WEYL TYPE THEOREM AND SPECTRUM FOR k-QUASI-*-CLASS A OPERATORS

A. Sekar^{1,*}, C. V. Seshaiah¹, D. Senthil Kumar² and P. Maheswari Naik¹

¹Department of Mathematics
Sri Ramakrishna Engineering College
Vattamalaipalayam, Coimbatore - 641 022
Tamil Nadu, India
e-mail: sekar110@gmail.com
cvseshaiah@gmail.com
maheswarinaik21@gmail.com

²Post Graduate and Research Department of Mathematics Government Arts College (Autonomous) Coimbatore - 641 018, Tamil Nadu, India e-mail: senthilsenkumhari@gmail.com

Abstract

Let T be a k-quasi-*-class A operator on a complex Hilbert space \mathcal{H} if $T^{*k}(\mid T^2\mid -\mid T^*\mid^2)T^k\geq 0$, where k is a natural number. In this paper, we prove that the spectral mapping theorem for Weyl spectrum holds for k-quasi-*-class A operators. Also, we prove that the Weyl

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: Primary 47A10; Secondary 47B20. Keywords and phrases: *-paranormal operators, Weyl's theorem, *-class *A* operators, *k*-quasi-*-class *A* operators, generalized *a*-Weyl's theorem, *B*-Fredholm, *B*-Weyl.

Corresponding author Submitted by K. K. Azad Received August 10, 2012 type theorems holds for k-quasi--class A. We also prove that if T^* is k-quasi-*-class A, then generalized a-Weyl's theorem holds for T. Also, we prove that $\sigma_{jp}(T) - \{0\} = \sigma_{ap}(T) - \{0\}$ holds for k-quasi-*-class A operator.

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of all bounded linear operators acting on an infinite dimensional separable Hilbert space \mathcal{H} . For positive operators A and B, write $A \geq B$ if $A - B \geq 0$. If A and B are invertible and positive operators, then it is well known that $A \geq B$ implies that $\log A \geq \log B$. However [2], $\log A \geq \log B$ does not necessarily imply $A \geq B$. A result due to Ando [6] states that for invertible positive operators A and B, $\log A \geq \log B$ if and only if $A^r \geq (A^{\frac{r}{2}}B^rA^{\frac{r}{2}})^{\frac{1}{2}}$ for all $r \geq 0$. For an operator T, let U|T| denote the polar decomposition of T, where U is a partially isometric operator, |T| is a positive square root of T^*T and $\ker(T) = \ker(U) = \ker(|T|)$, where $\ker(S)$ denotes the kernel of operator S.

An operator $T \in B(\mathcal{H})$ is positive, $T \geq 0$, if $(Tx, x) \geq 0$ for all $x \in \mathcal{H}$, and posinormal if there exists a positive $\lambda \in B(\mathcal{H})$ such that $TT^* = T^*\lambda T$. Here λ is called *interrupter* of T. In other words, an operator T is called *posinormal* if $TT^* \leq c^2T^*T$, where T^* is the adjoint of T and T^*T commutes with TT^* . An operator T is said to be *heminormal* if T is hyponormal and T^*T commutes with TT^* . An operator T is said to be T-posinormal is posinormal. An operator T is said to be T-hyponormal, for T is said to be T-hyponormal operator is hyponormal which has been studied by many authors and it is known that hyponormal operators have many interesting

Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 275 properties similar to those of normal operators [30]. Furuta et al. [19] have characterized class A operator as follows. An operator T belongs to class A if and only if $(T^*|T|T)\frac{1}{2} \ge T^*T$.

An operator T is said to be paranormal if $||T^2x|| \ge ||Tx||^2$ and *-paranormal if $||T^2x|| \ge ||T^*x||^2$ for all unit vector $x \in \mathcal{H}$. Recently, Duggal et al. [17] have considered the new class of operators: an operator $T \in B(\mathcal{H})$ belongs to *-class A if $|T^2| \ge |T^*|^2$. The authors of [28] have extended *-class A operators to quasi-*-class A operators. An operator $T \in B(\mathcal{H})$ is said to be quasi-*-class A if $|T^*| = |T^*|^2$ and $|T^*| = |T^*|^2$ and $|T^*| = |T^*|^2$ for all $|T^*| = |T^*|^2$. As a further generalization, Mecheri [25] has introduced the class of $|T^*| = |T^*|^2$ operators. An operator $|T^*| = |T^*|^2$ is said to be $|T^*| = |T^*|^2$ operator on a complex Hilbert space $|T^*| = |T^*|^2$ if $|T^*| = |T^*|^2$ operator on a number.

An operator T is called *normal* if $T^*T = TT^*$ and (p, k)
quasihyponormal if $T^{*^k}((T^*T)^p - (TT^*)^p)T^k \ge 0$ (0 .

Aluthge [1], Campbell and Gupta [11] and Arora and Arora [3] introduced <math>p-hyponormal, p-quasihyponormal and k-quasihyponormal operators, respectively.

Aluthge [1] studied p-hyponormal operators for $0 . In particular, he defined the operator <math>\widetilde{T} = |T| \frac{1}{2} U |T| \frac{1}{2}$ which is called the *Aluthge transformation* and the operator $\widetilde{\widetilde{T}} = |\widetilde{T}| \frac{1}{2} \widetilde{U} |\widetilde{T}| \frac{1}{2}$, where $\widetilde{T} = \widetilde{U} |\widetilde{T}|$ is the polar decomposition of \widetilde{T} . An operator T is said to be w-hyponormal if $|\widetilde{T}| \ge |T| \ge |T| \ge |\widetilde{T}^*|$,

A. Sekar, C. V. Seshaiah, D. S. Kumar and P. M. Naik

p-hyponormal $\subset p$ -posinormal $\subset (p, k)$ -quasiposinormal,

p-hyponormal $\subset p$ -quasihyponormal

$$\subset (p, k)$$
-quasihyponormal $\subset (p, k)$ -quasiposinormal

and

hyponormal $\subset k$ -quasihyponormal $\subset (p, k)$ -quasihyponormal

$$\subset (p, k)$$
-quasiposinormal

for a positive integer k and a positive number 0 .

If $T \in B(\mathcal{H})$, then we shall write N(T) and R(T) for the null space and the range of T, respectively. Also, let $\sigma(T)$ and $\sigma_a(T)$ denote the spectrum and the approximate point spectrum of T, respectively. An operator T is called Fredholm if R(T) is closed, $\alpha(T) = \dim N(T) < \infty$ and $\beta(T) = \dim \mathcal{H}/R(T) < \infty$. Moreover, if $i(T) = \alpha(T) - \beta(T) = 0$, then T is called Weyl. The essential spectrum $\sigma_e(T)$ and the Weyl $\sigma_W(T)$ are defined by

$$\sigma_e(T) = {\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}}$$

and

$$\sigma_W(T) = {\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}},$$

respectively. It is known that $\sigma_e(T) \subset \sigma_W(T) \subset \sigma_e(T) \cup \mathrm{acc}\,\sigma(T)$, where we write $\mathrm{acc}\,K$ for the set of all accumulation points of $K \subset \mathbb{C}$. If we write iso $K = K \setminus \mathrm{acc}\,K$, then we let

$$\pi_{00}(T) = {\lambda \in \text{iso } \sigma(T) : 0 < \alpha(T - \lambda) < \infty}.$$

We say that Weyl's theorem holds for T if

$$\sigma(T)\backslash\sigma_W(T)=\pi_{00}(T).$$

Let $\sigma_p(T)$ denote the point spectrum of T, i.e., the set of its eigenvalues. Let $\sigma_{jp}(T)$ denote the joint point spectrum of T. We note that $\lambda \in \sigma_{jp}(T)$ if and only if there exists a non-zero vector x such that $Tx = \lambda x$, $T^*x = \overline{\lambda}x$. It Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 277 is evident that $\sigma_{jp}(T) \subset \sigma_p(T)$. It is well known that if T is normal, then $\sigma_{jp}(T) = \sigma_p(T)$. Let T = U|T| be the polar decomposition of T and $\lambda = |\lambda|e^{i\theta}$ be the complex number, $|\lambda| > 0$, $|e^{i\theta}| = 1$. Then $\lambda \in \sigma_{jp}(T)$ if and only if there exists a non-zero vector x such that $Ux = e^{i\theta}$, $|T|x = |\lambda|x$. Let $\sigma_{ap}(T)$ denote the approximate point spectrum of T, i.e., the set of all complex numbers λ which satisfy the following condition: there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that $\lim_{n \to \infty} \|(T - \lambda)x_n\| = 0$. It is evident that $\sigma_p(T) \subset \sigma_{ap}(T)$. Let $\sigma_{jap}(T)$ be the joint approximate point spectrum of T. Then $\lambda \in \sigma_{jap}(T)$ if and only if there exists a sequence $\{x_n\}$ of unit vectors such that $\lim_{n \to \infty} \|(T - \lambda)x_n\| = \lim_{n \to \infty} \|(T^* - \overline{\lambda})x_n\| = 0$. It is evident that $\sigma_{jap}(T) \subset \sigma_{ap}(T)$ for all $T \in B(\mathcal{H})$. It is well known that for a normal operator T, $\sigma_{jap}(T) = \sigma_{ap}(T) = \sigma(T)$.

In [29], Weyl proved that Weyl's theorem holds for Hermitian operators. Weyl's theorem has been extended from Hermitian operators to hyponormal operators [13], algebraically hyponormal operators [21], p-hyponormal operators [16]. More generally, Berkani investigated generalized Weyl's theorem which extends Weyl's theorem, and proved that generalized Weyl's theorem holds for hyponormal operators [7-9]. In a recent paper [24], the author showed that generalized Weyl's theorem holds for (p, k)-quasihyponormal operators. Recently, Cao et al. [10] proved Weyl type theorems for p-hyponormal operators. In this paper, we prove that Weyl type theorems holds for k-quasi-*-class A operators. Especially, we prove that if T^* is k-quasi-*-class A, then generalized a-Weyl's theorem holds for T.

2. Weyl's Theorem for k-quasi-*-class A Operators

Salah Mecheri has introduced *k*-quasi-*-class *A* operators and has proved many interesting properties of it.

Lemma 2.1 [25, Lemma 2.1, Theorem 2.3]. (1) Let $T \in B(\mathcal{H})$ be k-quasi-*-class A operator and suppose the range of T^k is not dense and

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$

on $\mathcal{H} = \overline{ran(T^k)} \oplus \ker(T^{*k})$, where T_1 is *-class A operator, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$.

(2) Let $T \in B(\mathcal{H})$ be a k-quasi-*-class A operator and let M be a closed T-invariant subspace of \mathcal{H} . Then the restriction $T|_{M}$ of T to M is a k-quasi-*-class A operator.

Lemma 2.2 [25, Theorem 2.5]. Let $T \in B(\mathcal{H})$ be a k-quasi-*-class A operator. If $\lambda \neq 0$ and $(T - \lambda)x = 0$ for some $x \in \mathcal{H}$, then $(T - \lambda)^*x = 0$.

Lemma 2.3 [25, Theorem 2.2]. Let $T \in B(\mathcal{H})$ be a k-quasi-*-class A operator. Then T has Bishop's property (β) (i.e., if $f_n(z)$ is analytic on D and $(T-z)f_n(z) \to 0$ uniformly on each compact subset of D, then $f_n(z) \to 0$ uniformly on each compact subset of D), the single valued extension property and Dunford property (C).

Proposition 2.4. Weyl's theorem holds for k-quasi-*-class A operator T, i.e., $\sigma(T) \setminus \sigma_W(T) = \pi_{00}(T)$.

Proof. Let $\lambda \in \sigma(T) \setminus \sigma_W(T)$. Then $T - \lambda$ is Weyl and not invertible. If λ is an interior point of $\sigma(T)$, then there exists an open set G such that $\lambda \in G \subset \sigma(T) \setminus \sigma_W(T)$. Hence dim $N(T - \mu) > 0$ for all $\mu \in G$ and T does not have the single valued extension property by [18, Theorem 9]. This is a contradiction. Hence λ is a boundary point of $\sigma(T)$, and hence an isolated point of $\sigma(T)$ by [14, Theorem XI 6.8]. Thus, $\lambda \in \pi_{00}(T)$.

Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 279

Let $\lambda \in \pi_{00}(T)$ and E_{λ} be the Riesz idempotent for λ of T. Then $0 < \dim N(T - \lambda) < \infty$,

$$T = T|_{E_{\lambda}\mathcal{H}} \oplus T|_{(I-E_{\lambda})\mathcal{H}}$$

and

$$\sigma(T|_{E_{\lambda}\mathcal{H}}) = {\lambda}, \quad \sigma(T|_{(I-E_{\lambda})\mathcal{H}}) = \sigma(T)\setminus {\lambda}.$$

We remark $T|_{E_{\lambda}\mathcal{H}}$ is k-quasi-*-class A operator by Lemma 2.1.

If $\lambda \neq 0$, then $T|_{E_{\lambda}\mathcal{H}} = \{\lambda\}$ by [25]. Hence $E_{\lambda}\mathcal{H} \subset N(T-\lambda)$ and E_{λ} is of finite rank. Since $(T-\lambda)|_{(I-E_{\lambda})\mathcal{H}}$ is invertible, $T-\lambda = 0|_{E_{\lambda}\mathcal{H}} \oplus (T-\lambda)|_{(I-E_{\lambda})\mathcal{H}}$ is Weyl. Hence $\lambda \in \sigma(T) \backslash \sigma_W(T)$.

If $\lambda=0$, then $(T|_{E_0\mathcal{H}})^k=0$ by [25]. Hence $E_0\mathcal{H}\subset N(T^k)$ and

$$\dim E_0 \mathcal{H} \leq \dim N(T^k) \leq k \dim N(T) < \infty.$$

Then $T|_{E_{\lambda}\mathcal{H}}$ is compact. Since $T|_{(I-E_0)}$ is invertible, $\lambda \in \sigma(T) \setminus \sigma_W(T)$ by [14, Proposition XI 6.9].

Theorem 2.5. If T is an n-multicyclic k-quasi-*-class A operator, then the restriction T_1 of T on $\overline{ran(T^k)}$ is also an n-multicyclic operator.

Proof. Let $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\mathcal{H} = \overline{ran(T^k)} \oplus \ker(T^{*k})$. Since $\sigma(T_1) \subset$

 $\sigma(T)$ by Lemma 2.1, $\mathcal{R}(\sigma(T)) \subset \mathcal{R}(\sigma(T_1))$. By hypothesis, there exist n vectors $x_1, ..., x_n \in \mathcal{H}$ such that

$$\mathcal{H} = \bigvee g(T)x_i \mid i = 1, 2, ..., n \text{ and } g \in \mathcal{R}(\sigma(T)).$$

Now let $y_i = T^k x_i$, i = 1, ..., n. Then we have the following:

$$\sqrt{g(T_1)} y_i \mid i = 1, 2, ..., n, g \in \mathcal{R}(\sigma(T_1))$$

$$\supset \sqrt{g(T_1)} y_i \mid i = 1, ..., n, g \in \mathcal{R}(\sigma(T))$$

$$= \sqrt{g(T)} T^k x_i \mid i = 1, 2, ..., n, g \in \mathcal{R}(\sigma(T))$$

$$= \sqrt{T^k} g(T) x_i \mid i = 1, 2, ..., n, g \in \mathcal{R}(\sigma(T))$$

$$= \overline{ran(T^k)}$$

and $y_1, ..., y_n$ are *n*-multicyclic vectors of T_1 .

Lemma 2.6 [22, Theorem 6]. For given operators $A, B, C \in B(\mathcal{H})$, there is equality $\sigma_W(A) \cup \sigma_W(B) = \sigma_W(M_c \cup \mathfrak{G})$, where $M_c = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ and \mathfrak{G} is the union of certain of the holes in $\sigma_W(M_c)$ which happen to be subsets of $\sigma_W(A) \cap \sigma_W(B)$.

The following theorem shows that the spectral mapping theorem for Weyl spectrum holds for *k*-quasi-*-class *A* operators.

Theorem 2.7. If T is k-quasi-*-class A operator, then $f(\sigma_W(T)) = \sigma_W(f(T))$ for any analytic function f on a neighborhood of $\sigma(T)$.

Proof. We need only to prove that $\sigma_W(p(T)) = p(\sigma_W(T))$ for any polynomial p. Since T has the matrix representation $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$, where

 T_1 is *-class A operator and $T_3^k = 0$, and the spectral mapping theorem for Weyl spectrum holds for *-class A operator, it follows that

$$\sigma_W(p(T)) = \sigma_W(p(T_1)) \cup \sigma_W(p(T_3))$$

$$= p(\sigma_W(T_1)) \cup p(\sigma_W(T_3))$$

$$= p(\sigma_W(T_1)) \cup \sigma_W(T_3)$$

$$= p(\sigma_W(T)).$$

Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 281 It was known [22] if A and B are isoloid and if Weyl's theorem holds for A and A, then Weyl's theorem holds for A and A and A then Weyl's theorem holds for A and A then Weyl's theorem holds for A and A and A then Weyl's theorem holds for A and A and A then Weyl's theorem holds for A and A and A and A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if Weyl's theorem holds for A and A are isoloid and if A a

We know that the "spectral picture" [26] of the operator $T \in B(\mathcal{H})$, denoted by SP(T), consists of the set $\sigma_e(T)$, the collection of holes and pseudoholes in $\sigma_e(T)$, and the indices associated with these holes and pseudoholes.

In general, Weyl's theorem does not hold for operator matrix $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ even though Weyl's theorem holds for $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Lee showed that (see [23]) following lemma:

Lemma 2.8. If either SP(A) or SP(B) has no pseudoholes and if A is an isoloid operator for which Weyl's theorem holds, then for every $C \in B(\mathcal{H})$, Weyl's theorem holds for $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} \Leftrightarrow \sigma_W \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$.

The following corollary is result from the above lemma.

Corollary 2.9. Weyl's theorem holds for every k-quasi-*-class A operator.

Proof. Let $T \in B(\mathcal{H})$ be a k-quasi-*-class A operator. Then by Lemma 2.1, T has the following matrix representation: $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\mathcal{H} = \overline{ran(T^k)} \oplus \ker(T^{*k})$, where T_1 is *-class A, and T_3 is nilpotent operator. Therefore, Weyl's theorem holds for $\begin{pmatrix} T_1 & 0 \\ 0 & T_3 \end{pmatrix}$ because Weyl's theorem holds for *-class A operator and nilpotent operator and both *-class

A operator and nilpotent operator are isoloid. Hence by Lemma 2.8, Weyl's theorem holds for $\begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$ because $SP(T_3)$ has no pseudoholes.

3. Generalized a-Weyl's Theorem for k-quasi-*-class A Operators

More generally, Aiena and Berkani investigated *B*-Fredholm theory as follows [4, 7-9]. An operator *T* is called *B-Fredholm* if there exists $n \in \mathbb{N}$ such that $R(T^n)$ is closed and the induced operator

$$T_{[n]}: R(T^n) \ni x \to Tx \in R(T^n)$$

is Fredholm, i.e., $R(T_{[n]}) = R(T^{n+1})$ is closed, $\alpha(T_{[n]}) = \dim N(T_{[n]}) < \infty$ and $\beta(T_{[n]}) = \dim R(T^n)/R(T_{[n]}) < \infty$. Similarly, a *B*-Fredholm operator *T* is called *B-Weyl* if $i(T_{[n]}) = 0$. The following result is due to Berkani and Sarih [9].

Proposition 3.1. *Let* $T \in B(\mathcal{H})$.

- (1) If $R(T^n)$ is closed and $T_{[n]}$ is Fredholm, then $R(T^m)$ is closed and $T_{[m]}$ is Fredholm for every $m \ge n$. Moreover, ind $T_{[m]} = ind T_{[n]} = ind T$.
- (2) An operator T is B-Fredholm (B-Weyl) if and only if there exist T-invariant subspaces M and N such that $T = T|_M \oplus T|_N$, where $T|_M$ is Fredholm (Weyl) and $T|_N$ is nilpotent.

The *B*-Weyl spectrum $\sigma_{BW}(T)$ is defined by

$$\sigma_{RW}(T) = {\lambda \in \mathbb{C} : T - \lambda \text{ is not } B\text{-Weyl}} \subset \sigma_W(T).$$

We say that generalized Weyl's theorem holds for T if

$$\sigma(T)\backslash\sigma_{RW}(T)=E(T),$$

where E(T) denotes the set of all isolated points of the spectrum which are eigenvalues (no restriction on multiplicity). Note that if the generalized

Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 283 Weyl's theorem holds for T, then so does Weyl's theorem [8]. Recently, in [7], Berkani and Arroud showed that if T is hyponormal, then generalized Weyl's theorem holds for T.

Proposition 3.2. Generalized Weyl's theorem holds for k-quasi-*-class A operator T.

Proof. Let $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$. Then $T - \lambda$ is *B*-Weyl and not invertible. Then

$$T - \lambda = (T - \lambda)|_{M} \oplus (T - \lambda)|_{N}$$

where $(T - \lambda)|_{M}$ is Weyl and $(T - \lambda)|_{N}$ is nilpotent by Proposition 3.1. The case $M = \{0\}$ or $N = \{0\}$ is easy, so we may assume $M \neq \{0\}$ and $N \neq \{0\}$.

First, we assume $\lambda \in \sigma(T|_M)$. In this case, $T|_M$ is k-quasi-*-class A by Lemma 2.1 and

$$\lambda \in \sigma(T|_M) \setminus \sigma_W(T|_M) = \pi_{00}(T|_M)$$

by Proposition 2.4. Hence λ is an isolated point of $\sigma(T|_M)$ and an eigenvalue of $T|_M$. Hence λ is an eigenvalue of T. On the other hand, $(T-\lambda)|_N$ is nilpotent, so λ is an isolated point of $\sigma(T)$. Hence $\lambda \in E(T)$.

Second, we assume $\lambda \notin \sigma(T|_M)$. In this case, $(T - \lambda)|_N$ is nilpotent, and λ is an eigenvalue of $T|_N$ and T. Since $(T - \lambda)|_M$ is invertible, λ is an isolated point of $\sigma(T)$. Hence $\lambda \in E(T)$.

Conversely, let $\lambda \in E(T)$. Since λ is an isolated point of $\sigma(T)$,

$$T - \lambda = (T - \lambda)|_{E_{\lambda}\mathcal{H}} \oplus (T - \lambda)|_{(I - E_{\lambda})\mathcal{H}},$$

where E_{λ} denotes the Riesz idempotent for λ of T. Then $(T - \lambda)|_{E_{\lambda}\mathcal{H}}$ is k-quasi-*-class A by Lemma 2.1 and $\sigma(T|_{E_{\lambda}\mathcal{H}}) = {\lambda}$.

If $\lambda \neq 0$, then $T|_{E_{\lambda}\mathcal{H}} = {\lambda}$ by [25]. Hence

$$T - \lambda = 0|_{E_{\lambda}\mathcal{H}} \oplus (T - \lambda)|_{(I - E_{\lambda})\mathcal{H}}.$$

Since $(T - \lambda)|_{(I - E_{\lambda})\mathcal{H}}$ is invertible, $T - \lambda$ is *B*-Weyl by Proposition 3.1. Hence $\lambda \in \sigma(T) \setminus \sigma_{BW}(T)$.

If $\lambda=0$, then $(T|_{E_{\lambda}\mathcal{H}})^k=0$ by [25]. Hence $\lambda\in\sigma(T)\backslash\sigma_{BW}(T)$ by Proposition 3.1.

Theorem 3.3. If T^* is k-quasi-*-class A, then Weyl's theorem holds for T.

Proof. Proposition 3.2 implies that

$$\sigma(T^*)\backslash\sigma_{RW}(T^*)=E(T^*).$$

It is obvious that

284

$$[\sigma(T^*)\backslash\sigma_{BW}(T^*)]^*$$
, = $\sigma(T)\backslash\sigma_{BW}(T)$

hence we have to prove

$$(E(T^*)^*) = E(T).$$

Let $\lambda^* \in E(T^*)$. Then λ is an isolated point of $\sigma(T)$. Let F_{λ^*} be the Riesz idempotent for λ^* of T^* . If $\lambda^* \neq 0$, then F_{λ^*} is self-adjoint,

$$\{0\} \neq F_{\lambda^*}\mathcal{H} = N((T-\lambda)^*) = N(T-\lambda)$$

by [25]. Hence $\lambda \in E(T)$. If $\lambda^*=0$, then $T^*|_{F_0}$ is (p,k)-quasiposinormal by Lemma 2.1 and $(T^*|_{F_0\mathcal{H}})^k=0$ by [25]. Hence $T^{*^k}F_0=0$. Let $E_0=F_0^*$ be the Riesz idempotent for 0 of T. Then $T^kE_0=(T^{*^k}F_0)^*=0$. Hence $T|_{E_0\mathcal{H}}$ is nilpotent. Thus, $\lambda=0\in E(T)$.

Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 285

Conversely, let $\lambda \in E(T)$. Then λ^* is an isolated point of $\sigma(T^*)$. Let F_{λ^*} be the Riesz idempotent for λ^* of T^* . If $\lambda \neq 0$, then F_{λ^*} is self-adjoint and

$$\{0\} \neq F_{\lambda^*} \mathcal{H} = N((T - \lambda)^*) = N(T - \lambda)$$

by [25]. Hence $\lambda^* \in E(T^*)$. Let $\lambda = 0$. Since $T^*|_{F_0}\mathcal{H}$ is (p,k)quasiposinormal and $\sigma(T^*|_{F_0}\mathcal{H}) = \{0\}$, we have $(T^*|_{F_0}\mathcal{H})^k = 0$ by [25].

This implies that $T^*|_{F_0}\mathcal{H}$ is nilpotent. Thus, $\lambda^* = 0 \in E(T^*)$.

Next, we investigate a-Weyl's theorem [4].

We define $T \in SF_+^-$ if R(T) is closed, $\dim N(T) < \infty$ and $\operatorname{ind} T \leq 0$. Let $\pi_{00}^a(T)$ denote the set of all isolated points λ of $\sigma_a(T)$ with $0 < \dim \ker(T - \lambda) < \infty$. Let $\sigma_{SF_+^-}(T) = \{\lambda \mid T - \lambda \notin SF_+^-\} \subset \sigma_W(T)$.

We say that a-Weyl's theorem holds for T if

$$\sigma_a(T)\backslash \sigma_{SF_{+}^{-}}(T)=\pi_{00}^a(T).$$

Rakocevic [27, Corollary 2.5] proved that if a-Weyl's theorem holds for T, then Weyl's theorem holds for T.

Theorem 3.4. If T^* is k-quasi-*-class A, then a-Weyl's theorem holds for T.

Proof. Since T^* has the single valued extension property by Lemma 2.3, we have $\sigma(T) = \sigma_a(T)$ and $\pi_{00}(T) = \pi_{00}^a(T)$ [4, Corollary 2.45].

Let $\lambda \in \sigma_a(T) \setminus \sigma_{SF_+^-}(T)$. If λ is an interior point of $\sigma_a(T)$, then there exists an open set G such that $\lambda \in G \subset \sigma_a(T) \setminus \sigma_{SF_+^-}(T)$. Since T^* has the

single valued extension property, $\operatorname{ind}(T-\mu)^* \leq 0$ for all $\mu \in \mathbb{C}$ by [4, Corollary 3.19]. Let $\mu \in G$. Then $T-\mu \in SF_+^-$ and $\operatorname{ind}(T-\mu)=0$. On the other hand, $R(T-\mu)$ is closed, $T-\mu$ is not invertible and $0 < \dim N(T-\mu) < \infty$. Hence $0 < \dim N((T-\mu)^*) < \infty$ and T^* does not have a single valued extension property by [18, Theorem 9]. This is a contradiction. Hence we may assume that λ is a boundary point of $\sigma(T)$. Since $T-\lambda \in SF_+^-$, λ is an isolated point of $\sigma(T)$ by [14, Theorem XI 6.8]. Thus, $\lambda \in \pi_{00}(T) = \pi_{00}^a(T)$.

Conversely, $\lambda \in \pi_{00}^a(T) = \pi_{00}(T)$. Then λ^* is an isolated point of $\sigma(T^*)$. Let F_{λ^*} be the Riesz idempotent for λ^* of T^* . If $\lambda^* \neq 0$, then F_{λ^*} is self-adjoint and

$$F_{\lambda^*}\mathcal{H} = N((T-\lambda)^*) = N(T-\lambda)$$

by [25]. Since dim $N(T - \lambda) < \infty$, F_{λ^*} is compact. We decompose

$$(T-\lambda)^* = 0|_{F_{\lambda^*}\mathcal{H}} \oplus (T-\lambda)^*|_{(I-F_{\lambda^*})\mathcal{H}}.$$

Then $(T-\lambda)^*|_{(I-F_{\lambda^*})\mathcal{H}}$ is invertible and

$$T - \lambda = 0|_{F_{\lambda^*}\mathcal{H}} \oplus (T - \lambda)|_{(I - F_{\lambda^*})\mathcal{H}}.$$

Hence $R(T-\lambda)=(I-F_{\lambda^*})\mathcal{H}$ is closed and $\operatorname{ind}(T-\lambda)=0$. Thus, $\lambda\in\sigma_a(T)\backslash\sigma_{SF_+^-}(T).$

If $\lambda^* = 0$, then

$$T^{*^k}|_{F_0\mathcal{H}} = (T^*|_{F_0\mathcal{H}})^k = 0$$

Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 287 by [25]. Since $E_0 = F_0^*$ is the Riesz idempotent for 0 of T and $T^k E_0 = (T^{*k} F_0)^* = 0$, we have $E_0 \mathcal{H} \subset N(T^k)$. Then

$$\dim E_0 \mathcal{H} \le \dim N(T^k) \le k \dim N(T) < \infty.$$

This implies E_0 is compact. We decompose

$$T = T|_{E_0\mathcal{H}} \oplus T|_{(I-E_0)\mathcal{H}}.$$

Since $T|_{(I-E_0)\mathcal{H}}$ is invertible, $R(T)=R(T|_{E_0\mathcal{H}})\oplus (I-E_0)\mathcal{H}$ is closed, $N(T)\subset E_0\mathcal{H}$ and $\mathrm{ind}\,T=0$. Thus, $0\in\sigma_a(T)\backslash\sigma_{SF_+^-}(T)$.

Next, we investigate generalized a-Weyl's theorem [4].

We define $T \in SBF_+^-$ if there exists a positive integer n such that $R(T^n)$ is closed, $T_{[n]}: R(T^n) \ni x \to Tx \in R(T^n)$ is upper semi-Fredholm (i.e., $R(T_{[n]}) = R(T^{n+1})$ is closed, $\dim N(T_{[n]}) = \dim N(T) \cap R(T^n) < \infty$) and $0 \ge \operatorname{ind} T_{[n]}$ (= $\operatorname{ind} T$) [9]. We define $\sigma_{SBF_+}(T) = \{\lambda \mid T - \lambda \notin SBF_+^-\}$ $\subset \sigma_{SF_+}(T)$. Let $E^a(T)$ denote the set of all isolated points λ of $\sigma_a(T)$ with $0 < \dim \ker(T - \lambda)$. We say that generalized a-Weyl's theorem holds for T if

$$\sigma_a(T)\backslash \sigma_{SBF_+^-}(T)=E^a(T).$$

Berkani and Koliha [8] proved that if generalized a-Weyl's theorem holds for T, then a-Weyl's theorem holds for T.

Theorem 3.5. If T^* is k-quasi-*-class A, then generalized a-Weyl's theorem holds for T.

Proof. Since T^* has the single valued extension property by Lemma 2.3, we have $\sigma(T) = \sigma_a(T)$, $\pi_{00}(T) = \pi_{00}^a(T)$ and $E(T) = E^a(T)$ [4, Corollary 2.45].

Let $\lambda_0 \in \sigma_a(T) \setminus \sigma_{SBF_+^-}(T)$. If λ_0 is an interior point of $\sigma_a(T)$, then there exists an open set G such that $\lambda_0 \in G \subset \sigma_a(T) \setminus \sigma_{SF_+^-}(T)$. Let $\lambda \in G$. Then $T - \lambda \in SBF_+^-$, i.e., there exists a positive integer n such that $R((T - \lambda)^n)$ is closed, $\dim N(T_n - \lambda) < \infty$ and $\operatorname{ind}(T - \lambda) = \operatorname{ind}(T_n - \lambda) \le 0$. Then there exists a positive number ε such that if $0 < |\lambda - \mu| < \varepsilon$, then $T - \mu$ is upper semi-Fredholm, $\operatorname{ind}(T - \mu) = \operatorname{ind}(T - \lambda) \le 0$ and $\mu \in G$ by [9, Theorem 3.1]. Since T^* has a single valued extension property, $\operatorname{ind}(T - \mu)^* \le 0$ by [4, Corollary 3.19]. Hence $\operatorname{ind}(T - \mu) = 0$. If $0 = \dim N(T - \mu)$, then $T - \mu$ is invertible. This is a contradiction. Hence $0 < \dim N(T - \mu) < \infty$ and $0 < \dim N((T - \mu)^*) < \infty$. Then T^* does not have the single valued extension property by [18]. This is a contradiction.

Hence we may assume that λ_0 is a boundary point of $\sigma(T)$. Since $T - \lambda_0 \in SBF_+^-$, $T - \lambda_0$ is topologically uniform descent by [9, Proposition 2.5], and λ_0 is an isolated point of $\sigma(T)$ by [20, Corollary 4.9]. We decompose

$$T - \lambda_0 = (T - \lambda_0)|_M \oplus (T - \lambda_0)|_N$$

where $(T - \lambda_0)|_N$ is nilpotent and $(T - \lambda_0)|_M$ is semi-Fredholm by [9, Theorem 2.6]. If $N = \{0\}$, then

$$\lambda_0 \in \sigma_a(T) \setminus \sigma_{SF_{\perp}^-}(T) = \pi_{00}^a(T) = \pi_{00}(T) \subset E(T) = E^a(T)$$

Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 289 by Theorem 3.4. If $N \neq \{0\}$, then λ_0 is an eigenvalue of $T|_N$ as $T|_N$ is nilpotent. Hence $\lambda_0 \in E(T) = E^a(T)$. Thus, $\sigma_a(T) \setminus \sigma_{SBF^-_+}(T) \subset E^a(T)$.

The converse inclusion is clear because

$$E^{a}(T) = E(T)$$

$$\subset \pi_{00}(T)$$

$$= \pi_{00}^{a}(T)$$

$$= \sigma_{a}(T) \backslash \sigma_{SF_{+}^{-}}(T)$$

$$\subset \sigma_{a}(T) \backslash \sigma_{SBF_{+}^{-}}(T)$$

by Theorem 3.4.

Remark 3.6. (1) If f(z) is an analytic function on $\sigma(T)$, then generalized a-Weyl's theorem holds for T (the proof is similar to [10, Theorem 3.3]).

(2) Generalized a-Weyl's theorem does not hold for k-quasi-*-class A operator T as seen in [5, Example 2.13]. However, if $\ker T \subset \ker T^*$, then generalized a-Weyl's theorem holds for T (the proof is similar by [25]).

4. Spectrum of *k*-quasi-*-class *A* Operators

Corollary 4.1. If T is k-quasi-*-class A operator, then $\sigma_{jp}(T) - \{0\}$ = $\sigma_p(T) - \{0\}$.

Proof. The proof follows from Lemma 2.2. \Box

Theorem 4.2. If T is k-quasi-*-class A operator, then $\sigma_{jp}(T) - \{0\}$ = $\sigma_{ap}(T) - \{0\}$. 290

Proof. Let ψ be the representation of Berberian. First, we show that $\psi(T)$ is k-quasi-*-class A,

$$(\psi(T))^{*k}[|(\psi(T))^{2}| - |\psi(T)^{*}|^{2}](\psi(T))^{k}$$

$$= \psi(T^{*k})[|\psi(T^{2})| - |\psi(T^{*})|^{2}]\psi(T^{k})$$

$$= \psi(T^{*k})[\psi|T^{2}| - \psi|T^{*}|^{2}]\psi(T^{k})$$

$$= \psi[T^{*k}(|T^{2}| - |T^{*}|^{2})T^{k}].$$

But T is k-quasi-*-class A operator, then $T^{*k}(|T^2| - |T^*|^2)T^k \ge 0$. So

$$\psi[T^{*k}(\mid T^2\mid -\mid T^{*^2}\mid)T^k] \geq 0.$$

Thus, $\psi(T)$ is k-quasi-*-class A operator. Now,

$$\sigma_a(T) - \{0\} = \sigma_a(\psi(T)) - \{0\}$$

$$= \sigma_p(\psi(T)) - \{0\}$$

$$= \sigma_{jp}(\psi(T)) - \{0\} \text{ (by Corollary 4.1)}$$

$$= \sigma_{jap}(T) - \{0\}.$$

Corollary 4.3. *If T is an invertible k-quasi-*-class A, then*

$$\sigma_{iap}(T) = \sigma_{ap}(T)$$
.

Definition 4.4 [14, Exercise 2, p. 349]. The compression spectrum of T denoted by $\sigma_c(T)$ is

$$\sigma_c(T) = \{\lambda \in \mathbb{C} : \overline{\lambda} \in \sigma_p(T^*)\}.$$

Corollary 4.5. *If T is a k-quasi-*-class A operator, then*

$$\sigma(T) - \{0\} = \sigma_c(T) - \{0\}.$$

Proof. Note that for any operator $T \in B(\mathcal{H})$, the equality $\sigma(T) - \{0\}$ $= \sigma_p(T) \cup \sigma_c(T) - \{0\}$ holds. If T is k-quasi-*-class A, then Corollary 4.1 implies that $\sigma_{jap}(T) - \{0\} = \sigma_p(T) - \{0\} \subseteq \sigma_c(T) - \{0\}$. Since $\sigma_p(T^*) \subset \sigma_{ap}(T^*)$, the result follows.

References

- [1] A. Aluthge, On *p*-hyponormal operators for 0 , Integral Equations Operator Theory 13(3) (1990), 307-315.
- [2] A. Aluthge, Some generalized theorems on *p*-hyponormal operators, Integral Equations Operator Theory 24(4) (1996), 497-501.
- [3] S. C. Arora and P. Arora, On p-quasihyponormal operators for 0 , Yokohama Math. J. 41 (1993), 25-29.
- [4] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.
- [5] P. Aiena and P. Pena, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), 566-579.
- [6] T. Ando, On some operator inequalities, Math. Ann. 279(1) (1987), 157-159.
- [7] M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), 291-302.
- [8] M. Berkani and J. J. Koliha, Weyl's type theorems for bounded linear operators, Acta. Sci. Math. (Szeged) 69 (2003), 379-391.
- [9] M. Berkani and M. Sarih, On semi *B*-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
- [10] X. Cao, M. Guo and B. Meng, Weyl type theorems for *p*-hyponormal and *M*-hyponormal operators, Studia Math. 163 (2004), 177-188.
- [11] S. L. Campbell and B. C. Gupta, On *k*-quasihyponormal operators, Math. Joponica 23 (1978), 185-189.

- 292
- [12] M. Cho, M. Ito and S. Oshiro, Weyl's theorem holds for *p*-hyponormal operators, Glasgow Math. J. 39 (1997), 217-220.
- [13] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
- [14] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer-Verlag, New York, 1990.
- [15] H. Crawford Rhaly, Posinormal operators, J. Math. Soc. Japan 46 (1994), 587-605.
- [16] B. P. Duggal and S. V. Djorjovic, On *-paranormal contractions and properties for *-class *A* operators, Linear Algebra Appl. (in press).
- [17] B. P. Duggal, I. H. Jeon and I. H. Kim, Weyl's theorem in the class of algebraically *p*-hyponormal operators, Comment. Math. Prace Mat. 40 (2000), 49-56.
- [18] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
- [19] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), 389-403.
- [20] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.
- [21] Y. M. Han and W. Y. Lee, Weyl's theorem holds for algebraically hyponormal operators, Proc. Amer. Math. Soc. 128 (2000), 2291-2296.
- [22] W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2000), 131-138.
- [23] W. Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998), 319-331.
- [24] S. Mecheri, Generalized Weyl's theorem for some classes of operators, Kyungpook Math. J. (to appear).
- [25] S. Mecheri, Isolated points of spectrum of *k*-quasi-*-class *A* operators, Studia Math. 208(1) (2012), 87-96.
- [26] C. Pearcy, Some Recent Developments in Operator Theory, CBMS 36, AMS, Providence, 1978.
- [27] V. Rakocevic, Operators obeying *a*-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 10 (1989), 915-919.

Weyl Type Theorem and Spectrum for k-quasi-*-class A Operators 293

- [28] J. L. Shen, F. Zuo and C. S. Yang, On operators satisfying $T^* | T^2 | T \ge T^* | T^{*2} | T$, Acta Math. Sin. (Engl. Ser.) 26 (2010), 2109-2116.
- [29] H. Weyl, Uber beschrankte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.
- [30] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser, Verlag, Boston, 1983.