theorem
holds for T, then a-Weyl’s theorem holds for T.

Theorem 3.5. If T* is k-quasi-*-class A, then generalized a-Weyl’s

theorem holds for T.
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Proof. Since T* has the single valued extension property by Lemma 2.3,
we have o(T) = 6,4(T), ngo(T) = ndy(T) and E(T) = E?(T) [4, Corollary
2.45].

Let &g € ca(T)\cSBF_(T). If Xg is an interior point of o,(T), then
+

there exists an open set G such that 1o € G < ca(T)\csSF_(T). Let L € G.
+

Then T —A e SBF_, i.e., there exists a positive integer n such that
R((T —2)") is closed, dimN(T, —A) < 0 and ind (T — 1) = ind (T, — 1)
< 0. Then there exists a positive number ¢ such that if 0 <|A—p|<g,
then T —p is upper semi-Fredholm, ind(T —u)=ind(T —1)<0 and
weG by [9, Theorem 3.1]. Since T has a single valued extension
property, ind (T —p)" <0 by [4, Corollary 3.19]. Hence ind (T —p) = 0. If
0=dimN(T —u), then T —p is invertible. This is a contradiction. Hence

0<dimN(T —u) <o and 0<dimN((T —pu)*) <. Then T does not

have the single valued extension property by [18]. This is a contradiction.
Hence we may assume that Ay is a boundary point of o(T). Since

T —Xig € SBF,, T — A is topologically uniform descent by [9, Proposition
2.5], and %q is an isolated point of o(T) by [20, Corollary 4.9]. We

decompose
T =2 =(T=20)lm ® (T —%o)In.

where (T —2%q)|n is nilpotent and (T —Xq)|y is semi-Fredholm by [9,
Theorem 2.6]. If N = {0}, then

ko € ca(Tog, -(T) = m60(T) = moo(T) = E(T) = EX(T)
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by Theorem 3.4. If N = {0}, then Xq is an eigenvalue of T|y as T |y is

nilpotent. Hence Aq € E(T) = E3(T). Thus, o,(T)\o_.__(T) c E¥(T).

SBF;

The converse inclusion is clear because
E%(T) = E(T)
< moo(T)
= ngo(T)

=o0,(T)\o.__(T)
SF;
c oga(T )\GSBF; (T)
by Theorem 3.4. O

Remark 3.6. (1) If f(z) is an analytic function on o(T), then

generalized a-Weyl’s theorem holds for T (the proof is similar to [10,
Theorem 3.3]).

(2) Generalized a-Weyl’s theorem does not hold for k-quasi-*-class A

operator T as seen in [5, Example 2.13]. However, if ker T — kerT*, then
generalized a-Weyl’s theorem holds for T (the proof is similar by [25]).

4. Spectrum of k-quasi-*-class A Operators

Corollary 4.1. If T is k-quasi-*-class A operator, then o,(T) - {0}
= op(T) - {0}.
Proof. The proof follows from Lemma 2.2. O

Theorem 4.2. If T is k-quasi-*-class A operator, then o,(T) — {0}
= Gap(T) - {0}.
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Proof. Let y be the representation of Berberian. First, we show that
y(T) is k-quasi-*-class A,

W)™ T = w(T)* PIw(T))
=y w(T?) [ [ w(T™) Plw(T*)
= (M) T2 [= 9| T* Plw(T)
=TT =T )T
But T is k-quasi-*-class A operator, then T*( T2 |- | T* ))TX > 0. So
WT (T |- T 20
Thus, w(T) is k-quasi-*-class A operator. Now,
6a(T) - {0} = 64 (w(T)) - {0}
= op(y(T) - {0}
= 6jp(w(T)) - {0} (by Corollary 4.1)

= c3jap(T) - {0}

Corollary 4.3. If T is an invertible k-quasi-*-class A, then
S jap(T) = o4p(T).

Definition 4.4 [14, Exercise 2, p. 349]. The compression spectrum of T
denoted by o(T) is

o(T)={LeC:1re cp(T*)}.
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Corollary 4.5. If T is a k-quasi-*-class A operator, then

o(T) - {0} = o¢(T) - {0}

Proof. Note that for any operator T e B(H), the equality o(T) - {0}

=op(T)Uoc(T)~-1{0} holds. If T is k-quasi-*-class A, then Corollary 4.1

implies that 6 jan(T) — {0} = o(T) - {0} = o¢(T) - {0}. Since cp(T*)

< 6,4p(T7), the result follows. O
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