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Abstract

Let X be a non-metric continuum, and C(X) be the hyperspace of

subcontinua of X. It is known that there is no Whitney map on the

hyperspace 2% for non-metrizable Hausdorff compact spaces X. On the
other hand, there exist non-metrizable continua which admit and ones

which do not admit a Whitney map for C(X). In particular, locally

connected or rim-metrizable continuum admits a Whitney map if and
only if it is metrizable. In this paper we will show that an arc-smooth
continuum X admits a Whitney map for C(X) if and only if it is

metrizable.
1. Introduction

Introduction contains some basic definitions, results and notations.
An external characterization of non-metric continua which admit a
Whitney map is given in Section 2 (Theorem 2.1). In Section 3 we shall

prove the main results of this paper, Theorems 3.4 and 3.6.

All spaces in this paper are compact Hausdorff and all mappings are
continuous. The weight of a space X is denoted by w(X). The cardinality
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of a set A is denoted by card(A). We shall use the notion of inverse system

as in [2, pp. 135-142]. An inverse system is denoted by X = {X,, p.p, A}.

A generalized arc is a Hausdorff continuum with exactly two
non-separating points. Each separable arc is homeomorphic to the closed
interval I = [0, 1].

For a compact space X we denote by 2% the hyperspace of all
nonempty closed subsets of X equipped with the Vietoris topology. C(X)

and X(n), where n is a positive integer, stand for the sets of all

connected members of 2% and of all nonempty subsets consisting of at

most n points, respectively, both considered as subspaces of 2X , see [4].

For a mapping f : X — Y define 27 : 2X - 2¥ py 2f(F) = f(F) for
F e 2%, By [9, 5.10] 2/ is continuous, 2/(C(X)) = C(Y) and 2/(X(n))
< Y(n). The restriction 2/ |C(X) is denoted by C(f).

If X ={X,, pqp» A} is an inverse system, then an element {x,} of
the Cartesian product H {X,:ae A} is called a thread of X if
DPab(xp) = x, for any a,b e A satisfying a <b. The subspace of
H{Xa : a € A} consisting of all threads of X is called the limit of the
inverse system X ={X_,, p,», A} and is denoted by limX or by
lim{X,, pupy, A} [2, p. 135].

Let X ={X,, pa», A} be an inverse system of compact spaces with
the natural projections p, : limX — X,, for a € A. Then 2X - {ZX‘I,
2Pab, A}, C(X) = {C(X,), Cpap). A} and X(n) = {X,(n), 27 | X (n), A}

form inverse systems.

Lemma 1.1 [4, Lemma 2]. Let X =1lm X. Then 2% = lim 2X,
C(X) = lim C(X) and X(n) = lim X(n).

We say that an inverse system X = {X,, pyy, A4} is o-directed if for
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each sequence qq, ag, ..., @z, ... of the members of A thereisan a € A

such that a > a;, for each £ € N.

In the next we will use the following expanding theorem of
non-metric compact spaces into o-directed inverse system of compact

metric spaces.

Theorem 1.2 [7, Theorem 1.8]. Let X be a compact Hausdorff space
such that w(X) > N;. There exists a o-directed inverse system X =
{Xys Paps A} of metric compact X, such that X is homeomorphic to
lim X.

2. Whitney Map and Hereditarily Irreducible Mappings

The notion of an irreducible mapping was introduced by Whyburn
[11, p. 162]. If X is a continuum, a surjection f : X — Y 1is irreducible

provided no proper subcontinuum of X maps onto all of Y under f.
A mapping f: X —» Y is said to be hereditarily irreducible [10,
p. 204, (1.212.3)] provided that for any given subcontinuum Z of X, no

proper subcontinuum of Z maps onto f(Z).

A mapping f : X > Y is light (zero-dimensional) if all fibers [~ (y)
are hereditarily disconnected (zero-dimensional or empty) [2, p. 450], i.e.,
if f_l(y) does not contain any connected subsets of cardinality larger
that one (dim f~!(y) < 0). Every zero-dimensional mapping is light, and

in the realm of mappings with compact fibers the two classes of mappings
coincide.

Every hereditarily irreducible mapping is light. If f: X > Y 1is

monotone and hereditarily irreducible, then f is one-to-one.

Let A be a subspace of 2X. By a Whitney map for A [10, p. 24, (0.50)]

we will mean any mapping g : A — [0, + ) satisfying
(a) if {A},{B} e A such that A c B, A # B, then g({A}) < g({B}) and

() g({x}) = 0 for each x € X such that {x} € A.
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If X is a metric continuum, then there exists a Whitney map for 2X
and C(X) ([10, pp. 24-26], [3, p. 106]). On the other hand, if X is

non-metrizable, then it admits no Whitney map for 2X [1]. It is known
that there exist non-metrizable continua which admit and ones which do
not admit a Whitney map for C(X) [1]. Moreover, if X is a non-metrizable

locally connected or a rim-metrizable continuum, then X admits no
Whitney map for C(X) [6, Theorems 8 and 11].

The following external characterization of non-metric continua which

admit a Whitney map was proved in [7, Theorem 2.3].

Theorem 2.1. Let X be a non-metric continuum. Then X admits a
Whitney map for C(X) if and only if for each o-directed inverse system
X ={X,, Py, A} of continua which admit Whitney maps for C(X,) and
X = 1im X there exists a cofinal subset B — A such that for every b € B
the projection pp : lim X — X, is hereditarily irreducible.

Now we shall prove the metrizability of C(X\X(1) if X is an arcwise
continuum which admits a Whitney map for C(X).

Theorem 2.2. If an arcwise connected continuum X admits a Whitney
map for C(X), then w(C(XN\X(1)) < Ny.

Proof. If X is metrizable, then X admits a Whitney map for C(X)
and C(X) is metrizable. Conversely, let X admits a Whitney map for
C(X). From Theorem 1.2 it follows that there exists a c-directed inverse
system X ={X,, py, A} of metric continua and surjective bonding
mapping such that X is homeomorphic to lim X. Consider inverse system
C(X) ={C(X,), C(pyp), A} whose limit is C(X) (Lemma 1.1). From
Theorem 2.1 it follows that the projections p, are hereditarily
irreducible and C(p,) are light. If C(p,) are one-to-one, then we have a
homeomorphism C(p,) of C(X) onto C(p,)(X). Since C(p,)(X) is a
subspace of a metric space C(X,), C(X) is metrizable. It follows that X
is metrizable since X is homeomorphic to X(1). Suppose that C(p,) is not
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one-to-one. Then there exists a continuum C, in X, and two continua C,
D in X such that p,(C) = p,(D)= C,. It is impossible that C = D or
D c C since p, is hereditarily irreducible. Otherwise, if C N D # &,
then for a continuum Y = C U D we have that C and D are subcontinua
of Yand p,(Y) = p,(C) = p,(D) = C, which is impossible since p, is
hereditarily irreducible. We infer that C (1 D = &. There exists an arc £

with endpoints in C and D, respectively. Moreover, we may assume that
ENC=C and END # D. Now p,(EUD)=p,(E) which is impossible

since p, is hereditarily irreducible. Furthermore, C(p,) (X (1)) = X(1)
since from the hereditarily irreducibility of p, it follows that no
non-degenerate subcontinuum of X maps under p, onto a point. Let
Y, = C(p,)(C(X)). We infer that C(p,) ‘[Y,\X,(1)]= C(XN\X(1). It
follows that the restriction P, = C(p,)|(C(X\X(1)) is one-to-one and
closed [2, Proposition 2.1.4]. Hence, P, is a homeomorphism [2,
Proposition 1.4.18, p. 54] and C(XN\X(1) is metrizable. Moreover,
w(C(XNX(1)) < N since Y, as a compact metrizable space is separable

and, consequently, second-countable [2, p. 320].

In the sequel we shall use the following result [12, p. 173, Problem
23C].

Theorem 2.3. The following are all equivalent, for locally compact

metric space X:

(a) X is separable.
(b) X = U:=1 K,,, where K, iscompact and K, c Int K, ;.
(c) The one point compactification X* [12, p. 136] of X is metrizable.

3. Arc-Smooth Continuum X Admits a Whitney Map for C(X)
iff it is Metrizable

An arc-structure on a continuum X [5] is a function A : X x X — C(X)
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such that for x # y in X, the set A(x, y) is a generalized arc from x to y

and such that the following metric-like conditions are satisfied for all x, y

and z in X;

(a) A(x, x) = {x},

(b) A(x, y) = A(y, x) and

() A(x, z) < A(x, y)U A(y, z) with equality prevailing whenever y
belongs to A(x, z).

Lemma 3.1. If X is a continuum with an arc-structure A, then the

function A is two-to-one.
Proof. Let y be a point in A(X x X). Then y is an arc L in X with

endpoints z and w. It is clear that A7 (x) = {(z, u), (u, z)}. Hence, A is

two-to-one.

The pair (X, A) is arc-smooth at point p in X if the induced function
A, : X - C(X) defined by A,(x)= A(p, x) is continuous. The pair
(X, A) is arc-smooth if there exists a point in X at which (X, A)
arc-smooth.

Lemma 3.2. For each point p € X, the function A, : X — C(X) is

one-to-one.

We say that a continuum X is uniquely arcwise connected provided for

every pair of x, y, x # y, there exists a unique arc in X with endpoints x

and y, respectively. This means that if X is uniquely arcwise connected,

then there exists an arc-structure on X.

Lemma 3.3. Let X be a continuum with an arc-structure A. If (X, A)
is arc-smooth at point p € X, then A, : X — C(X) is a homeomorphism

onto Ap(X)={A,(x): x e X} c C(X).

Proof. Now we have a continuous and one-to-one mapping A, : X —

C(X).
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Now we are ready to prove the main results of this paper.

Theorem 3.4. If X is an arc-smooth continuum, then X admits a
Whitney map for C(X) if and only if X is metrizable.

Proof. It is known that if X is metrizable, then X admits a Whitney
map for C(X). Suppose that X is non-metrizable and that there exists a

Whitney map for C(X). Let X be arc-smooth at point p. By Lemma 3.3 X
is homeomorphic to A,(X) ={A,(x): x € X} c C(X). It is clear that
AL (X)N\p} c C(XN\X(1). We infer that A,(X)\{p} is metrizable since
C(X)N\X(1) is metrizable (Theorem 2.2). Hence, X\p is metrizable since
it is homeomorphic to A,(X)\{p}. Moreover, X\p is separable since
w(C(XNX(1)) € Xg. Furthermore, X is the one point compactification of
X\p. Finally, from Theorem 2.3 it follows that X is metrizable, a
contradiction.

Theorem 3.5. Let a continuum X be a countable union of its
arc-smooth subcontinua X;, i € N. If X admits a Whitney map for C(X),

then X is metrizable.

Proof. Let p: C(X) > R be a Whitney map for C(X). It is clear
that each restriction p|X;,7 e N, is a Whitney map for C(X;). By
Theorem 3.4 each X; is metrizable. Finally, X is metrizable [2, Corollary
3.1.20, p. 171].

An arboroid is a hereditarily unicoherent continuum which is arcwise

connected by generalized arcs. A metrizable arboroid is a dendroid. If X is
an arboroid and x, y € X, then there exists a unique arc [x, y] in X with

endpoints x and y. If [x, y] is an arc, then [x, y\{x, y} is denoted by
(x, ¥)-
A point ¢ of an arboroid X is said to be a ramification point of X if t is

the only common point of some three arcs such that it is the only common
point of any two, and an endpoint of each of them.

A point e of an arboroid X is said to be endpoint of X if there exists no
arc [a, b] in X such that x € [a, b\a, b}.
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If an arboroid X has only one ramification point ¢, it is called a
generalized fan with the top ¢. A metrizable generalized fan is called a

fan.

It is clear that if X is an arboroid, then there exists a unique
arc-structure A on X since it is uniquely arcwise connected. Moreover,
A, (X) is the set of all arcs in X of the form [p, x].

An arboroid X is smooth if there exists a point p € X such that given

any convergent net x, with limx, = x it follows that lim[p, x,] =

[p, x].

In [8, p. 112] the set A,(X) is denoted by D(X, p) and it is proved
that if X is smooth at p, then D(X, p) is arcwise connected [8, Theorem
4.8]. Moreover, if X is an arcwise connected smooth continuum, then
there exists a homeomorphism A : X — D(X, p) [8, Theorem 1]. This

means that an arboroid is smooth if and only if it is arc-smooth. From

Theorem 3.4 it follows the following theorem.

Theorem 3.6. If a smooth arboroid X admits a Whitney map for
C(X), then X is metrizable.

Corollary 3.7. A continuum X which is the countable union of smooth

arboroid admits a Whitney map for C(X) if and only if it is metrizable.
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