THE ECCENTRIC DIGRAPH OF (n, t)-KITE GRAPH

Tri Atmojo Kusmayadi ${ }^{1}$, Nugroho Arif Sudibyo ${ }^{2}$ and Sri Kuntari ${ }^{1}$
${ }^{1}$ Department of Mathematics
Faculty of Mathematics and Natural Sciences
Sebelas Maret University
Surakarta, 57126, Indonesia
e-mail: trikusma@uns.ac.id
kuntari@uns.ac.id
${ }^{2}$ Department of Mathematics Education
Sebelas Maret University
Surakarta, 57126, Indonesia
e-mail: nugroho_sudibyo@yahoo.com

Abstract

Let G be a graph with a set of vertices $V(G)$ and a set of edges $E(G)$. The distance from vertex u to vertex v in G is the length of the shortest path from vertex u to v. The eccentricity $e(u)$ of a vertex u is the maximum distance of u to any other vertices of G. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to $e(u)$. The eccentric digraph $E D(G)$ of a graph G is the digraph that has the same set of vertices as G, and there is an arc (directed edge) from u to v in $E D(G)$ if and only if v is an eccentric vertex of u in G.

© 2013 Pushpa Publishing House
2010 Mathematics Subject Classification: 05C20.
Keywords and phrases: eccentric digraph, eccentricity, (n, t) -kite.
Submitted by K. K. Azad
Received November 29, 2012

I. Introduction

The notations and terminologies mostly follow that of Chartrand and Oellermann [2] and Gallian [3]. Let G be a graph with a set of vertices $V(G)$ and a set of edges $E(G)$. The distance from vertex u to vertex v in G, denoted by $d(u, v)$, is the length of the shortest path from vertex u to v. If there is no path joining vertex u and vertex v, then $d(u, v)=\infty$. The eccentricity of vertex u in graph G is the maximum distance from vertex u to any other vertices in G, denoted by $e(u)$, and so $e(u)=\max \{d(u, v) \mid v \in V(G)\}$. Radius of a graph G, denoted by $\operatorname{rad}(G)$, is the minimum eccentricity of every vertex in G. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the maximum eccentricity of every vertex in G. If $e(u)=\operatorname{rad}(G)$, then vertex u is called central vertex. Center of a graph G, denoted by $\operatorname{cen}(G)$, is an induced subgraph formed from central vertices of G. Vertex v is an eccentric vertex from u if $d(u, v)=e(u)$. The eccentric digraph $E D(G)$ of a graph G is a graph that has the same set of vertices as $G, V(E D(G))=V(G)$, and there is an arc (directed edge) joining vertex u to v if v is an eccentric vertex from u. An arc of a digraph D joining vertex u to v and vertex v to u is called a symmetric arc.

Boland and Miller [1] proposed an open problem to find the eccentric digraph of various classes of graphs. Some authors have investigated the problem of finding the eccentric digraph. For example, Gimbert et al. [4] found the characterisation of the eccentric digraphs while Wang and Sun [7] found the eccentric digraphs of the digraphs. Kusmayadi and Sudibyo [5] also found the eccentric digraph of friendship graph and firecracker graph. In this paper, we tackle the open problem proposed by Boland and Miller [1]. In particular, we determine the eccentric digraph of an (n, t)-kite graph.

II. The Eccentric Digraph of (n, t)-kite Graph

According to Wallis [6], an (n, t) -kite graph, or $k_{n, t}$ for short, consists of a cycle of length n with a t-edge path (the tail) attached to one vertex. We assume that the (n, t)-kite graph has vertex set $V\left(k_{n, t}\right)=\left\{x_{1}, x_{2}, \ldots, x_{t}\right.$, $\left.y_{0}, y_{1}, \ldots, y_{n-1}\right\}$. The (n, t)-kite graph can be described as in Figure 1.

Figure 1. The (n, t) -kite graph $k_{n, t}$.
The following results are the eccentric digraphs of (n, t) -kite graph. We divide into some cases according to the different values of n and t.

Theorem 1. Let $k_{n, t}$ be (n, t)-kite graph, for $t=\left\lfloor\frac{n}{2}\right\rfloor, n \geq 3, t \geq 1$. Then the eccentric digraphs $E D\left(k_{n, t}\right)$ are 5-partite digraph $F_{1,1,2, t-1, n-3}$, for n odd, and 5-partite digraph $F_{1,1,1, t-1, n-2}$, for n even.

Proof. We consider two cases according to the values of n.
Case 1. n odd.
By determining the eccentricity and eccentric vertex for each vertex of the (n, t) -kite graph, it is easy to check that the arcs are from vertex y_{0} to the vertex x_{t} and y_{i} for $i=\frac{n-1}{2}, \frac{n+1}{2}$. Also, the arcs are from vertex y_{i} to the vertex x_{t} for $i \in[1, n]$. In addition, the arcs are from vertex x_{j} to the vertex y_{i} for $j \in[1, t]$ and $i=\frac{n-1}{2}, \frac{n+1}{2}$. Now, the arcs are from vertex
x_{t} to the vertex y_{i} for $i=\frac{n-1}{2}, \frac{n+1}{2}$ and so not all arcs are symmetric. Based on these arcs, the vertex set $V\left(E D\left(k_{n, t}\right)\right)$ can be partitioned into
 $V_{4}=\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}$ and

$$
V_{5}=\left\{y_{1}, y_{2}, \ldots, y_{\frac{n-3}{2}}, y_{\frac{n+3}{2}}, y_{\frac{n+5}{2}}, \ldots, y_{n-1}\right\} .
$$

All arcs from vertices of V_{4} are incident to the vertices of V_{2}, while all arcs from vertices of V_{5} are incident to the vertices of V_{1}, and all arcs from vertices of V_{3} are incident to the vertices of V_{1} and V_{2}. The arcs from V_{1} and V_{2} are symmetric arcs. Hence the eccentric digraph of $k_{n, t}$ is a 5-partite digraph $F_{1,1,2, t-1, n-3}$.

Case 2. n even.

By determining the eccentricity and vertex eccentric for each vertex of the (n, t) -kite graph, it is easy to check that the arcs are from vertex y_{0} to the vertex x_{t} and to the vertex $y_{\frac{n}{2}}$. Also, the arcs are from vertex y_{i} to the vertex x_{t} for $i \in[0, n]$. In addition, the arcs are from vertex x_{j} to the vertex y_{i} for $j \in[1, t]$ and $i=\frac{n-1}{2}, \frac{n+1}{2}$. Now, the arcs are from vertex x_{t} to the vertex $y_{\frac{n}{2}}$ and so not all arcs are symmetric. Based on these arcs, the vertex set $V\left(E D\left(k_{n, t}\right)\right)$ can be partitioned into five subsets of vertices

$$
\begin{aligned}
V_{1}=\left\{x_{t}\right\}, V_{2} & =\left\{y_{\frac{n}{2}}\right\}, V_{3}=\left\{y_{0}\right\}, V_{4}=\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\} \text { and } \\
V_{5} & =\left\{y_{1}, y_{2}, \ldots, y_{\frac{n-2}{2}}, y_{\frac{n+2}{2}}, y_{\frac{n+4}{2}}, \ldots, y_{n-1}\right\} .
\end{aligned}
$$

All arcs from vertices of V_{4} are incident to the vertices of V_{2}, while all arcs from vertices of V_{5} are incident to the vertices of V_{1}, and all arcs from vertices of V_{3} are incident to the vertices of V_{1} and V_{2}. The arcs from V_{1} and V_{2} are symmetric arcs. From these partitions, then there is no arc from the same subsets. Therefore, the digraph can be formed to be 5-partite digraph $F_{1,1,1, t-1, n-2}$.

$$
\text { For simplicity, let } z=\left\lfloor\frac{\left\lfloor\frac{n}{2}\right\rfloor+t}{2}\right\rfloor \text { for } t>\frac{n}{2} \text {. }
$$

Theorem 2. Let $k_{n, t}$ be (n, t)-kite graph, for $t>\frac{n}{2}, n \geq 3$. Then the eccentric digraph $E D\left(k_{n, t}\right)$ is
a. 5-partite digraph $F_{1,1,1, z-1, n+t-z-2}$ for n even and $\frac{n}{2}+t$ even,
b. 4-partite digraph $F_{1,1, z, n+t-z-2}$ for n even and $\frac{n}{2}+t$ odd,
c. 5-partite digraph $F_{1,2,1, z-1, n+t-z-3}$ for n odd and $\left\lfloor\frac{n}{2}\right\rfloor+t$ even,
d. 4-partite digraph $F_{1,2, z, n+t-z-3}$ for n odd and $\left\lfloor\frac{n}{2}\right\rfloor+t$ odd.

Proof. We consider four cases according to the values of n and t.
Case 1. n even and $\frac{n}{2}+t$ even.
By determining the eccentricity and eccentric vertex for each vertex of the (n, t)-kite graph, we observe that the arcs are from vertex y_{i} to the vertex x_{t} for $i \in[0, n-1]$. Also, the arcs are from vertex x_{i} to the vertex $y_{\frac{n}{2}}$ for $i \in[t-z, t]$. In addition, the arcs are from vertex x_{i} to the vertex
x_{t} for $i \in[i, t-z]$ and so not all arcs are symmetric. Based on these arcs, the vertex set $V\left(E D\left(k_{n, t}\right)\right)$ can be partitioned into five subsets of vertices $V_{1}=\left\{x_{t}\right\}, V_{2}=\left\{\frac{y_{n}}{\frac{n}{2}}\right\}, V_{3}=\left\{x_{t-z}\right\}, V_{4}=\left\{x_{t+1-z}, \ldots, x_{t-1}\right\}$ and

$$
V_{5}=\left\{y_{0}, \ldots, y_{\frac{n-2}{2}}, y_{\frac{n+2}{2}}, \ldots, y_{n-1}, x_{1}, \ldots, x_{t-z-1}\right\}
$$

All arcs from vertices of V_{4} are incident to the vertices of V_{2}, while all arcs from vertices of V_{5} are incident to the vertices of V_{1}, and all arcs from vertices of V_{3} are incident to the vertices of V_{1} and V_{2}. The arcs from V_{1} and V_{2} are symmetric arcs. From these partitions, then there is no arc from the same subsets. Therefore, the digraph can be formed to be 5-partite digraph $F_{1,1,1, z-1, n+t-z-2}$.

Case 2. n even and $\frac{n}{2}+t$ odd.
By determining the eccentricity and eccentric vertex for each vertex of the (n, t)-kite graph, we observe that the arcs are from vertex y_{i} to the vertex x_{t} for $i \in[0, n-1]$. Also, the arcs are from vertex x_{i} to the vertex $y_{\frac{n}{2}}$ for $i \in[t-z, t]$. In addition, the arcs are from vertex x_{i} to the vertex x_{t} for $i \in[i, t-z-1]$ and so not all arcs are symmetric. Based on these arcs, the vertex set $V\left(E D\left(k_{n, t}\right)\right)$ can be partitioned into four subsets of vertices $V_{1}=\left\{x_{t}\right\}, V_{2}=\left\{y_{\frac{n}{2}}\right\}, V_{3}=\left\{x_{t-z}, \ldots, x_{t-1}\right\}$ and

$$
V_{4}=\left\{y_{0}, \ldots, y_{\frac{n-2}{2}}, y_{\frac{n+2}{2}}, \ldots, y_{n-1}, x_{1}, \ldots, x_{t-z-1}\right\} .
$$

All arcs from vertices of V_{4} are incident to the vertices of V_{1}, while all arcs from vertices of V_{3} are incident to the vertices of V_{2}. The arcs from V_{1} and V_{2} are symmetric arcs. From these partitions, then there is no arc from the same subsets. Therefore, the digraph can be formed to be 4-partite digraph $F_{1,1, z, n+t-z-2}$.

Case 3. n odd and $\left\lfloor\frac{n}{2}\right\rfloor+t$ even.
By determining the eccentricity and eccentric vertex for each vertex of the (n, t)-kite graph, it is easy to check that the arcs are from vertex y_{i} to the vertex x_{t} for $i \in[0, n-1]$. Also, the arcs are from vertex x_{i} to the vertex y_{j} for every $i \in[t-z, t]$ and $j=\frac{n-1}{2}, \frac{n+1}{2}$. In addition, the arcs are from vertex x_{i} to the vertex x_{t} for $i \in[i, t-z]$ and so not all arcs are symmetric. Based on these arcs, the vertex set $V\left(E D\left(k_{n, t}\right)\right)$ can be partitioned into five subsets of vertices $V_{1}=\left\{x_{t}\right\}, \quad V_{2}=\left\{y_{\frac{n-1}{2}}, y_{\frac{n+1}{2}}\right\}$, $V_{3}=\left\{x_{t-z}\right\}, V_{4}=\left\{x_{t+1-z}, \ldots, x_{t-1}\right\}$ and

$$
V_{5}=\left\{y_{0}, \ldots, y_{\frac{n-3}{2}}, y_{\frac{n+3}{2}}, \ldots, y_{n-1}, x_{1}, \ldots, x_{t-z-1}\right\} .
$$

All arcs from vertices of V_{4} are incident to the vertices of V_{2}, while all arcs from vertices of V_{5} are incident to the vertices of V_{1}, and all arcs from vertices of V_{3} are incident to the vertices of V_{1} and V_{2}. The arcs from V_{1} and V_{2} are symmetric arcs. From these partitions, then there is no arc from the same subsets. Therefore, the digraph can be formed to be 5-partite digraph $F_{1,2,1, z-1, n+t-z-3}$.

Case 4. n odd and $\left\lfloor\frac{n}{2}\right\rfloor+t$ odd.
Proof. By determining the eccentricity and eccentric vertex for each vertex of the (n, t) -kite graph, we observe that the arcs are from vertex y_{i} to the vertex x_{t} for $i \in[0, n-1]$. Also, the arcs are from vertex x_{i} to the vertex y_{j} for $i \in[t-z, t]$ and $j=\frac{n-1}{2}, \frac{n+1}{2}$. In addition, the arcs are from vertex x_{i} to the vertex x_{t} for $i \in[i, t-z-1]$ and so not all arcs are symmetric. Based on these arcs, the vertex set $V\left(E D\left(k_{n, t}\right)\right)$ can be partitioned into four subsets of vertices $V_{1}=\left\{x_{t}\right\}, \quad V_{2}=\left\{y_{\frac{n-1}{2}}, y_{\frac{n+1}{2}}\right\}$, $V_{3}=\left\{x_{t-z}, \ldots, x_{t-1}\right\}$ and $V_{4}=\left\{y_{0}, \ldots, y_{\frac{n-3}{2}}, \frac{y_{n+3}^{2}}{}, \ldots, y_{n-1}, x_{1}, \ldots, x_{t-z-1}\right\}$. All arcs from vertices of V_{4} are incident to the vertices of V_{1}, while all arcs from vertices of V_{3} are incident to the vertices of V_{2}. The arcs from V_{1} and V_{2} are symmetric arcs. From these partitions, then there is no arc from the same subsets. Therefore, the digraph can be formed to be 4-partite digraph $F_{1,2, z, n+t-z-3}$.

Theorem 3. Let $k_{n, t}$ be (n, t)-kite graph, for $t<\frac{n}{2}, n \geq 3$. Then the eccentric digraph of $k_{n, t}, E D\left(k_{n, t}\right)$ is a digraph having vertex set $V\left(k_{n, t}\right)$ and the arc set are

$$
\begin{aligned}
&\left\{\overrightarrow{x_{i} y_{j}}, i \in[1, t], j=\frac{n-1}{2}, \frac{n+1}{2}\right\} \\
& \cup\left\{\overrightarrow{y_{l} y_{m}}, l \in\left[0, \frac{n-2 t-1}{2}\right], m=\frac{n+2 l-1}{2}, \frac{n+2 l+1}{2}\right\} \\
& \cup\left\{\overrightarrow{y_{p^{x}}}, p \in\left[\frac{n-2 t-1}{2}, \frac{n+2 t+1}{2}\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
& \cup\left\{\overrightarrow{y_{q} y_{r}}, q \in\left[\frac{n+2 t+1}{2}, n-1\right]\right. \\
& \left.r=\left(\frac{n+2 p-1}{2}\right) \bmod n,\left(\frac{n+2 p+1}{2}\right) \bmod n\right\} \text { for } n \text { odd } \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
&\left\{\overrightarrow{x_{i} y_{\frac{n}{2}}^{2}}, i \in[1, t]\right\} \\
& \cup\left\{\overrightarrow{y_{j} y_{l}}, j \in\left[0, \frac{n-2 t}{2}\right], l=\frac{n+2 j}{2}\right\} \cup\left\{\overrightarrow{y_{m} x_{t}}, m=\frac{n-2 t}{2}, \frac{n+2 t}{2}\right\} \\
& \cup\left\{\overrightarrow{y_{p} y_{q}}, p \in\left[\frac{n+2 t}{2}, n-1\right], q=\left(\frac{n+2 p}{2}\right) \bmod n\right\} \text { for } n \text { even. } \tag{2}
\end{align*}
$$

Proof. By determining the eccentricity and eccentric vertex for each vertex of the (n, t)-kite graph, it is easy to check that the arcs are as stated in (1) for n odd and (2) for n even.

Acknowledgement

The authors would like to thank to Sebelas Maret University, Surakarta, Indonesia for funding this fundamental research scheme in 2012.

References

[1] J. Boland and M. Miller, The eccentric digraph of a digraph, Proceeding of AWOCA'01, Lembang-Bandung, Indonesia, 2001, pp. 66-70.
[2] G. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph Theory, International Series in Pure and Applied Mathematics, McGraw-Hill Inc, California, 1993.
[3] J. A. Gallian, Dynamic survey of graph labeling, The Electronic J. of Combinatorics \#16 (2011), 1-219.
[4] J. Gimbert, N. Lopez, M. Miller and J. Ryan, Characterization of eccentric digraphs, Discrete Mathematics 306(2) (2006), 210-219.

378 Tri Atmojo Kusmayadi, Nugroho Arif Sudibyo and Sri Kuntari
[5] T. A. Kusmayadi and N. A. Sudibyo, The eccentric digraph of friendship graph and firecracker graph, Far East J. Math. Sci. (FJMS) 63(2) (2012), 221-234.
[6] W. D. Wallis, Magic Graph, Birkhauser, Boston, Basel, Berlin, 2001.
[7] H. Wang and L. Sun, New results on the eccentric digraphs of the digraphs, Ars Comb. 89 (2008), 183-190.

