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Abstract 

Fuzzy relations are used to create partially ordered sets and lattices 
contained in this paper. Extensions of partially ordered sets and 
lattices are examined. The extensions studied include what are called 
canonical extensions and direct sums. Among the results is one 
showing that every cover function for a finitary distributive lattice is 
also a cover function for some nonfinitary distributive lattice. This 
result shows the necessity of the condition “finitary” that is used in an 
earlier result to prove the isomorphism of any two finitary distributive 
lattices which share a common cover function. 

1. Introduction 

A crisp set X means a collection of objects as usually defined. The 
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cardinality of any crisp set X will be denoted, as usual, by .X  The set 

{ }00 ∪NN =  consists of the nonnegative integers where N  denotes the set 

of natural numbers. 

Another kind of set appearing in this paper is the fuzzy set. For this we 
need a nonempty crisp set X. Then, a fuzzy subset of the crisp set X is a 
function from X into the unit interval [ ].1,0  A fuzzy relation on the crisp set 

X is a fuzzy subset of the Cartesian product .XX ×  The constructions used 
in this paper to develop nonfinitary distributive lattices use fuzzy relations. 
Two examples of fuzzy relations are as follows. Let R be the relation of 
divisibility defined on ,N  where mRn means “m divides n” denoted by .nm |  

One way of fuzzifying this crisp relation is by defining the fuzzy relation 

( )
⎩
⎨
⎧ |

=μ
otherwise.,0

,if,1
,

nm
nmd  (1) 

This particular fuzzification is simply another way of restating the given 
crisp relation since given any m and n in N  either nm |  or .nm  Consider 
the expression 

( )
( ) ( ) .1,

mn
mnmn

mnmnT
−+

=  (2) 

We can create a more general fuzzy relation such that the fuzzy relation 
has more values than just 0 and 1 by defining 

( )
( )

⎩
⎨
⎧ |

=μ
otherwise.,0

,if,,
,

nmmnT
nmD  (3) 

In fact, if ,,, 121 nmm  and 2n  are in N  such that 11 nm |  and ,22 nm |  
where ,1 2211 mnmn <<  then 

( ) ( ).,, 2211 nmnm DD μ<μ  

This shows that the fuzzy relation given by equation (3) gives the strength of 
divisibility and has the capability of comparing the quotients of such 
divisions. For example 

( ) ( ) .81.09,34,28.0 =μ<μ= DD  
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See Zadeh [13], Mordeson and Nair [9] and Venugopalan [12] for more 
information on fuzzy sets and relations. 

A special kind of fuzzy relation called a fuzzy partial ordering will be 
defined in the next section. Throughout this paper, a fuzzy partially ordered 
set (poset) will mean a crisp set X together with a fuzzy partial ordering μ 
defined on X. Such a poset is denoted by ( )., μX  Poset will always mean a 

fuzzy poset. 

The concepts of cover function and fuzzy lattice are defined in Section 4. 
Lattice will always mean a fuzzy lattice. A distributive lattice with a 
minimum element is finitary if every interval [ ]ba,  is finite. Let f be a 

function defined on the set .0N  Then f is said to be a cover function for a 

finitary distributive lattice if every element of the lattice with 0N∈n  lower 

covers has ( )nf  upper covers [7], [10], [11]. We shall extend the definition 

of a cover function for a distributive lattice by eliminating the finitary 
condition. 

Creating an extension of a fuzzy poset or a fuzzy lattice is the task of 
finding a crisp set Y and a fuzzy partial ordering θ such that ( )θ,Y  is a 

structure of the same kind as ( ),, μX  and ( )μ,X  is embeddable in ( )., θY  

The search for such a set Y leads us to consider the fuzzy singletons re  

defined by equation (4). A commonly known fuzzy subset of X is the 
characteristic function of the crisp set X. Others are the fuzzy singletons of X, 
where a fuzzy singleton of X is a function of the form [ ]( )1,0∈rer  defined 

by 

( )
⎩
⎨
⎧ =

=
otherwise.,0

,if, exr
xer  (4) 

Fuzzy subsets and singletons are also discussed in [3], [4], [5] and [8]. 

The collection of all fuzzy singletons of the crisp set X is denoted by 
( ).XFS  A fuzzy partial ordering μ~  is defined on ( ),XFS  where μ~  

depends on the relation μ defined on X and ( )( )μ~,XFS  is a structure of the 
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same kind as ( )., μX  Besides, ( )μ,X  is embeddable in ( )( ).~, μXFS  For a 

fixed [ ],1,0∈r  let ( )rX  denote the set of all fuzzy singletons re  of X. The 

sets ( )rX  are crisp subsets of ( )XFS  and for each ( ]1,0∈r  we have 

( ) .XX r =  

Section 2 will examine in detail the structure and extensions of fuzzy 
posets. The extension ( )( )μ~,XFS  is called the canonical extension of 

( )., μX  If ( )μ,X  is a finitary distributive lattice, then ( )( )μ~,XFS  is a 

nonfinitary distributive lattice which is complete whenever ( )μ,X  is 

complete. Cover functions for finitary distributive lattices were investigated 
in [7], [10] and [11]. It will be shown in Section 4 that every cover function 
for a finitary distributive lattice ( )μ,X  is also a cover function for the 

nonfinitary distributive lattice ( )( ).~, μXFS  This will show that the 

condition ‘finitary’ cannot be dropped in ([10, Exercise 22(a), p. 157]) 
regarding the isomorphism of any two finitary distributive lattices which 
share a given cover function f. Another class of extensions of posets and 
lattices examined are called direct sums of posets and lattices. The definition 
of the direct sum of a family ( ){ }αα μ,X  of posets is given in Definition 3.2. 

Proposition 3.2 shows that any two such direct sums are equal up to 
isomorphism. While the direct sum may be a lattice when the posets are all 
lattices, the direct sum of a family of lattices need not always be a lattice. 
This is shown in Example 4.2. Relationships between cover functions of 
distributive lattices and those of their direct sums are examined. Finally, a 
commutative diagram connecting the two types of extensions-canonical 
extensions and direct sums, is shown in Figure 1. Theorem 4.6 shows that a 
given poset ( )μ,X  is amenable to an infinite process of extensions. 

Fuzzy subsets and fuzzy singletons are instances of what are generally 
known as L-subsets and L-singletons where L is a complete Heyting algebra 
[8]. As a result of the various ways of choosing L, a given poset ( )μ,X  is 

amenable to many forms of extensions one of which is ( )( )μ~,XFS  when 

[ ].1,0=L  
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2. Partially Ordered Sets 

In this section, we discuss fuzzy relations and fuzzy partially ordered sets 
and their extensions. 

Definition 2.1. A fuzzy ordering on X is defined as a fuzzy relation μ on 
X, where yx ≤  if and only if ( ) 0, >μ yx  for x and y in X. 

Among the fuzzy relations discussed by Zadeh in [13] are similarity 
relations and fuzzy partial orderings. A fuzzy partial ordering μ on a set X is 
defined as follows. 

Definition 2.2. A fuzzy partial ordering on a crisp set X is a fuzzy 
relation μ defined on X satisfying the properties: 

(1) ( ) Xxxx ∈∀=μ 1,  (reflexivity), 

(2) ( ) 0, >μ yx  and ( ) Xyxyxxy ∈∀=⇒>μ ,0,  (antisymmetry), 

(3) ( ) ( ) ( ){ }{ }zyyxzx y ,,,minmax, μμ≥μ  for Xzyx ∈,,  (transitivity). 

We can show that such a fuzzy partial ordering on a set X or a similarity 
relation on X is extendable to ( ).XFS  If ψ is any similarity relation on X, 

then it is easy to verify that 

( )
( ) ( )

⎩
⎨
⎧ =>ψψ

=ψ
otherwise,0

,and0,if,,
,~ rsyxyx

yx sr  

is an extension of ψ to ( ).XFS  This gives an example of an extension of 

Zadeh’s concept of a similarity relation to ( ).XFS  An extension of a fuzzy 

partial ordering μ on X to ( )XFS  is shown in Proposition 2.2. 

Proposition 2.1. The fuzzy relation Dμ  given by equation (3) is a fuzzy 
partial ordering on .N  

Proof. It is easy to show that Dμ  is reflexive and antisymmetric. To 

show that Dμ  is transitive we observe first that if nm =  or ,qn =  then 

( ) ( ) ( ){ }qnnmqm DDD ,,,min, μμ≥μ  
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is trivially satisfied. Therefore, we shall consider the case where amn =  and 
,bnq =  .2, ≥ba  Consider the function g on [ )∞= ,2J  defined by 

( ) .
11 2

2

−+
=

−+
=

tt
t

t
tt

ttg  

(Observe that if ,mnt =  then equation (2) becomes ( ) ( ))., tgmnT =  

We have 

( ) ( )
( )

0
1

2
22 ≥

−+
−=′
tt

tttg  if .2≥t  

Thus, g is non-decreasing on J. Hence, if ,,, N∈qnm  where amn =  

and ,bnq =  ,, N∈ba  then we must have 

( ) ( ) ( ){ }bgagabg ,max≥  

or 

( ) ( ) ( ){ } ( ) ( ){ }.,,,min,,,max, qnnmqnnmqm DDDDD μμ≥μμ≥μ  

This shows Dμ  is transitive.  

We now note the following definitions. 

Definition 2.3. Let ( )μ,X  be a poset. A subposet of ( )μ,X  is a poset 

( ),, μ′′X  where XX ⊆′  and μ′  is the restriction of μ to .X ′  

Definition 2.4. An isomorphism from the poset ( )μ,X  and onto the 

poset ( )θ,Y  is a bijective function ( ) ( )θ→μ ,,: YXf  such that  

( ) 0,,, >′μ∈′∀ xxXxx  if and only if ( ) ( )( ) .0, >′θ xfxf  

Definition 2.5. A poset ( )θ,Y  is called an extension of a poset ( )μ,X  if 

there exists a one-to-one function ( ) ( )θ→μσ ,,: YX  such that ,, Xxx ∈′∀  

( ) 0, >′μ xx  if and only if ( ) ( )( ) .0, >′σσθ xx  That is, ( )θ,Y  contains an 

isomorphic image of ( )., μX  
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We now state the following proposition whose proof is immediate. 

Proposition 2.2. If ( )μ,X  is a poset, then under the function 

( ) ( ) [ ]1,0:~ →×μ XX FSFS  

defined by 

( )
( ) ( )

⎩
⎨
⎧ ≥>μμ

=μ
otherwise

rsandyxifyx
yx sr ,0

,0,,,
,~  (5) 

( )( )μ~,XFS  is a poset. 

For the remainder of the paper ( )( )μ~,XFS  will be the poset where μ~  is 

defined on ( )XFS  by equation (5). In ( )( )μ~,XFS  “≥ ” is defined by 

rs xy ≥  if and only if xy ≥  in ( )μ,X  and .rs ≥  If ( )( )μ~,XFS  is a 

poset, then so is ( ( ) ),~, rrX μ  where rμ
~  is the restriction of μ~  to the set ( ).rX  

If we fix ( ]1,0∈r  and define ( ) ( )( )μ→με ~,,: XX FS  by ( ) ,rxx =ε  

then ( )( )μ~,XFS  is an example of an extension of ( )., μX  The extension 

( )( )μ~,XFS  is called the canonical extension of ( ),, μX  and the embedding 

ε is called a canonical embedding of ( )μ,X  into ( )( ).~, μXFS  When we 

have a hierarchy of canonical extensions then ( )( )μ~,XFS  is denoted by 

( ( ) [ ]).~, 1μXFS  The canonical extension of ( ( ) [ ])1~, μXFS  is denoted by 

( ( ) [ ]).~, 22 μXSF  In general, the canonical extension of ( ( ) [ ])11 ~, −− μ nn XFS  

is denoted by ( ( ) [ ]).~, nn X μSF  

We now examine analogues for ( )( )μ~,XFS  of certain concepts defined 

in [7]. Assume ( )μ,X  is a fuzzy poset. Let [ ]1,0∈r  and .Xq ∈  Then, the 

element rq  is irreducible if and only if q is irreducible in ( )., μX  If Q is a 

down-set of ( ),, μX  then the set { }QqqQ rr ∈|=  is a down-set of 

( ( ) )rrX μ~,  for every [ ].1,0∈r  
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The following proposition gives an example of a down-set of 
( )( ).~, μXFS  

Proposition 2.3. Let A be a fuzzy subset of X and 

( ) ( ){ }.0 eArandXeeA r ≤≤∈|=ξ  

If A is decreasing, then ( )Aξ  is a down-set of ( )( ).~, μXFS   

Proof. Let ( )Aqr ξ∈  and .rs qp ≤  Then qp ≤  and .rs ≤  Hence, 

( ) ( )pAqArs ≤≤≤  

if and only if ( ).Aps ξ∈  This proves the proposition. 

Remark 2.1. If A is a decreasing fuzzy subset of X and Canon (A) is the 
canonical chain ⊆⊆= 10 AAA  of fuzzy subsets of X generated by A as 

defined in [6], then one can verify directly that ( ) ( )1+ξ⊆ξ ii AA  for all 

nonnegative integers i. This gives an increasing sequence of down-sets of 
( )XFS  whenever Canon (A) is strictly increasing and A is a decreasing 

fuzzy subset of X as in Proposition 2.3. 

3. Direct Sums of Posets 

We now give the definitions of the projection of a fuzzy relation and the 
direct sum of a family of subposets. 

Definition 3.1. Let ( )μ,X  be a poset and X ′  be a subset of X. By the 

projection of μ onto ,X ′  denoted by ( ),μ′XProj  we mean the fuzzy relation 

μ′  on X defined by 

( )
( )

⎩
⎨
⎧ ′∈μ

=μ′
.otherwise,0

,,if,,
,

Xyxyx
yx  

Definition 3.2. Let ( )μ,X  be a poset and let { }αX  be a family of 

subsets of X such that ( )αα μ,X  is a subposet of ( )., μX  Then ( )μ,X  is 

called a direct sum of the family ( ){ }αα μ,X  if 
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(1) ,XX =αα∪  

(2) ∅=βα XX ∩  if ,β≠α  

(3) αμ  is the projection of μ onto ,αX  

(4) If ( ) ,0, >μ yx  then their exists a unique α such that ( ) .0, >μα yx  

Such a direct sum is denoted by ( )∑ αα μ .,X  We note the following 

proposition whose proof is immediate. 

Proposition 3.1. If ( )μ,X  is a direct sum of a family ( ){ }αα μ,X  of 

subposets, then ( )( )μ~,XFS  is a direct sum of the family ( )( ){ }.~, αα μXFS  

Proof. It is easy to verify that the canonical extension of ( )∑ αα μ,X  is 

( )( )∑ αα μ .~,XFS  

Hence, the result follows.  

Let ( )θ,Y  be an extension of ( ),, μX  where X is a subset of Y. Then, 

the restriction of the identity function of Y to X is called the ‘inclusion’ of X 
into Y and denoted by .: YXi →  

In view of Proposition 3.1, we get a hierarchy of canonical extensions of 
the direct sum of a given family ( ){ }αα μ,X  of posets. We shall denote the 

canonical extensions by ( ) ,0, ≥π nn  where ( )0π  is denoted by ( )∑ αα μ ,,X  

( ) =π 1  the canonical extension of ( )0π  denoted by ( ( ) ( )[ ])∑ αα μ 1~,XFS  

( ) =π 2  the canonical extension of ( )1π  denoted by ( ( ) ( )[ ])∑ αα μ 22 ~,XSF  

 

( ) =π n  the canonical extension of ( )1−π n  denoted by  

( ( ) ( )[ ])∑ αα μ .~, nn XSF  

Thus, we get the following commutative diagram where ( )αα μ,X  is 

now simply abbreviated by .αX  
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Figure 1. Hierarchy of canonical extensions. 

Figure 1 shows relationships between the canonical extensions denoted 
by ε and the inclusions denoted by i. 

We now give some examples of direct sums. 

Example 3.1. Let 0X  and 1X  denote, respectively, the sets of even 

and  odd natural numbers, ,,, 11100000 XXVXXVV ×=×=×= NN  and 

( ).102 VVVV ∪−=  Define [ ]1,0: →×θ VV  by 

( ) ( )[ ]

( ) ( )
( ) ( ) ( ) ( )

( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

||

∈≠

=

=θ

.otherwise,0

,,andsamethefor

,,,,,,if,
2
1

,,,if,1

,,,
dbcai

Vdcbadcba

dcba

dcba ii  

Then, ( )θ,V  is a poset. Let iθ  be the projection of θ onto .iV  Then ( )θ,V  

is a direct sum of the subposets ( )., iiV θ  

Example 3.2. We now generalize Example 3.1. Let ( )μ,X  be a poset, 

where X is a nondegenerate set (i.e., a set consisting of more than one 
element) and .XXV ×=  Let 110 ...,,, −nXXX  be a partition of X, 

iii XXV ×=  for 1...,,1,0 −= ni  and .1
1 i

n
in VVV −
=−= ∪   

Define [ ]1,0: →×θ VV  by 

( ) ( )[ ]

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>μ>μ

∈≠

=

=θ

.otherwise,0

,0,,0,andsamethefor

,,,but,,if,
2
1

,,,if,1

,,,
dbcai

Vdcbadcba

dcba

dcba
ii  
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Then, ( )θ,V  is a direct sum of ( ){ },, iiV θ  where [ ]1,0: →×θ iii VV  is the 

projection of θ onto .iV  

Example 3.3. Let ( ){ }αα μ,X  be a family of posets satisfying 

∅=βα XX ∩  if .β≠α  By letting αα= XX ∪  and the fuzzy partial 

ordering μ be defined by 

( )
( )

⎩
⎨
⎧ α∈μ

=μ αα

otherwise,0

,samethefor,if,,
,

Xbaba
ba  

we create a direct sum of the family of fuzzy posets ( ){ }., αα μX  

The following proposition shows that the direct sum of a family of 
subposets is unique. 

Proposition 3.2. Any two direct sums ( )μ,X  and ( )θ,Q  of a family 

( ){ }αα μ,X  of posets are isomorphic. Thus, the direct sum of a family of 

posets is unique up to isomorphism. 

Proof. Since ( )μ,X  and ( )θ,Q  are direct sums of ( ){ },, αα μX  we have 

.QXX == αα∪  

Now, let ( ) 0, >μ yx  for some ., Xyx ∈  Then, there exists a unique α such 

that ( ) .0, >μα yx  Since 

( ) ( ),θ=μ=μ
αα α XX ProjProj  

we have by Definition 3.2(3) of a direct sum that ( ) .0, >θ yx  Hence, ( )μ,X  

is isomorphic to ( )., θQ  This proves the assertion.  

Proposition 3.3. If the posets ( )μ,X  and ( )θ,Q  are isomorphic and 

( )μ,X  is the direct sum of the family ( ){ }αα μ,X  of posets, then ( )θ,Q  is 

also a direct sum of some family of posets. 

Proof. Let ( ) ( )θ→μ ,,: QXf  be an isomorphism, where ( )μ,X  is a 
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direct sum of the family ( ){ }αα μ,X  of posets. Since f is an isomorphism, we 

have 

( ) ( ) ( ).αααα === XfXfXfQ ∪∪  

Besides 

( ) ( ) ( ) ( ) ,∅=∅== βαβα fXXfXfXf ∩∩  if .β≠α  

Let αθ  be the projection of θ to ( ).αXf  Suppose Qba ∈,  satisfying 

( ) .0, >θ ba  Then, there exist ( ) ( ) Xbfyafx ∈== −− 11 ,  such that 

( ) .0, >μ yx  Hence, there exists a unique α such that α∈ Xyx,  and 

( ) .0, >μα yx  Consequently, ( ) ( ) ( )α∈== Xfyfbxfa ,  and ( ) .0, >θα ba  

Thus, we have shown that ( )θ,Q  is a direct sum of ( )( ){ }., αα θXf  This 

proves the assertion.  

Proposition 3.4. Every poset ( )μ,X  is embeddable into a direct sum of 

some family ( ){ }αα μ,X  of posets. 

Proof. Let ( )μ,X  be a given poset. First consider the trivial case. If X 

consists of a single element, then the direct sum has only one summand, 
namely ( )μ,X  itself. Now consider the case when .2≥X  Fix an element 

Xa ∈  and let { },0 aX =  { },1 aXX −=  ,XXV ×=  ,000 XXV ×=  

,111 XXV ×=  and ( ).102 VVVV ∪−=  The fuzzy relation θ defined on 

VV ×  as given by Example 3.2, that is, 

( ) ( )[ ]

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

>μ>μ

∈≠

=

=θ

otherwise,0

,0,,0,andsamethefor

,,,but,,if,
2
1

,,,if,1

,,,
dbcai

Vdcbadcba

dcba

dcba ii  

makes ( )θ,V  a poset. Besides ( )θ,V  is a direct sum of the family ( ){ },, iiV θ  

where for ii θ= ,2,1,0  is the restriction of θ to .ii VV ×  Now the mapping 
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( ) ( )θ→μ ,,: VXf  

defined by ( ) ( )babf ,=  injects ( )μ,X  into ( ),, θV  where the image of f is 

.20 VV ∪  This proves the assertion. 

4. Lattices and Cover Functions 

We start here with the definitions of lattice, upper and lower covers and 
cover function for a distributive lattice. 

Definition 4.1. Let ( )μ,X  be a poset and ., Xba ∈  If there exists an 

element Xc ∈  such that (1) ( ) ,0, >μ ca  (2) ( ) ,0, >μ cb  and (3) whenever 

Xd ∈  satisfies ( ) 0, >μ da  and ( ) ,0, >μ db  then ( ) ,0, >μ dc  we call c 

the lub of { }ba,  and denote it by .ba ∨  The glb of { }ba,  is defined in a 

similar manner and it is denoted by .ba ∧  

Definition 4.2. A lattice is a poset ( ),, μX  where every pair of elements 

a and b in X has a lub and glb. The lattice is said to be complete if every 
nonempty subset of ( )μ,X  has a lub and glb. The lattice ( )μ,X  is said to 

be distributive if the lub and glb operations are distributive over one another. 

Example 4.1. Consider the fuzzy partial order dμ  given by equation (1). 

Define ∨  and ∧  in ( )dμ,N  by 

( )nmnm ,lcm=∨  and ( ).,gcd nmnm =∧  

Then ( )dμ,N  becomes a lattice subject to these operations. This lattice is 

called the divisor lattice. 

Proposition 4.1. Let ( )μ,X  be a fuzzy lattice. Define ∨  and ∧  for 

( )( )μ~,XFS  by 

( ) ( ),,max srsr dede ∨≡∨  

( ) ( ).,min srsr dede ∧≡∧  
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Then ( )( )μ~,XFS  is a fuzzy lattice. If ( )μ,X  is a complete fuzzy lattice, so 

is ( )( ).~, μXFS  Also if ( )μ,X  is a distributive fuzzy lattice, then so is 

( )( ).~, μXFS  

Proof. The lub and glb, as defined for ( )( ),~, μXFS  satisfy the 

requirements for lub and glb. Moreover 00  and ,11  which we shall denote by 

0 and 1, respectively, satisfy the requirements for absolute minimum and 
absolute maximum. Now if {( ) }

αα= res  is any family of elements of 

( ),XFS  then we observe that ( ) ,
21 slubslubslub =  where 1s  is the family 

{ } ,Xe ⊆α  and 2s  is the family { } [ ].1,0⊆αr  The glb s is obtained in a 

similar manner. Hence, ( )( )μ~,XFS  is complete. 

Now let ( )μ,X  be a distributive fuzzy lattice and let ( ).,, Xdeb srt FS∈  

Then 

( ) ( )[ ] ( )tsrtsr bdebde ,max∨∧=∨∧  

( ) ( )( )tstbde tr ,max=′∨∧= ′  

( )[ ] ( )trbde ′∨∧= ,min  

( ) ( )[ ] ( ).,min trbede ′∧∨∧=  

On the other hand 

( ) ( ) ( ) ( ) ( ) ( )trsrtrsr bedebede ,min,min ∧∨∧=∧∨∧  

( ) ( )[ ] ( ) ( ){ }.,min,,minmax trsrbede ∧∨∧=  

Now, we must show ( ) ( ){ } ( ).,min,min,,minmax trtrsr ′=  We consider the 

following cases: (i) ( ) ( ),,min,min trrsr ==  (ii) ( ) ssr =,min  and 

( ) ,,min ttr =  (iii) ( ) ssr =,min  and ( ) ,,min rtr =  and (iv) ( ) rsr =,min  

and ( ) .,min ttr =  
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Case (i) implies .tr ′≤  Hence the result. 

Case (ii) implies .tr ′≥  Hence we have 

( ) ( ){ } ( ) ( ).,min,max,min,,minmax trttstrsr ′=′==  

Case (iii) implies .srtt ≥≥=′  Hence 

( ) ( ){ } ( ) ( ).,min,max,min,,minmax trrrstrsr ′===  

Case (iv) implies .trs ≥≥  Therefore, .st =′  The result is obvious. 

Now to show ( ) ( ) ( )trsrtsr bedebde ∨∧∨=∧∨  we observe that 

( ) ( )[ ] ( )tsrtsr bdebde ,min∧∨=∧∨  

( )[ ] ( ) ( )( )tssbde sr ,min,max =′∧∨= ′  

( ) ( )[ ] ( ).,max srbede ′∨∧∨=  

On the other hand 

( ) ( ) ( ) ( ) ( ) ( )trsrtrsr bedebede ,max,max ∨∧∨=∨∧∨  

( ) ( )[ ] ( ) ( ){ }.,max,,maxmin trsrbede ∨∧∨=  

By considering the four cases as we did earlier one can show that 

( ) ( ){ } ( ).,max,max,,maxmin srtrsr ′=  

This completes the proof.  

( )( )μ~,XFS  shows that every fuzzy lattice ( )μ,X  (finite or infinite) has 

an infinite lattice extension (see Definition 4.6). 

Definition 4.3. Let ( )μ,X  be a fuzzy lattice. Then a fuzzy sublattice of 

( )μ,X  is a fuzzy subposet ( )μ′′,X  of ( )μ,X  which forms a lattice under 

the restriction μ′  of μ to .X ′  

We now give a sufficient condition for a fuzzy subposet of a fuzzy lattice 
( )μ,X  to be a fuzzy sublattice. 
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Proposition 4.2. Let ( )μ,X  be a fuzzy lattice. If every fuzzy subposet 

( )μ′′,X  of ( )μ,X  is a down-set of ( )μ,X  and has a maximum M, then 

every fuzzy subposet of ( )μ,X  is a fuzzy sublattice of ( )., μX  

Proof. Let ( ).,, μ′′∈ Xba  Since ( )μ′′,X  is a down-set and ,aba ≤∧  

( )., μ′′∈∧ Xba  Similarly, Ma ≤  and .Mb ≤  Therefore ( )., μ′′∈∨ Xba  

This proves the proposition.  

One wonders whether a direct sum of a family of sublattices is always a 
lattice. The following example shows that this is not always the case. 

Example 4.2. For each prime natural number 2>p  let { }.2, ppS p =  

Let 

pp SS ∪=  

and define Sλ  by 

( )
⎩
⎨
⎧ |

=λ
otherwise.,0

,if,1
,

nm
nmS  

We also let pλ  be the restriction of Sλ  to pS  for each prime p. Then 

( )SS λ,  is a fuzzy poset which is a direct sum of the family of fuzzy 

sublattices {( )}., ppS λ  However, ( )SS λ,  is not a fuzzy lattice because 

it   is   not closed under the lub operation ∨  since 6, S∈10  but 
( ) .3010,6lcm106 S∉==∨  

Definition 4.4. A fuzzy lattice ( )μ,J  which is the direct sum of a family 

of fuzzy sublattices ( ){ }αα μ,J  is called the lattice direct sum of ( ){ }., αα μJ  

Remark 4.1. In Example 3.1 each ( )iiV θ,  is a lattice if we define ∨  

and ∧  as follows: 

(1) ( ) ( ) ( ) ( )[ ],,lcm,,lcm,, dbcadcba =∨  

(2) ( ) ( ) ( ) ( )[ ].,gcd,,gcd,, dbcadcba =∧  
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Similar definitions of ∨  and ∧  show that ( )θ,V  is also a lattice. Thus, 

we have an example of a lattice direct sum. 

Definition 4.5. Let ( )μ,X  and ( )θ,Y  be fuzzy lattices. An isomorphism 

from ( )μ,X  onto ( )θ,Y  is a poset isomorphism f of ( )μ,X  onto ( )θ,Y  

which satisfies for all ,, Xxx ∈′  

(1) ( ) ( ) ( ),xfxfxxf ′∨=′∨  

(2) ( ) ( ) ( ).xfxfxxf ′∧=′∧  

Definition 4.6. An extension of a fuzzy lattice ( )μ,X  is a fuzzy lattice 

( )ω,E  which contains a fuzzy lattice isomorphic copy of ( )., μX  

An example of such an extension of ( )μ,X  is ( )( ),~, μXFS  as earlier 

mentioned. 

Remark 4.2. Not every extension of ( )μ,X  is complete. For instance, 

let 

( ]{ }1,0and ∈∈|= rXxxG r  

and μ′  be the restriction of μ~  to G. Then ( )μ′,G  is an extension of ( )μ,X  

which is not complete. 

Proposition 4.3. If ( )μ,X  is isomorphic to ( ),, ωY  then ( )( )μ~,XFS  is 

isomorphic to ( )( ).~, ωYFS  

Proof. Let ( ) ( )ω→μσ ,,: YX  be an isomorphism. Then, define 

( )( ) ( )( )ω→μσ ~,~,:~ YX FSFS  

as ( ) ( )( ) .~
rr xx σ=σ  Now we must show σ~  is injective, surjective and the 

lattice operations ∨  and ∧  are preserved. However, to show σ~  is an 
isomorphism and the operations are preserved we need the notion of equality 
of fuzzy singletons. Two fuzzy singletons rx  and sy  are said to be equal if 

and only if yx =  and .sr =  To prove injectivity, suppose ( ) ( ).~~
sr yx σ=σ  
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Then ( )( ) ( )( )sr yx σ=σ  and by equality of fuzzy singletons ( ) ( )yx σ=σ  

and .sr =  Since σ is an isomorphism .yx =  Therefore, applying equality 

of fuzzy singletons again gives .sr yx =  To prove surjectivity, let 

( )( ).~, ω∈ Yzt FS  Then Yz ∈  implies there exists Xz ∈′  such that 

( ) .zz =′σ  Hence ( ) ( )( ) .ttt zzz =′σ=′σ  To show σ~  preserves ∧  and ∨  we 

have to show ( ) ( ) ( )srsr yxyx σ∨σ=∨σ ~~~  and ( ) ( ) ( ).~~~
srsr yxyx σ∧σ=∧σ  

Consider ( ),~
sr yx ∨σ  then by the definitions of σ~  and lub (see Proposition 

4.1) and σ being an isomorphism we obtain 

( ) ( )( ) ( )srsr yxyx ,max
~ ∨σ=∨σ  

( ) ( )( ) ( )sryx ,maxσ∨σ=  

( )( ) ( )( )sr yx σ∨σ=  

( ) ( ).~~
sr yx σ∨σ=  

Similarly, ( ) ( ) ( )srsr yxyx σ∧σ=∧σ ~~~  follows. This proves the 

proposition.  

Example 4.3. ( )( )μ~,nBFS  is isomorphic to ( (( ) ) ).~,1,0 ωnFS  This 

follows from the know fact that nB  is isomorphic to ( ) ,1,0 n  where nB  

denotes the lattice made up of subsets of [ ] { },...,,2,1 nn =  order by 

inclusion and ( )n1,0  is the lattice of all n-tuples of 0’s and 1’s with yx ≤  

meaning ii yx ≤  for each of the n components of x and y, see Aigner [1]. 

The fuzzy relations μ and ω are chosen, respectively, to form fuzzy lattices 
that are associated with these crisp orderings. 

Definition 4.7. Let ( ).,, μ∈ Xyx  Then, y is called an upper cover for x 

if ( ) 0, >μ yx  and there is no ( )μ∈ ,Xz  such that ( ) 0, >μ zx  and 

( ) .0, >μ yz  The element x is called a lower cover for y if y is an upper 

cover for x. 
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Definition 4.8. A function 00: NN →f  is called a cover function for a 

distributive lattice ( )μ,X  if every element of ( )μ,X  having n lower covers 

has ( )nf  upper covers. 

Proposition 4.4. Let ( )μ,X  be the direct sum of a family ( ){ }αα μ,X  of 

distributive lattices. Then, any cover function for ( )μ,X  induces a cover 

function αf  of ( )αα μ,X  for each α. 

Proof. Let ( )μ,X  be a direct sum of the family ( ){ }αα μ,X  of 

distributive lattices and let f be a cover function for ( )., μX  For each 

,α∈ Xx  if αn  is the number of lower covers of x in ( )αα μ,X  and n is the 

number of lower covers of x in ( ),, μX  then .nn =α  Let αN  denote the set 

{ }.someofcoverslowerofnumber0 αααα ∈=|∈= XxnnN N  

Then, ,ff =α  where f is restricted to the set αN  is a cover function for 

( )., αα μX  This proves the assertion. 

Proposition 4.5. Let ( ){ }αα μ,X  be a family of distributive lattices and 

( )μ,X  be the direct sum of ( ){ }., αα μX  If for all α, ( )αα μ,X  has a cover 

function ,αf  then the family { }αf  of cover functions generates a lower-

bound for a cover function for ( )., μX  

Proof. Let ( )μ,X  be a direct sum of the family ( ){ }αα μ,X  of 

distributive lattices where, for all α, ( )αα μ,X  has a cover function .αf  For 

each integer 0N∈n  let αn  denote ( ).nfα  Let n  be the smallest element of 

the set { }.αn  Then, the function 00: NN →f  given by ( ) nnf =  is a 

lower-bound for a cover function for ( )., μX   

Theorem 4.6. Let ( ){ }αα μ,X  be a family of pairwise disjoint isomorphic 

lattices. Suppose for some ( )00 ,,0 αα μα X  has a cover function f, then f is a 

cover function for ( )αα μ,X  for all α. Moreover, for all integers ,0≥n  f is 

a cover function for ( ( ) ( )[ ])nn X αα μ~,SF  and ( ).nπ  That is, f is a cover 
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function for every poset appearing in the commutative diagram (Figure 1) 
for each α. 

Proof. Let f be a cover function for ( )00 , αα μX  and let ( )ββ μ,X  be 

any other member of the family ( ){ }., αα μX  Let σ be an isomorphism from 

( )00 , αα μX  onto ( )., ββ μX  Then, if 0, α∈ Xba  and a is a lower cover for 

b, then ( )aσ  is a lower cover for ( ).bσ  This shows that f is a cover function 

for ( )., ββ μX  Since βX  is arbitrary, f is a cover function for ( )αα μ,X  for 

all α. 

Now for any elements ( )αα μ∈ ,, Xyx  we observe that x is a lower 

cover for y if and only if rx  is a lower cover for ry  (same r) in 

( )( )., αα μXFS  Consequently, if f is a cover function for ( ),, αα μX  then f 

is a cover function for ( )( ).~, αα μXFS  Inductively, f is a cover function for 

( ( ) ( )[ ])nn X αα μ~,SF  

for all integers .0≥n  Proposition 4.3 now guarantees that 

( ( ) ( )[ ])nn X αα μ~,SF  

has the cover function f for every α. 

In the case of the direct sums ( )nπ  we observe that x is a lower cover for 

y in ( )0π  if and only if x is a lower cover for y in ( )αα μ,X  for a unique α. 

Hence, the direct sum ( )0π  shares the cover function f with ( )αα μ,X  for 

every α. The fact that a cover function for ( )μ,X  is a cover function for the 

canonical extension ( )( )μ~,XFS  for every poset ( ),, μX  together with 

induction, guarantees that f is a cover function for ( )nπ  for all integers 

.0≥n   

Corollary 4.7. Let ( )μ,X  be a finitary distributive lattice. Then every 

cover function for ( )μ,X  is also a cover function for some nonfinitary 

distributive lattice. 
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Proof. If ( )μ,X  is a finitary distributive lattice, then ( )( )μ~,XFS  is a 

nonfinitary distributive lattice. For [ ]1,0∈r  and ,Xq ∈  a lower cover of 

rq  is an element ,rp  where p is a lower cover of q in ( )., μX  When rp  is a 

lower cover of rr qq ,  is an upper cover of .rp  Thus, every cover function 

for ( )μ,X  is a cover function for ( )( ).~, μXFS  This proves the corollary.  

Remark 4.3. In the manner of Chon [2, p. 363], we can define levels of 
covers and cover functions. For instance, for [ ],1,0∈p  we can call y a 

p-level upper cover for x if ( ) pyx >μ ,  and there is no Xx ∈′  satisfying 

( ) pxx >′μ ,  and ( ) ., pyx >′μ  Thus, the cover functions studied by Stanley, 

Farley and discussed in this paper are the p-level cover functions for .0=p  

The p-level cover functions for 0>p  are yet to be investigated. 
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