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Abstract 

By variational analysis, a couple of variational principles for dam 
spillway problem were testified a couple of maximum principle and 
minimum principle, and by variational analysis, furthermore, this 
couple of maximum and minimum principles was proved to be a pair 
of complementary extremum principles. So it not only provides a more 
rigorous theoretical foundation for their application, but also 
contributes to find the FEM solutions of problems in fluid mechanics. 

Nomenclature 

Ω Moment function 

Y Azimuthal angle function 

Ψ Stream function 
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U Velocity in x direction (m/s) 

p Pressure (Pa) 

g Gravity acceleration ( )2sm  

Superscript 

∧ The variable corresponding to stationary value functional 

Subscript 

pr The known variable 

b Bottom 

h Free surface 

1. Introduction 

Extremum principle is a very important property to equations or some 
process. If some equations or process could be testified to have extremum 
principle, on the basis of the nature of extremum principle, then some 
important properties of the equations or process which provide a great 
important mode of thinking to solve and analyze the sort of problems, could 
be known. 

For example, by applying the energy extremum principle with bond 
conditions in [1], the practical scope of directivity synthesis in the theory of 
key array sound field is broaden. The optimum N impact transition (at any 
time) for space was studied in [2], the integral of accompanying system in the 
process of engine ignition was derived, the procedures of the curve field for 
space extreme value were produced. 

The relations between the maximum critical thickness and the metalloid 
content in amorphous alloys of the Fi-Si-B system were studied, the analysis 
and discussion of the hierarchical structure and formation principle for 
noncrystalline state alloy went into details in [3]. The generation laws for 
mud-rock flow home and abroad were studied in [4], the special phenomenon 
for the natural calamity-extreme value was raised, which provides the 
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theoretical and technological guide for people to understand the mud-rock 
flow deeply. 

The functional extreme value in variational principle is very important to 
the numerical calculation like the sort of problem. For instance, if the 

variational ( ) 0=ΦδJ  of function ( )ΦJ  is minimum principle [5], ( )Φδ J2  

is the positive (negative), the positive (negative) of function is closely related 
to the positive (negative) of coefficient matrix (rigidity matrix) for a set of 
algebraic equations gained from discrete finite element, the latter plays key 
role in solving the algebraic problems and it also is the fundamental 
condition required for a lot of highly efficient algebraic solutions. In 
addition, the extremum principle plays a key role in analyzing the error of 
numerical calculating result and the convergence of equations. 

The analysis of variational principle on the problems of overflow over 
dam went into details in literature [6], the different forms of variational 
principles were inferred. A pair of extremum principles was derived by 
regarding a couple of equations acquired in literature [6] as known conditions 
and they were a pair of complementary extremum principles. 

2. Basic Equations 

Basic equations [7] for two dimension incompressible and non-viscous 
fluid flow: 

Continuity equations 
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Momentum equations (y direction) 
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After Von Mises streamline coordinate was introduced and coordinate 
conversions were done, formulas (1) and (2) were changed: 



Yuansheng Shen 92 

,01 =⎟
⎠
⎞⎜

⎝
⎛

Ψ∂
∂−⎟

⎠
⎞⎜

⎝
⎛

ξ∂
∂

u
v

u  (3) 

.0=
Ψ∂
′∂

+
ξ∂
∂ pv  (4) 

Here x=ξ  or ( ) ( )yxxf ,, Ψ=Ψ=ξ  is called stream function and is 

defined by ., uyvx =
∂
Ψ∂

−=
∂
Ψ∂  Because ,

ρ
+=′

pgyp  it is equal to the total 

of the potential energy and pressure energy, so 

Energy equations 

( ) .2
1 22 Bvup =++′  (5) 

On the basis of formulas (3) and (4), azimuthal angle function and 
moment function were introduced as follows: 
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By doing the variational principle for formula (3), the variational 
principle for dam overflow could be gotten as follows :0=δ AI  

( ) ( ) ( ) .2 2∫∫ ∫∫ +ΨξΩ−Ω−=+Ψξ=Ω ΨξA A AAA JddBJudI  (8) 
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1C  is the entrance section. 
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By doing the variational principle for formula (4), another variational 
principle for dam overflow could be gotten as follows, ,0=δ BI  and formula 

(5) was regarded as bound condition 

( ) ( )∫∫ +Ψξ++′=
A BB JdduvupYI .122  (9) 

Here [ ]∫ ∫ ξ⎟
⎠
⎞

⎜
⎝
⎛ +
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+⋅+′= ξΨ
1 surfacewater

,
C

a
prprB dYghpdsYnivipJ  1C  is 

the entrance section. 

Now it was known by demonstration that: formula (8) is maximum 
(minimum) principle, formula (9) is minimum (maximum) principle, and 
formulas (8) and (9) are a pair of complementary extremum principles. 

3. Demonstration of Extremum Principle 

The variational principle for formula (8) was done in order to show 
formula (8) is extremum principle, so 
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The second variational principle for formula (8) was done, so 
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Because ,0=Ωδ⎥
⎦

⎤
⎢
⎣
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CA Š  if ,0>u  ( )( )Ωδδ AI  

,0<  so formula (8) is maximum principle; if ,0<u  ( )( ) ,0>Ωδδ AI  so 

formula (8) is minimum principle. 

To prove formula (9) is extremum principle, formula (9) was dealt with 
in the same way as that for formula (8). So the variational principle of 
formula (9) is 
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The second variational principle for formula (9) was done, so 
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( ) ] } ( ).12 4
22

BJdd
u

uuuvup δδ+Ψξδδ++′−  

Because ( ),2
1 22 vuBp +−=′  so ,vvuup δ−δ−=′δ  because p′  is the 

function for the partial derivative of function Y, so 

( ) ( ) ( ) .22 vup δ−δ−=′δδ  

The concrete compositions of p′δ  and ( )p′δδ  were introduced in the 

formula ( )( )YIBδδ  above and the formula ( )( )YIBδδ  was rearranged, so 
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Because 

[ ] ( ) [ ] ,0, =ξ′−Ψδ=δδξ′−Ψ=δ dYdpdvJdYdpdvJ prprCBprprCB ŠŠ  
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if ,0>u  ( )( ) ,0>δδ YIB  formula (9) is minimum principle; if ,0<u  

( )( ) ,0<δδ YIB  formula (9) is minimum principle. 

4. Demonstration of Complementary Extremum Principle 

To testify formulas (8) and (9) are a pair of complementary extremum 
principles, at first the relations between formulas (8) and (9) were testified. 
So Lagrange multipliers iμ  were introduced in formula (8), and the bound 

condition (7) was merged into formula (8), so 
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Here ( ) .,12 Abbb JJJddJ +=′ΨΩμ−ξΩμ= Š  

The variation of formula (10) was done and rearranged, so 
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Because ,0=′δI  so the formulas below were gotten: 
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Based on formula (12), two Lagrange multipliers were identified 
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Formula (13) could be written as the formula below 
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Formula (14) was introduced in formula (10), and formulas (15) and (11) 
were regarded as variational bounds, or formulas (6) and (7) were regarded 
as bounds, so 
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Formula (9) from formula (8) was 
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Formula (16) was introduced in formula (17), so 
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By conversion of equations it was known that if there was extremum 
solution, AJ  could be changed into 
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Because Y can be secondarily differentiated, so ,ξΨΨξ = YY  and the 

formula AĴ  above could be written as ∫∫ ξΨ
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−= .ˆ
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2
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According to the same way as above, it could be testified 
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So, for extremum solution, formula (18) could be written as 

.ˆˆ bJI =Δ  (19) 

To testify formulas (8) and (9) are a pair of complementary extremum 

principles, only work to do was to testify ÎΔ  has a defined numerical value. 
Here, it was studied through the problem of dam overflow. 
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According to Figure 1, it is known that C is composed of two parts, 

121 , CCCC +=  are the boundaries of inlet and outlet, 2C  are the 

boundaries of bottom and free surface. 

 

Figure 1. Schedule of the overflow over dam. 

Formula (19) is developed on boundary C, so 
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There is indeterminate variable Ω̂  in the integral term of 1C  and 2C  for the 

above formula ,ÎΔ  if the number of the variable Ω̂  could be determined, 

finally ÎΔ  could be determined to be a finite numerical value, so the 

numerical value of bĴ  is determined. 

The determination of the ÎΔ  value could be illustrated in the light of the 
properties of definite integral-theorem of mean. Because the functions in the 

integral term of formula ÎΔ  above are continuous function, and independent 
variables have defined upper limit and lower limit, so the numerical value 
difference between the upper limit and lower limit of the arguments is 
multiplied by the special numerical value of functions in the integral term 
that is determined by the numerical value in the integral district, the result of 
integral for formula above is gotten. The formula below could be gotten as 

[ ( )] [ ( )] .ˆˆ bexBexA IYII +=Ω  (20) 

It is complementary principle to testify. 
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5. Conclusions 

(1) By variational analysis, a pair of functions in fluid mechanics was 
testified to be extremum principle, through further variational 
analysis, the extremum principle was testified to be a pair of 
complementary principles. 

(2) Because formulas (8) and (9) were testified to be extremum 

principle, the positive (negative) of function ( )Φδ J2  could be 

determined, and the positive (negative) of coefficient matrix (rigidity 
matrix) for algebraic equations gained from separating finite element 
could be determined further, the latter plays key role in solving the 
algebraic problems and it also is the fundamental condition required 
for a lot of highly efficient algebraic solutions. 

(3) A theoretical foundation for analyzing the error of numerical 
calculating result and the convergence of equations was laid because 
formulas (8) and (9) were testified to be the testified extremum 
principle. 
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