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Abstract

The convex combinations supported by the geometrical images have
been applied in determining the position of the center of physical and
mathematical quantity. The main results of the paper include the
presentation of the center (barycenter) of quantity in the integral form,
and the application of the convexity on mathematical inequalities.
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1. Introduction - Geometry and Analytics of Convexity

In our three-dimensional space S, aset C < S is convex if for any two
points A, B € C the corresponding segment (line segment) AB < C. In the
real vector space X aset C < X is convex if for any two vectors x, y € C

the vector ax + By e C for all real numbers a, B € [0, 1] such that a. + B = 1.

If X, ..., X, € X are vectors, and oy, ..., o, € [0, 1] are real numbers

such that Zin:lai =1, then the vector expression

Zn:aixi (11)
i=1

is called the convex combination of the vectors x; with the coefficients a;.
Thus, the segment corresponding to the binomial convex combinations.

The convex hull coA of the set A < S is the smallest convex set which
contains the set A. The convex hull of the vector set A < X consists of all
binomial convex combinations of the vectors from A.

Any convex combination with at least two positive coefficients can be
expressed in the binomial form, that is,

k
Zn:ocixi = aZ%xi +B i %Xi, (12)
i=1 i=1

i=k+1

k

where 1<k <n-1 a= Z:‘zlai >0and B=2, )

aj > 0. Using the

above binomial form and the mathematical induction we find that a convex
vector set C contains all convex combinations of the finite number of its
vectors.

Boundary points of a convex set C < & which most protrude outward
are called extreme points. The extreme points of a polygon or polyhedron are
just its vertices. The extreme points of the convex set in Figure 1 left, the
three points and the arc, are bolded. A point z e C < X is an extreme if
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z # ox + By for all distinct points x, y € C and all a, B € (0, 1) such that
o+ =1 (see [4, pp. 110-112]). The importance of extreme points is

evident from the following fact: every point of a bounded closed convex set
C — S can be expressed as the convex combination of at most four extreme
points from C. Otherwise stated, every bounded closed convex set from S is
the convex hull of its extreme points.

A/\B
o O

Figure 1. Convex and non-convex sets.

The convexity of a set from S can also be described by using the points
that are outside of the set interior. A planar set C — S is convex if the line
L through each point outside of int C exists so that £ intC = &, and the
entire int C is contained in one of the half-planes determined by £ (see [3]).
In the description of convexity of a spatial set we use the plane instead of the
line.

2. Geometry of the Space with Convex Combinations

In this section, we give the application overview of convex combinations
in the analytical representation of the basic planar figures (triangle and
polygon) and spatial bodies (tetrahedron and polyhedron).

Let us start with a segment with end-points A and B. If P is any point

from the segment AB, then BP = ABA, where unique number A e [0, 1].
Inserting radius-vectors considering some fixed point O, we have

o = Afp + (1— )T, (2.1)
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Using the notion of convex combinations and applying the vector algebra
we get the three following basic propositions:

Segment proposition. Let AB c S bea segment with end-points A and
B. Then the vector equality as the unique convex combination

rp = OLr'A + BFB (22)

holds for every point P e AB.

Triangle proposition. Let C(A, B, C) = S be a triangle with vertices
A, B and C. Then the vector equality as the unique convex combination

Fp = (X,FA + BFB + YFC (23)
holds for every point P € C(A, B, C).

Tetrahedron proposition. Let C(A, B, C, D) = S be a tetrahedron

with vertices A, B, C and D. Then the vector equality as the unique convex
combination

Fp = O(.FA + BFB + YFC + SFD (24)
holds for every point P € C(A, B, C, D).

Applying the additional geometrical observations of convex sets in the
plane and space we achieve the following double theorem:

Polygon and polyhedron theorem. Let C(R,, ..., B,) = S be a convex
polygon or polyhedron with vertices B, ..., P,. Let P € & be a point. Then
the vector equality as the convex combination

M = Zaﬁ (2.5)

holds if and only if P € C(R,, ..., Py).

Thus, every convex polygon or polyhedron C(R, ..., P,) = S can be

represented using the convex combinations of the radius-vectors F; of its
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vertices R, by the set

n n
C(P, ..., Py) = {P e S|fp = Y aifi, o €[0,1], D =1} (2.6)
i=1

i=1

Remark 2.1. Convex combinations in (2.5) are not unique. For example,
imagine that some point P from a quadrangle C(A, B, C, D) belongs to the

triangles C(A, B, C) and C(A, B, D), and P does not belong to the edge

AB. By Triangle proposition, we have two different four-members convex
combinations

rp = OL]_FA + Ber + erc + OTD = (ler + BZTB + Orc + SZFD

because y; > 0 and &, > 0. Similarly, we can take a pentahedron and apply

tetrahedron proposition on suitable selected point from the observed
pentahedron.

3. Physical and Probabilistic Interpretation of Convexity

In the practical sense, the presence of convex combinations is evident in
the formulation of important issues. Work with the convex combinations
enables simple and general way of expressing. Thus, the physical and
probabilistic meaning will be expressed one and the same formula with the
convex combinations. In all this we still have the geometrical fact that the
convex combinations of finitely many given radius-vectors belong to the
simplest convex sets, polygons in the plane, and polyhedrons in the space.

Consider a set of n particles (points) in the plane. The value of a certain
physical quantity g (mass, density, potential, resistance) is measured at each
of n particles. We want to specify the center P of the quantity g. It can also
be assumed that a quantity q is the discrete random variable (temperature,
humidity, contamination). In this case, we are looking for the expected
position P of the variable g.

Let the particles be located at the points R, ..., B, with non-negative
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quantity values q, ..., g, and positive quantity total value

n
Qtot = Z Qi
i=1

So, we can take the relative quantity values

aj = Qi
Otot

for i =1, ..., n. The quantity arithmetic mean (variable expected value) @ is

the “scalar convex combination” of the given quantity values g;, as

evidenced by

n
= Ot N1
g="t=3 ~q (3.1)
i=1
It is reasonable to assume that the radius-vector fp of the quantity center
(variable expected position) P is the convex combination of the given

position vectors 1; with the coefficients o. Accordingly, we have

fo= D aifi = ) A, (32)

Figure 2. Quantity center and expected position as the convex combinations.
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Complementing the geometric image it is necessary to determine the
convex hull of the given point set, that is, the smallest convex polyhedron
that contains all n points. Suppose that R, ..., B as the external points are

the vertices of such convex polyhedron C(P, ..., B;), and suppose another
that B4, ..., B as the internal points are also the vertices of the convex

polyhedron or polygon C(P,q, ..., Py), as can be seen in Figure 2.

Applying the formula in (3.1) for the quantity arithmetic mean (expected
value) @, and presenting it as the binomial “scalar convex combination”, it

follows:

n

&1 k. on-k.

0= G =G+ Uo_k. (3.3)
i=1

where

Thus, the quantity arithmetic mean (expected value) 7 is the binomial “scalar

convex combination” of the k-member “scalar convex combination” @ and

the (n — k)-member “scalar convex combination” q,_y.

Using the formula in (3.2) for the radius-vector rp of the quantity center

(expected position) P, and presenting it as the binomial convex combination,
it follows:

n .
fp =) o = afa + g, (3.4)
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We find that the radius-vector Tp is the binomial convex combination of
the k-member convex combination F5 and the (n—k)-member convex

combination fg.

Example 3.1 (Particles on the convex curve). Let particles B, ..., B, be

distributed along the graph of a strictly convex curve. Because of the strict
convexity of the curve the convex hull of given points is exactly the convex
polygon C(R, ..., P,) with vertices R, ..., P,, as shown in Figure 3 left.

Then the quantity center (expected position) P is placed in C(R,, ..., P,).

Py

Figure 3. Particles on the convex curve and surface.

Example 3.2 (Particles on the convex surface). Let particles B, ..., P,

be distributed on the graph of a strictly convex surface. Due to the strict
convexity of the surface the convex hull of the given points is just the convex
polyhedron C(R,, ..., B,) with vertices R, ..., B,, as shown in Figure 3 right.

Then the quantity center (expected position) P is placed in C(R,, ..., P,).
4. Transition to Integrals

This section, together with the next section, presents the main results of
the paper.

Using the integral method, a sequence of convex combinations passes
into integral, so a center of quantity becomes a barycenter of quantity. Some
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results on barycentres and integral arithmetic means for the subsets of the
line are obtained in [5, pp. 1-5].

Continue with observations in the plane where the particles are not
separate, but form a continuous set. Let A < R? be a set with positive area

uw(A), and q : A — R be a non-negative quantity as the Riemann integrable

function of two variables with positive ”Aq(x, y)dxdy. Assisting with

Figure 4 left at first we imitate the previous discrete case. Given a positive
integer n, it is necessary to make the partition of the set .A into the union

n
A=A
i=1

of pairwise disjoint sets .A,,; with positive areas p(.Ap;), where every Ay,

contracts to the point or vanishes in infinity as n goes to infinity. For every
i =1 ..., n we take the one point B,; € A, and its quantity value g =

q(Py;)- Keeping in mind the formulae in (3.1)-(3.2) we make adaptations
and approximations:

n
n n
Oni ~ MH(Ani)qni’ Otot = m;“(“‘lni)%iv

1N
g~ H(.A);“(“éhﬁi)qni' (41)

n
~ 1 ~
p ~ E (A ) dnifi- (4.2)

Zin:l H(Api) i i=1

Put Iy, y) = xi + yj. Letting n to infinity, the above discrete approximations

get the Riemann integral forms:

_ 1
a =y ) ] a0 vy (43
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as the integral arithmetic mean of the quantity function q(x, y) on the set A,
and

L 1
" HA q(x, y)dxdy

J.J.A a(x, y)r(x, y)dxdy

~ 1
) ”A q(x, y)dxdy

(TJ JA xq(x, y)dxdy + ]I -[A yq(x, y)dxdy) (4.4)

as the radius-vector of the barycenter P of the quantity g(x, y) on the set A.

Figure 4. Partition of the set and geometrical interpretation of the convex set.

If A isconnected and q(x, y) is continuous, then the integral arithmetic

mean @ belongs to the set g(.4). The coordinates of the barycenter P are

-”A xq(x, y)dxdy .”,4 ya(x, y)dxdy

A HAq(x, y)dxdy o ”Aq(x, y)dxdy

If we put g(x, y) =1, then the expression in (4.4) presents the radius-
vector of the barycenter P of the set A, that is,

1 _
p = TA)”‘A x, y)dxdy. (4.5)
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From the convex combination formula in (4.2), it can be concluded that
the barycenter P of the quantity g on the set .4 belongs to the convex hull
coA of the set A. The formula in (4.4) arises after taking the limit, so the
barycenter P belongs to the closed convex hull of the set .4. We would like
to verify the intuitive assumption that the barycenter belongs to the interior
of the convex hull. The geometrical description of convexity will assist.

Theorem 4.1. Let A < R? be a set with wlA)>0,and q: A > R be
a Riemann integrable quantity function such that q(x, y) > 0 for every

(x, y) e int A. If P is the barycenter of g on A, then
P < int(coA). (4.6)
Proof. Assume A is convex, and prove that P € int A.

The geometrical characterization of convexity of the set A with
int A = states that the line £ through each point outside of int A exists
so that £ int A = &, and the entire int. 4 is contained in one of the half-
planes determined by L. Suppose P ¢ int A, and the characteristic line £
passes through the point P. Let fi be the vector normal to the line L,
oriented towards set .4 as shown in Figure 4 right.

Using the inner product with vector fi, we find that the following holds
for every (x, y) e int A:

(A, Tx,y) —Tp) >0,

1
j j y q(x, y)dxdy

M T y) = ” 06 YTy, yydxdy ) >0,

(A, alx, YT, y)) = “- Z(():( ))//))dxdy <ﬁ, fjA q(X, Y)Ty, y)dxdy> > 0.
LA



280 Zlatko Pavi¢ and Velimir Pavi¢

Integrating the above inner products over int A, it arises

(5 00 ity (5, [ [ 90 > 0

because the integrals over int.A and A are the same. The resulting
contradiction says that must be P < int A. O

Theorem 4.2. Let A4, ..., A, C R? be sets with w(Aj) >0, and g :
A; — R be Riemann integrable quantity functions. If B are the barycenters

of g; on 4;, and P is the center of all integral arithmetic means Gj, then

n

_— 1 1 | ]
p = Zn ﬁ.‘-‘[ q(x y)dxdy |Z_]; M(Ai)-[in qI(X1 y)dxdyr,. (47)
i=1“ i A, [ANAT]

. _ 1 . .
Proof. If we insert @ = ——— (X, y)dxdy in the discrete
G Ll(Ai)HAiq.( y)dxdy

expression
n
- 1 -
5= T
Gtot ,Z;‘ H
then we get the integral expression in (4.7). O

Theorem 4.3. Let Ay, ..., A, = R? be pairwise disjoint sets with p(A4;)

>0, and A =UJ_;A;. Let g: A — R be a Riemann integrable quantity
function. If B are the barycenters of g on A;, and P is the barycenter of g
on A, then

n

P = Jj q(xl, y)dxdin;‘-[-[Ai q(x, y)dxdyf. (4.8)
A -
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Proof. Using the equality

-”A q(x, y)r(x,y)dxdy = iZ:;"HAi q(x, y)F(X, y)dxdy

. ”Ai a(x, y)dxdy

i i—1 HAi q(x, y)dxdy

4 q(X, ¥)Tx, yydxdy

= Zn:”A_ a(x, y)dxdyF
i=1 !

in the formula in (4.4), it follows the barycenter expression in (4.8). O
Taking q(x, y) =1 in the quantity barycenters formula in (4.8), we have
the known rule for the set barycenters:
Corollary 4.4. Let Ay, ..., A, R? be pairwise disjoint sets with

u(A;) >0, and A = U 1 A4;. If B are the barycenters of 4;, and P is the
barycenter of A, then

B} 1 % ;
P = méu(«‘li)ﬁ- (4.9)

Everything we have done in the plane can be easily extended to the

space. Let A — R® be a set with p(A4)>0, and q:.A — R be a non-
negative quantity as the Riemann integrable function of three variables with

positive ”jA q(x, y, z)dxdydz.

Let Ty y.z) =X +Yj+ zk. Then the integral arithmetic mean of the

quantity function q(x, y, z) onthe set A is expressed with

q= ﬁ-'.“./l q(x, y, z)dxdydz, (4.10)
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and the radius-vector of the barycenter P is expressed with
~ 1
Ip =
J]] a0y, 2)dxayaz

f f f 906y D)y, y, 7 dxdydz. - (4.11)

Spatial analogies of Theorems 4.1-4.3 and Corollary 4.4 are also valid. In
the proof of the spatial variant of Theorem 4.1 the plane 7 which does not
intersect the set int A is used instead of the line L.

By including the Lebesgue integral, we can get more general expressions
for the integral arithmetic mean and the barycenter of the quantity q(x, vy, z).
Let pu be a measure on RS Let A c R® bea p-measurable set with u(.A)

>0, and q:.A —> R be a p-integrable non-negative quantity function on

the set A with IAqdu>0.

The integral arithmetic mean of the quantity function q(x, y, z) on the
set A can be presented with

q-= ﬁh q(x, y, z)du(x, y, 2), (4.12)

and the radius-vector of the barycenter P can be presented with

1
fp = a(x, y, )Ty y »ydu(x, y, z)  (4.13)
" qu(x, y, 2)du(x, y, Z)IA v

provided that the functions xq(x, y, z), ya(z, y, z) and zq(x, y, z) are
p-integrable on the set A.

In the case of presenting Theorem 4.1 by the Lebesgue integral with
respect to some measure p on RZ, it is needed to write P  coA instead of
P e int(coA). Everything else that we presented with the Riemann integral
is also true with the Lebesgue integral.

Using the measure and integral theory, the barycenter of the non-
negative quantity g can be reduced to the barycenter of the set. Let the
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measure v of the pu-measurable set A be defined by
v(A) = j d
(A) ,%am

(see [6, p. 23]). If v(A) >0, then the u-barycenter of the non-negative

quantity g on the set A corresponds to the v-barycenter of the set A, that is,

I—lqd“qurdu:ﬁj'Ardv.
A

5. Applications of Convexity on Inequalities

We recall the discrete and integral form of Jensen’s inequality from [2].
The discrete form will be extended by using Polygon theorem, and the
integral form will be extended by using Theorem 4.1.

Theorem E. (The discrete form of Jensen’s inequality). Let Z < R be
aninterval, and f : Z — R be a function. Let x = (X, ..., X,) be an n-tuple
with points x;j € Z, and @ = (a4, ..., ) be an n-tuple with numbers o

[0, 1] such that Zin:l“i =1.

A function f is convex if and only if the inequality

n n
f[zaiXiJ < Zaif(xi) (5.1)
i=1 i=1
holds for all above n-tuples a and x.

Consequently, if Zin:lo‘i = a > 0, not necessarily equals 1, then f is

convex if and only if
1v 1%
f[aZaixi}SEZaif(xi). (52)
i=1 i=1

A function f is concave if and only if the reverse inequality is valid in
(5.1) and (5.2).
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Let C(R, .., P,) = R? be a convex polygon with vertices R(x;, ¥;)
bounded below with the convex polygonal line y = f;(x), and bounded
above with the concave polygonal line y = f5(x). Let g; be non-negative
quantity values at the points B such that g = Zin:lqi > 0. Then the
inequality

fi(xp) < yp < f2(xp) (5.3)

holds for the center coordinates

Qtotqu i Yp = Qtthlyl

by Polygon theorem. The inequality in (5.3) can be extended to the series of
inequalities by using the discrete form of Jensen’s inequality.

Corollary 5.1. Let C(R,, ..., By) < R? be a convex polygon with vertices
R (X, yj) bounded below and above with the polygonal lines y = f;(x) and
y = f»(x), respectively. Let g; be non-negative quantity values at the points

R such that g = Y, G; > 0. Then

1 n 1 n
SEZW fa(x) < fz[q_ZQiXi]- (54)

tot 1

Proof. The left side of the inequality in (5.4) follows from the discrete
form of Jensen’s inequality for the convex function f;, and the right side

follows from Jensen’s inequality for the concave function f,. The middle
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part of the inequality in (5.4) follows from the inequalities fi(Xj) <;
< fo(x;) fori =1, .., n. O

If co{P,, ..., Py} = C(R, ..., B, ), not necessarily all points R vertices,
then the inequality in (5.4) remains valid. In this case the polygonal lines

y = fy(x) and y = f»(x) depend on the vertices B, ..., B, only.

If (Q, n) is a measure space, then it is assumed that every weighted
function q:Q — R is non-negative almost everywhere on Q, that is,

q(w) > 0 foralmost all ® € Q.

Theorem F (The integral form of Jensen’s inequality). Let Z < R be an
interval, and f : Z — R be a function. Let (Q, n) be a probability measure

space, g : Q — Z be a measurable function, and q Ll(Q, ) be a weighted

function with IquM=1 sothat q-g,q-(fog)e Ll(Q, .
If a function f is convex, then the inequality
. < . o
f([ 0 0] < [ a1 oo 5

holds for all above ¢, g and p.

Consequently, if Iquu =o >0, not necessarily equals 1, then

f(équ-gdujséqu-(f - g)du. (56)

If a function f is concave, then the reverse inequality is valid in (5.5) and
(5.6).

Let A — R? be a convex set bounded below with the convex function
y = fi(x), and bounded above with the concave function y = f,(x). Let
g:.A —> R be a Riemann integrable non-negative quantity function such
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that o = ”,4 q(x, y)dxdy > 0. Then the inequality

fi(xp) < yp < fa(xp) (5.7)

holds for the barycenter coordinates
1 1
Xp = EJ j A0 y)xdxdy, yp = EH 406 y) ydxdy

by Theorem 4.1. The inequality in (5.7) can be extended to the series of
inequalities by using the integral form of Jensen’s inequality.

Corollary 5.2. Let A R? be a convex set bounded below and above
with the functions y = f{(x) and y = f,(x), respectively. Let q: A > R

be a Riemann integrable quantity function such that o = ”A q(x, y)dxdy

> 0. Then
1 11
fl(a”A q(x, y)xdxdyj < EI. 306 y) fi(x)dxdy
<[ alx y)ydeay
> p J A ]
<2 atx y) fo(x) dedy
Talla e

< fz(é“‘x\ a(x, y)xdxdyj. (5.8)
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