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Abstract 

The convex combinations supported by the geometrical images have 
been applied in determining the position of the center of physical and 
mathematical quantity. The main results of the paper include the 
presentation of the center (barycenter) of quantity in the integral form, 
and the application of the convexity on mathematical inequalities. 
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1. Introduction - Geometry and Analytics of Convexity 

In our three-dimensional space ,S  a set SC ⊆  is convex if for any two 

points C∈BA,  the corresponding segment (line segment) .C⊆AB  In the 

real vector space X  a set XC ⊆  is convex if for any two vectors C∈yx,  

the vector C∈β+α yx  for all real numbers [ ]1,0, ∈βα  such that .1=β+α  

If X∈nxx ...,,1  are vectors, and [ ]1,0...,,1 ∈αα n  are real numbers 

such that ∑ = =αn
i i1 ,1  then the vector expression 

 ∑
=

α
n

i
ii x

1
 (1.1) 

is called the convex combination of the vectors ix  with the coefficients .iα  

Thus, the segment corresponding to the binomial convex combinations. 

The convex hull Aco  of the set SA ⊆  is the smallest convex set which 
contains the set .A  The convex hull of the vector set XA ⊆  consists of all 
binomial convex combinations of the vectors from .A  

Any convex combination with at least two positive coefficients can be 
expressed in the binomial form, that is, 

 ∑ ∑ ∑
= = +=

β
α

β+
α
α

α=α
n

i

k

i

n

ki
i

i
i

i
ii xxx

1 1 1
,  (1.2) 

where ,11 −≤≤ nk  ∑ = >α=α k
i i1 0  and ∑ += >α=β k

ki i1 .0  Using the 

above binomial form and the mathematical induction we find that a convex 
vector set C  contains all convex combinations of the finite number of its 
vectors. 

Boundary points of a convex set SC ⊂  which most protrude outward 
are called extreme points. The extreme points of a polygon or polyhedron are 
just its vertices. The extreme points of the convex set in Figure 1 left, the 
three points and the arc, are bolded. A point XC ⊂∈z  is an extreme if 
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yxz β+α≠  for all distinct points C∈yx,  and all 1,0, ∈βα  such that 

1=β+α  (see [4, pp. 110-112]). The importance of extreme points is 

evident from the following fact: every point of a bounded closed convex set 
SC ⊂  can be expressed as the convex combination of at most four extreme 

points from .C  Otherwise stated, every bounded closed convex set from S  is 
the convex hull of its extreme points. 

 
Figure 1. Convex and non-convex sets. 

The convexity of a set from S  can also be described by using the points 
that are outside of the set interior. A planar set SC ⊂  is convex if the line 
L  through each point outside of Cint  exists so that ,int ∅=CL ∩  and the 
entire Cint  is contained in one of the half-planes determined by L  (see [3]). 
In the description of convexity of a spatial set we use the plane instead of the 
line. 

2. Geometry of the Space with Convex Combinations 

In this section, we give the application overview of convex combinations 
in the analytical representation of the basic planar figures (triangle and 
polygon) and spatial bodies (tetrahedron and polyhedron). 

Let us start with a segment with end-points A and B. If P is any point 

from the segment ,AB  then ,BABP λ=  where unique number [ ].1,0∈λ  

Inserting radius-vectors considering some fixed point O, we have 

 ( ) .1 BAP rrr GGG
λ−+λ=  (2.1) 



Zlatko Pavić and Velimir Pavić 272 

Using the notion of convex combinations and applying the vector algebra 
we get the three following basic propositions: 

Segment proposition. Let S⊂AB  be a segment with end-points A and 
B. Then the vector equality as the unique convex combination 

 BAP rrr GGG
β+α=  (2.2) 

holds for every point .ABP ∈  

Triangle proposition. Let ( ) SC ⊂CBA ,,  be a triangle with vertices 

A, B and C. Then the vector equality as the unique convex combination 

 CBAP rrrr GGGG
γ+β+α=  (2.3) 

holds for every point ( ).,, CBAP C∈  

Tetrahedron proposition. Let ( ) SC ⊂DCBA ,,,  be a tetrahedron 

with vertices A, B, C and D. Then the vector equality as the unique convex 
combination 

 DCBAP rrrrr GGGGG
δ+γ+β+α=  (2.4) 

holds for every point ( ).,,, DCBAP C∈  

Applying the additional geometrical observations of convex sets in the 
plane and space we achieve the following double theorem: 

Polygon and polyhedron theorem. Let ( ) SC ⊂nPP ...,,1  be a convex 

polygon or polyhedron with vertices ....,,1 nPP  Let S∈P  be a point. Then 

the vector equality as the convex combination 

 ∑
=

α=
n

i
iiP rr

1

GG  (2.5) 

holds if and only if ( )....,,1 nPPP C∈  

Thus, every convex polygon or polyhedron ( ) SC ⊂nPP ...,,1  can be 

represented using the convex combinations of the radius-vectors ir
G  of its 
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vertices ,iP  by the set 

 ( ) [ ] .1,1,0,...,,
1 1

1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=α∈αα=|∈= ∑ ∑
= =

n

i

n

i
iiiiPn rrPPP GG

SC  (2.6) 

Remark 2.1. Convex combinations in (2.5) are not unique. For example, 
imagine that some point P from a quadrangle ( )DCBA ,,,C  belongs to the 

triangles ( )CBA ,,C  and ( ),,, DBAC  and P does not belong to the edge 

.AB  By Triangle proposition, we have two different four-members convex 
combinations 

DCBADCBAP rrrrrrrrr GGGGGGGGG
222111 00 δ++β+α=+γ+β+α=  

because 01 >γ  and .02 >δ  Similarly, we can take a pentahedron and apply 

tetrahedron proposition on suitable selected point from the observed 
pentahedron. 

3. Physical and Probabilistic Interpretation of Convexity 

In the practical sense, the presence of convex combinations is evident in 
the formulation of important issues. Work with the convex combinations 
enables simple and general way of expressing. Thus, the physical and 
probabilistic meaning will be expressed one and the same formula with the 
convex combinations. In all this we still have the geometrical fact that the 
convex combinations of finitely many given radius-vectors belong to the 
simplest convex sets, polygons in the plane, and polyhedrons in the space. 

Consider a set of n particles (points) in the plane. The value of a certain 
physical quantity q (mass, density, potential, resistance) is measured at each 
of n particles. We want to specify the center P of the quantity q. It can also 
be assumed that a quantity q is the discrete random variable (temperature, 
humidity, contamination). In this case, we are looking for the expected 
position P of the variable q. 

Let the particles be located at the points nPP ...,,1  with non-negative 



Zlatko Pavić and Velimir Pavić 274 

quantity values nqq ...,,1  and positive quantity total value 

∑
=

=
n

i
iqq

1
tot .  

So, we can take the relative quantity values 

totq
qi

i =α  

for ....,,1 ni =  The quantity arithmetic mean (variable expected value) q  is 

the “scalar convex combination” of the given quantity values ,iq  as 

evidenced by 

 ∑
=

==
n

i
iqnn

qq
1

tot .1  (3.1) 

It is reasonable to assume that the radius-vector Pr
G  of the quantity center 

(variable expected position) P is the convex combination of the given 
position vectors ir

G  with the coefficients .iα  Accordingly, we have 

 ∑ ∑
= =

=α=
n

i

n

i
i

i
iiP rq

qrr
1 1 tot

.GGG  (3.2) 

 
Figure 2. Quantity center and expected position as the convex combinations. 
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Complementing the geometric image it is necessary to determine the 
convex hull of the given point set, that is, the smallest convex polyhedron 
that contains all n points. Suppose that kPP ...,,1  as the external points are 

the vertices of such convex polyhedron ( ),...,,1 kPPC  and suppose another 

that kk PP ...,,1+  as the internal points are also the vertices of the convex 

polyhedron or polygon ( ),...,,1 nk PP +C  as can be seen in Figure 2. 

Applying the formula in (3.1) for the quantity arithmetic mean (expected 
value) ,q  and presenting it as the binomial “scalar convex combination”, it 

follows: 

 ∑
=

−
−+==

n

i
knki qn

knqn
kqnq

1
,1  (3.3) 

where 

∑ ∑
= +=

− −
==

k

i

n

ki
iknik qknqqkq

1 1
.1,1  

Thus, the quantity arithmetic mean (expected value) q  is the binomial “scalar 

convex combination” of the k-member “scalar convex combination” kq  and 

the ( )kn − -member “scalar convex combination” .knq −  

Using the formula in (3.2) for the radius-vector Pr
G  of the quantity center 

(expected position) P, and presenting it as the binomial convex combination, 
it follows: 

 ∑
=

β+α==
n

i
BAi

i
P rrrq

qr
1 tot

,GGGG  (3.4) 

where 

∑ ∑ ∑ ∑
= += = +=
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We find that the radius-vector Pr
G  is the binomial convex combination of 

the k-member convex combination ArG  and the ( )kn − -member convex 

combination .Br
G  

Example 3.1 (Particles on the convex curve). Let particles nPP ...,,1  be 

distributed along the graph of a strictly convex curve. Because of the strict 
convexity of the curve the convex hull of given points is exactly the convex 
polygon ( )nPP ...,,1C  with vertices ,...,,1 nPP  as shown in Figure 3 left. 

Then the quantity center (expected position) P is placed in ( )....,,1 nPPC  

 
Figure 3. Particles on the convex curve and surface. 

Example 3.2 (Particles on the convex surface). Let particles nPP ...,,1  

be distributed on the graph of a strictly convex surface. Due to the strict 
convexity of the surface the convex hull of the given points is just the convex 
polyhedron ( )nPP ...,,1C  with vertices ,...,,1 nPP  as shown in Figure 3 right. 

Then the quantity center (expected position) P is placed in ( )....,,1 nPPC  

4. Transition to Integrals 

This section, together with the next section, presents the main results of 
the paper. 

Using the integral method, a sequence of convex combinations passes 
into integral, so a center of quantity becomes a barycenter of quantity. Some 
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results on barycentres and integral arithmetic means for the subsets of the 
line are obtained in [5, pp. 1-5]. 

Continue with observations in the plane where the particles are not 

separate, but form a continuous set. Let 2R⊂A  be a set with positive area 
( ),Aμ  and R→A:q  be a non-negative quantity as the Riemann integrable 

function of two variables with positive ( )∫ ∫A ., dxdyyxq  Assisting with 

Figure 4 left at first we imitate the previous discrete case. Given a positive 
integer n, it is necessary to make the partition of the set A  into the union 

∪
n

i
ni

1=

= AA  

of pairwise disjoint sets niA  with positive areas ( ),niAμ  where every niA  

contracts to the point or vanishes in infinity as n goes to infinity. For every 
ni ...,,1=  we take the one point ,niniP A∈  and its quantity value =niq  

( ).niPq  Keeping in mind the formulae in (3.1)-(3.2) we make adaptations 

and approximations: 

( ) ( ) ( ) ( ) ,,
1

tot ∑
=
μ

μ
≈μ

μ
≈

n

i
ninininini qnqqnq A

A
A

A
 

( ) ( )∑
=
μ

μ
≈

n

i
nini qq

1
,1 A

A
 (4.1) 

( )
( ) .1

1
1

∑
∑ =

=

μ
μ

≈
n

i
nininin

i nini
P rq

q
r GG

A
A

 (4.2) 

Put ( ) ., jyixr yx
GGG

+=  Letting n to infinity, the above discrete approximations 

get the Riemann integral forms: 

 ( ) ( )∫ ∫μ
=

AA
dxdyyxqq ,1  (4.3) 
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as the integral arithmetic mean of the quantity function ( )yxq ,  on the set ,A  

and 

( )
( ) ( )∫ ∫∫ ∫

=
A

A

dxdyryxq
dxdyyxq

r yxP ,,
,

1 GG  

( )
( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛ += ∫ ∫ ∫ ∫∫ ∫ A A

A

dxdyyxyqjdxdyyxxqi
dxdyyxq

,,
,

1 GG
 (4.4) 

as the radius-vector of the barycenter P of the quantity ( )yxq ,  on the set .A  

 

Figure 4. Partition of the set and geometrical interpretation of the convex set. 

If A  is connected and ( )yxq ,  is continuous, then the integral arithmetic 

mean q  belongs to the set ( ).Aq  The coordinates of the barycenter P are 

( )

( )

( )

( )
.

,

,
,

,

,

∫ ∫
∫ ∫

∫ ∫
∫ ∫

==

A

A

A

A

dxdyyxq

dxdyyxyq
y

dxdyyxq

dxdyyxxq
x PP  

If we put ( ) ,1, =yxq  then the expression in (4.4) presents the radius-

vector of the barycenter P of the set ,A  that is, 

 ( ) ( )∫ ∫μ
=

AA
.1

, dxdyrr yxP
GG  (4.5) 
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From the convex combination formula in (4.2), it can be concluded that 
the barycenter P of the quantity q on the set A  belongs to the convex hull 
Aco  of the set .A  The formula in (4.4) arises after taking the limit, so the 

barycenter P belongs to the closed convex hull of the set .A  We would like 
to verify the intuitive assumption that the barycenter belongs to the interior 
of the convex hull. The geometrical description of convexity will assist. 

Theorem 4.1. Let 2R⊂A  be a set with ( ) ,0>μ A  and R→A:q  be 

a Riemann integrable quantity function such that ( ) 0, >yxq  for every 

( ) .int, A∈yx  If P is the barycenter of q on ,A  then 

 ( ).coint A∈P  (4.6) 

Proof. Assume A  is convex, and prove that .intA∈P  

The geometrical characterization of convexity of the set A  with 
∅=Aint  states that the line L  through each point outside of Aint  exists 

so that ,int ∅=AL ∩  and the entire Aint  is contained in one of the half-
planes determined by .L  Suppose ,intA∉P  and the characteristic line L  
passes through the point P. Let nG  be the vector normal to the line ,L  
oriented towards set A  as shown in Figure 4 right. 

Using the inner product with vector ,nG  we find that the following holds 

for every ( ) :int, A∈yx  

( ) ,0, , >− Pyx rrn GGG  

( )
( )

( ) ( ) ,0,
,

1, ,, >− ∫ ∫∫ ∫ A
A

dxdyryxq
dxdyyxq

rn yxyx
GGG  

( ) ( )
( )
( )

( ) ( ) .0,,
,
,,, ,, >− ∫ ∫∫ ∫ A

A

dxdyryxqn
dxdyyxq

yxqryxqn yxyx
GGGG  



Zlatko Pavić and Velimir Pavić 280 

Integrating the above inner products over ,intA  it arises 

( ) ( ) ( ) ( ) 0,,,, ,, >− ∫ ∫∫ ∫ AA
dxdyryxqndxdyryxqn yxyx

GGGG  

because the integrals over Aint  and A  are the same. The resulting 
contradiction says that must be .intA∈P  ~ 

Theorem 4.2. Let 2
1 ...,, R⊂nAA  be sets with ( ) ,0>μ iA  and :iq  

R→1A  be Riemann integrable quantity functions. If iP  are the barycenters 

of iq  on ,iA  and P is the center of all integral arithmetic means ,iq  then 

( ) ( ) ( ) ( )∑ ∫ ∫∑ ∫ ∫ =
=

μ
μ

=
n

i
ii

in
i i

i

P
i

i

rdxdyyxq
dxdyyxq

r
1

1

.,1

,1
1

A
A

A
A

GG  (4.7) 

Proof. If we insert ( ) ( )∫ ∫μ
=

i
dxdyyxqq i

i
i AA

,1  in the discrete 

expression 

∑
=

=
n

i
ii

tot
P rqqr

1
,1 GG  

then we get the integral expression in (4.7). ~ 

Theorem 4.3. Let 2
1 ...,, R⊂nAA  be pairwise disjoint sets with ( )iAμ  

,0>  and .1 i
n
i AA == ∪  Let R→A:q  be a Riemann integrable quantity 

function. If iP  are the barycenters of q on ,iA  and P is the barycenter of q 

on ,A  then 

 
( )

( )∑ ∫ ∫∫ ∫ =
=

n

i
iP

i
rdxdyyxq

dxdyyxq
r

1
.,

,
1

A
A

GG  (4.8) 
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Proof. Using the equality 

 ( ) ( ) ( ) ( )∫ ∫ ∑∫ ∫
=

=
A A

n

i
yxyx

i
dxdyryxqdxdyryxq

1
,, ,, GG  

( )

( )
( ) ( )∑ ∫ ∫∫ ∫

∫ ∫
=

=
n

i
yx

i
i

i dxdyryxq
dxdyyxq

dxdyyxq

1
,,

,

,

A
A

A G  

( )∑ ∫ ∫
=

=
n

i
i

i
rdxdyyxq

1
,

A

G  

in the formula in (4.4), it follows the barycenter expression in (4.8). ~ 

Taking ( ) 1, =yxq  in the quantity barycenters formula in (4.8), we have 

the known rule for the set barycenters: 

Corollary 4.4. Let 2
1 ...,, R⊂nAA  be pairwise disjoint sets with 

( ) ,0>μ iA  and .1 i
n
i AA == ∪  If iP  are the barycenters of ,iA  and P is the 

barycenter of ,A  then 

 ( ) ( )∑
=

μ
μ

=
n

i
iiP rr

1
.1 GG

A
A

 (4.9) 

Everything we have done in the plane can be easily extended to the 

space. Let 3R⊂A  be a set with ( ) ,0>μ A  and R→A:q  be a non-

negative quantity as the Riemann integrable function of three variables with 

positive ( )∫ ∫ ∫A .,, dxdydzzyxq  

Let ( ) .,, kzjyixr zyx
GGGG

++=  Then the integral arithmetic mean of the 

quantity function ( )zyxq ,,  on the set A  is expressed with 

 ( ) ( )∫ ∫ ∫μ
=

AA
,,,1 dxdydzzyxqq  (4.10) 
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and the radius-vector of the barycenter P is expressed with 

( )
( ) ( )∫ ∫ ∫∫ ∫ ∫

=
A

A

.,,
,,

1
,, dxdydzrzyxq

dxdydzzyxq
r zyxP

GG  (4.11) 

Spatial analogies of Theorems 4.1-4.3 and Corollary 4.4 are also valid. In 
the proof of the spatial variant of Theorem 4.1 the plane P  which does not 
intersect the set Aint  is used instead of the line .L  

By including the Lebesgue integral, we can get more general expressions 
for the integral arithmetic mean and the barycenter of the quantity ( ).,, zyxq  

Let μ be a measure on .3R  Let 3R⊂A  be a μ-measurable set with ( )Aμ  

,0>  and R→A:q  be a μ-integrable non-negative quantity function on 

the set A  with ∫ >μ
A

.0qd  

The integral arithmetic mean of the quantity function ( )zyxq ,,  on the 

set A  can be presented with 

 ( ) ( ) ( )∫ μ
μ

=
AA

,,,,,1 zyxdzyxqq  (4.12) 

and the radius-vector of the barycenter P can be presented with 

( ) ( )
( ) ( ) ( )∫∫

μ
μ

=
A

A

zyxdrzyxq
zyxdzyxq

r zyxP ,,,,
,,,,

1
,,

GG  (4.13) 

provided that the functions ( ),,, zyxxq  ( )zyzyq ,,  and ( )zyxzq ,,  are          

μ-integrable on the set .A  

In the case of presenting Theorem 4.1 by the Lebesgue integral with 

respect to some measure μ on ,2R  it is needed to write Aco∈P  instead of 

( ).coint A∈P  Everything else that we presented with the Riemann integral 

is also true with the Lebesgue integral. 

Using the measure and integral theory, the barycenter of the non-
negative quantity q can be reduced to the barycenter of the set. Let the 
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measure ν of the μ-measurable set A  be defined by 

( ) ∫ μ=ν
A

A qd  

(see [6, p. 23]). If ( ) ,0>ν A  then the μ-barycenter of the non-negative 

quantity q on the set A  corresponds to the ν-barycenter of the set ,A  that is, 

( )∫ ∫∫
ν

ν
=μ

μ A A
A

A
.11 drdrq

qd

GG  

5. Applications of Convexity on Inequalities 

We recall the discrete and integral form of Jensen’s inequality from [2]. 
The discrete form will be extended by using Polygon theorem, and the 
integral form will be extended by using Theorem 4.1. 

Theorem E. (The discrete form of Jensen’s inequality). Let R⊆I  be 
an interval, and R→I:f  be a function. Let ( )nxx ...,,1=x  be an n-tuple 

with points ,I∈ix  and ( )nαα= ...,,1α  be an n-tuple with numbers ∈αi  

[ ]1,0  such that ∑ = =αn
i i1 .1  

A function f is convex if and only if the inequality 

 ( )∑∑
==
α≤

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
α

n

i
ii

n

i
ii xfxf

11
 (5.1) 

holds for all above n-tuples α and x. 

Consequently, if ∑ = >α=αn
i i1 ,0  not necessarily equals 1, then f is 

convex if and only if 

 ( )∑∑
==
α

α
≤

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
α

α

n

i
ii

n

i
ii xfxf

11
.11  (5.2) 

A function f is concave if and only if the reverse inequality is valid in 
(5.1) and (5.2). 
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Let ( ) 2
1 ...,, R⊂nPPC  be a convex polygon with vertices ( )iii yxP ,  

bounded below with the convex polygonal line ( ),1 xfy =  and bounded 

above with the concave polygonal line ( ).2 xfy =  Let iq  be non-negative 

quantity values at the points iP  such that ∑ = >= n
i iqq 1tot .0  Then the 

inequality 

 ( ) ( )PPP xfyxf 21 ≤≤  (5.3) 

holds for the center coordinates 

∑ ∑
= =

==
n

i

n

i
iiPiiP yqqyxqqx

1 1tottot

1,1  

by Polygon theorem. The inequality in (5.3) can be extended to the series of 
inequalities by using the discrete form of Jensen’s inequality. 

Corollary 5.1. Let ( ) 2
1 ...,, R⊂nPPC  be a convex polygon with vertices 

( )iii yxP ,  bounded below and above with the polygonal lines ( )xfy 1=  and 

( ),2 xfy =  respectively. Let iq  be non-negative quantity values at the points 

iP  such that ∑ = >= n
i iqq 1tot .0  Then 

 ( )∑∑
==

≤
⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ n

i
ii

n

i
ii xfqqxqqf

1
1

tot1tot
1

11  

∑
=

≤
n

i
ii yqq

1tot

1  

( )∑ ∑
= =

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
≤≤

n

i

n

i
iiii xqqfxfqq

1 1tot
22

tot
.11  (5.4) 

Proof. The left side of the inequality in (5.4) follows from the discrete 
form of Jensen’s inequality for the convex function ,1f  and the right side 

follows from Jensen’s inequality for the concave function .2f  The middle 
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part of the inequality in (5.4) follows from the inequalities ( ) ii yxf ≤1  

( )ixf2≤  for ....,,1 ni =  ~ 

If { } ( ),...,,...,,co
11 kiin PPPP C=  not necessarily all points iP  vertices, 

then the inequality in (5.4) remains valid. In this case the polygonal lines 
( )xfy 1=  and ( )xfy 2=  depend on the vertices kii PP ...,,1  only. 

If ( )μΩ,  is a measure space, then it is assumed that every weighted 

function R→Ω:q  is non-negative almost everywhere on ,Ω  that is, 

( ) 0≥ωq  for almost all .Ω∈ω  

Theorem F (The integral form of Jensen’s inequality). Let R⊆I  be an 

interval, and R→I:f  be a function. Let ( )μΩ,  be a probability measure 

space, I→Ω:g  be a measurable function, and ( )μΩ∈ ,1Lq  be a weighted 

function with ∫Ω =μ 1qd  so that ( ) ( ).,, 1 μΩ∈⋅⋅ Lgfqgq D  

If a function f is convex, then the inequality 

 ( )∫∫ ΩΩ
μ⋅≤⎟

⎠
⎞

⎜
⎝
⎛ μ⋅ dgfqgdqf D  (5.5) 

holds for all above q, g and μ. 

Consequently, if ∫Ω >α=μ ,0qd  not necessarily equals 1, then 

 ( )∫∫ ΩΩ
μ⋅

α
≤⎟

⎠
⎞

⎜
⎝
⎛ μ⋅
α

.11 dgfqgdqf D  (5.6) 

If a function f is concave, then the reverse inequality is valid in (5.5) and 
(5.6). 

Let 2R⊂A  be a convex set bounded below with the convex function 
( ),1 xfy =  and bounded above with the concave function ( ).2 xfy =  Let 

R→A:q  be a Riemann integrable non-negative quantity function such 
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that ( )∫ ∫ >=α
A

.0, dxdyyxq  Then the inequality 

 ( ) ( )PpP xfyxf 21 ≤≤  (5.7) 

holds for the barycenter coordinates 

( ) ( )∫ ∫ ∫ ∫α
=

α
=

A A
ydxdyyxqyxdxdyyxqx PP ,1,,1  

by Theorem 4.1. The inequality in (5.7) can be extended to the series of 
inequalities by using the integral form of Jensen’s inequality. 

Corollary 5.2. Let 2R⊂A  be a convex set bounded below and above 
with the functions ( )xfy 1=  and ( ),2 xfy =  respectively. Let R→A:q  

be a Riemann integrable quantity function such that ( )∫ ∫=α
A

dxdyyxq ,  

.0>  Then 

 ( ) ( ) ( )∫ ∫∫ ∫ α
≤⎟

⎠
⎞

⎜
⎝
⎛
α AA

dxdyxfyxqxdxdyyxqf 11 ,1,1  

( )∫ ∫α
≤

A
ydxdyyxq ,1  

( ) ( )∫ ∫α
≤

A
dxdyxfyxq 2,1  

( ) .,1
2 ⎟

⎠
⎞

⎜
⎝
⎛
α

≤ ∫ ∫A xdxdyyxqf  (5.8) 
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