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Abstract 

Detecting outliers in high dimension datasets remains a challenging 
task. Under this circumstance, robust location and scale estimators are 
usually proposed in place of the classical estimators. Recently, a new 
robust estimator for multivariate data known as minimum variance 
vector (MVV) was introduced. Besides inheriting the nice properties 
of the famous MCD estimator, MVV is computationally more 
efficient. This paper proposes MVV to detect outliers via Mahalanobis 
squared distance (MSD). The results revealed that MVV is more 
effective in detecting outliers and in controlling Type I error compared 
with MCD. 
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1. Introduction 

Datasets that are multivariate in nature are common in industries. With 
the enhancement in computer technology, researchers have no problem 
working with enormous multivariate datasets. Nevertheless, as the 
dimensions of the data increase, the presence of outliers in the datasets will 
also increase. The presence of outliers can hardly be detected using naked 
eyes when the dimension is more than 2. This is the risk the researchers have 
to be cautious about when working with large datasets of high dimensions. 
Thus, a reliable method is needed to detect outliers especially for this sort of 
datasets. Fortunately, researchers in this area are relentlessly searching for 
such methods. Mahalanobis square distance (MSD) is a prominent method 
for outlier detection. For multivariate normally distributed data, MSDs are 
approximately chi-square distributed with p degrees of freedom ( ).pχ  An 

outlier would then be defined as an observation having larger distance value 
than the critical value, i.e., αχ ,p  (Mardia et al. [15]) and (Serfling [24]). 

However, the performance of MSD suffers from masking and swamping 
effect due to the non-robustness (sensitiveness) of the classical estimators. 
These estimators are sensitive to outliers and will be greatly influenced by 
their presence. Consequently, it is unlikely to use the MSD to find outliers 
since MSD itself is sensitive to outliers. Under this circumstance, robust 
estimators are needed to prevent these errors from influencing the 
computation of MSD, which will result in spurious detection of outliers. 

A wide range of robust estimators of multivariate location and scatter are 
available, see Maronna and Zamar [17] and Maronna et al. [16] for a review. 
Nonetheless, the Minimum Covariance Determinant (MCD) estimator 
introduced by Rousseeuw [20] has received a considerable attention by 
scientific community and widely used in practice. This is due to the fact that 
MCD gives the exact solution (Hadi [9] and Hubert et al. [14]), and it also 
has good theoretical properties with affine equivariance, high breakdown 
value, bounded influence function and also has a better convergence rate 
(Butler et al. [4]; Croux and Haesbroeck [5]). Due to computational 
complexity of the exact MCD estimators especially for large n, several 
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improved versions of MCD algorithm are available. For example, feasible 
solution algorithm (FSA) in Hawkins [10] and Hawkins and Olive [11], 
MULTOUT in Woodruff and Rocke [26], Fast MCD algorithm in 
Rousseeuw and van Driessen [22], block adaptive computationally-efficient 
outlier nominators (BACON) in Billor et al. [2] and improved Fast MCD 
algorithm in Hubert et al. [14]. However, the main contribution in this 
domain is the Fast MCD algorithm which has been available in many 
computer packages such as Matlab, R, SAS, and S-Plus. Furthermore, its 
applications can be found in a very wide spectrum area, for example, 
multivariate statistical process control, multivariate process capability 
analysis, information sciences, data depth, data mining, etc. Thus, this shows 
that Fast MCD is very well accepted. Nevertheless, Fast MCD is not without 
limitation. The use of “minimizing covariance determinant” as the objective 
function in data concentration process can be computationally laborious 
especially when the dataset is of high dimension. On the other hand, as 
Angiulli and Pizzuti [1] have pointed out, the computational efficiency is as 
important as effectiveness. To overcome the weaknesses of Fast MCD 
algorithm, Herwindiati [12] proposed minimum vector variance (MVV) as an 
alternative measure of multivariate data concentration. 

The use of vector variance in place of covariance determinant as the 
objective function of the stopping rule is comprehensively discussed in 
Djauhari [7]. Herwindiati et al. [13] revealed that MVV was successfully 
used as an objective function in Fast MCD algorithm to substitute the MCD 
criterion. The findings showed that MVV is computationally more efficient 
than Fast MCD. Motivated by their findings and to fill some of the gaps in 
the research, this paper investigates on the robustness and effectiveness of 
MVV estimator in detecting outliers via MSD covering both correlated and 
uncorrelated variables. The performance evaluation is measured in terms of 
Type I error and probability of outlier(s) detection, respectively. Section 2 
recalls on minimum vector variance (MVV) estimator. Section 3 will report 
on the results of simulation experiments which strongly indicate the 
advantage of MVV. The concluding remarks in Section 4 will close this 
paper. 
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2. Minimum Vector Variance (MVV) 

The use of determinant in the computation has its drawback. In higher 
dimensions, computation of determinant is more complicated. As an 
alternative measure to the long and tedious computation of covariance 
determinant in data concentration, MVV uses vector variance (VV) for a 
faster algorithm without changing the structures of Fast MCD algorithm. 
MVV estimators possess three major properties of a good robust estimator 
i.e. high breakdown point, affine equivariance and computational efficiency 
(Herwindiati et al. [13]). The main method used in the estimation of MVV is 
the Mahalanobis squared distances (MSD) which is defined as 

 ( ) ( ) ,...,,2,1,12 nixxd i
t

ii =μ−Σμ−= −  (1) 

where n represents the number of observations. Consider a dataset =x  
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as a global minimum of the MVV objective function. The approximation of 
MVV estimators can be obtained by taking many initial choices of h-subsets. 
To compute the MVV estimators, we used the MVV algorithm proposed in 
Yahaya et al. [25] by applying concentration step (C-step) for each initial 
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Scatter estimators are typically calibrated to be consistent for the normal 
distribution, thus the consistency and correction factors are needed to 
guarantee Fisher consistency for the scatter estimator and improve its 
biasness for small sample behaviour. Fisher consistency is a standard concept 
in robust statistics and it means that the functionals evaluated at the model 
distribution F return the true parameter values, μ and ∑ (Croux and 
Rousseeuw [6]). We take ( )hc  as the approximation of consistency factor, 

where it can be obtained from elliptical truncation in the multivariate normal 
distribution based on squared distance. If ( ),,~ ΣμNxi  then ( )hc  is defined 

as 

 ( )
( )

,2
,

2
2 nhppP

nhhc
χ<χ
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where 2
, nhpχ  is the nh -quantile of 2

pχ  distribution. This formula is derived 

by Butler et al. [4] and further discussed in Croux and Haesbroeck [5] based 
on the functional form of the MCD estimator. Albeit this process guarantees 
consistency under normal distribution, the consistency factor alone is not 
sufficient to make the MVV estimator unbiased for small sample sizes. To 
overcome the insufficiency problem we also include correction factor 

.,,
αϑ pnh  The computation of the factor was based on Pison et al. [18]. Next, 

we determine the MVV scatter as follows: 
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3. Simulation Experiments and Results 

Before we present the analysis and results of the performance of MVV, 
we will discuss briefly on the distributional of the robust MSD. The 
application of robust estimators in place of the mean and covariance structure 
in MSD will cause the distributional properties of the classical MSD to 
change (Rousseeuw and van Zomeren [23] and it is difficult to identify the 
corresponding robust MSD distribution. To demonstrate and compare the 
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performance of MVV estimator with MCD when working on MSD in 
detecting outliers, we need a better understanding about the distribution of 
MVV and MCD on robust MSD in order to be able to obtain appropriate 
cutoff values, but the distribution of the exact MVV estimators is not known 
in closed form Herwindiati [12]. Even the distribution of the well known 
robust Mahalanobis distance derived from MCD is still questionable for 
applications (Riani et al. [19]) and (Fauconnier and Haesbroeck [8]). Hence, 
in this study, we used quantile in estimating the distribution obtained via 
Monte Carlo method. This study focuses on datasets of dimensions 2 and 5 
( )5,2.i.e =p  with reasonable values of sample size n. To ensure a smooth 

computation for MCD, the setting of the starting value for n follows the rule 
of thumb, where 5>pn  (Rousseeuw and van Zomeren [23]). For each 

combination of n and p, 5000 samples from standard multivariate normal 
distribution ( )pp IMVN ,0  were generated. The MVV and MCD of mean 

vector and covariance matrix estimators and their corresponding robust MSD 
statistics were calculated. Then, the cutoff values for MSD issued from MVV 
and MCD were based on the 95% quantile of the 5000 statistics. 

Performance evaluation 

This study compares the performance of MSD procedures issued from 
the classical estimators, MVV and MCD with regards to robustness (Type I 
error) and their effectiveness in detecting outliers (probability of detection). 
To check on the level of robustness, we consider Bradley’s liberal criterion 
of robustness as a reference by comparing the empirical Type I error value 
with the nominal value, .05.0=α  Bradley [3] specified three criteria for 
robustness namely stringent, moderate, and liberal which are, respectively, 
defined as ,1.0 α±α  ,2.0 α±α  and .5.0 α±α  A statistic is considered 
robust if its empirical Type I error rates lie in one of the ranges. The closer 
the value to α, the more robust is the statistic or in other words the procedure 
has better control of Type I error rates. As for the probability of detection, 
the higher the value, the more effective is the procedure in detecting outliers. 

To check on the strengths and weaknesses of the estimators, various 
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scenarios (conditions) were created by simulating the data using different 
number of observations (n), different number of correlated and uncorrelated 
variables (p), and contaminate the data using different proportion of outliers 
( )ε  and several mean shifts values ( ).1μ  Therefore we have considered a 

contaminated model by using a mixture of normal, 

 ( ) ( ) ( ),,,01 1 pppp ININ με+ε−  (6) 

where ε is set to be 0, 0.1 or 0.2, while 1μ  is a vector of size p with value of 

0 (when there is no change), 3 or 5. The mixture model in equation (6) will 
produce clean and contaminated data from parameters on the left and right 
side of the plus sign, respectively. To investigate each condition, we 
randomly generated data using 1000 replications based on the combinations 
of n and p. This study also looked into the cases of correlation and 
uncorrelated variables. For that purpose, the contaminated model for both 
cases should be modeled differently. To differentiate between the two cases, 
the uncorrelated case is referred as Case A and the correlated as Case B. Data 
for Case A were generated using the mixture model in equation (6), while for 
Case B, the data were generated using the following mixture model 

 ( ) ( ) ( ),,,01 111 Σμε+Σε− pp NN  (7) 

where 1Σ  was set to be a matrix of size p with 1 on the main diagonal and 

0.9 elsewhere. We used the value of 1Σ  to examine whether correlation 

between variables affects the probability of detection and Type I error of 
each MSD procedure. The results of the performance between the different 
MSD procedure namely the classical MSD ( ),OMSD  MSD issued from MCD 

( ),MCDMSD  and MSD issued from MVV ( )MVVMSD  are compared and 

discussed in the following section. As mentioned before, the performance of 
the each MSD is judged based on its effectiveness (probability) in detecting 
outliers and the ability to control Type I error rate. The probability of 
detection was determined by computing the statistic (MSD) using the 
contaminated data and estimated as the proportion of statistic values that 
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were above the cutoff values. Conversely, to determine the Type I error rates, 
the statistic was calculated from the clean data. 

Results 

The results of the investigation are presented in the form of tables and 
figures for the Type I error and the corresponding probability of detection, 
respectively. Type I error rates for Case A are presented in Tables 1 and 2 
while Case B are presented in Tables 3 and 4. The estimators are considered 
robust when the empirical Type I error rates are within the Bradley’s criteria. 
The values with asterisks are considered robust. The number of asterisks 
denotes the level of robustness such that 3 asterisks imply that the value is 
stringently robust, 2 asterisks are moderately robust, and only 1 asterisk is 
liberally robust. For the purpose of comparison, the empirical Type I error 
rates having the smallest difference with the nominal value among the three 
procedures are highlighted. Thus, across the row, the highlighted cell 
indicates that the corresponding procedure generates the best result among 
the others by producing the closest empirical Type I error to the nominal 
value. 

As for Case A, when ,2=p  the MVVMSD  column has the highest 

number of robust values and the most number of highlighted cells. There are 
14 robust values with 6 values fall within the stringent criteria. In contrast, 
there are only 2 robust values for MCDMSD  and only 5 for .OMSD  When 

the dimension increases to ,5=p  the number of cells with robust values 

dwindle to 10 for MVVMSD  and the number of highlighted cells equals to 

.OMSD  There is improvement in OMSD  when almost all of the Type I error 

rates for this procedure are considered robust. 
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Table 1. Type I error rate for 2=p  in Case A 

n ε 1μ  OMSD  MVVMSD  MCDMSD  

10 0 0 0.0530*** 0.0520*** 0.0520*** 

 0.1 3 0.0170 0.0450*** 0.0290* 

  5 0.0160 0.0450*** 0.0250* 

 0.2 3 0.0180 0.0330* 0.0210 

  5 0.0180 0.0330* 0.0110 

25 0 0 0.0590** 0.0530*** 0.0480*** 

 0.1 3 0.0290* 0.0390** 0.0280* 

  5 0.0230 0.0390** 0.0290* 

 0.2 3 0.0280* 0.0190 0.0090 

  5 0.0240 0.0190 0.0050 

50 0 0 0.0560** 0.0540*** 0.0580** 

 0.1 3 0.0200 0.0350* 0.0230 

  5 0.0160 0.0340* 0.0230 

 0.2 3 0.0210 0.0180 0.0080 

  5 0.0160 0.0170 0.0060 

100 0 0 0.0550 0.0490*** 0.0460*** 

 0.1 3 0.0210 0.0300* 0.0200 

  5 0.0160 0.0290* 0.0200 

 0.2 3 0.0210 0.0150 0.0050 

  5 0.0160 0.0150 0.0040 

Number of highlighted 5 14 2 
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Table 2. Type I error rate for 5=p  in Case A 

n ε 1μ  OMSD  MVVMSD  MCDMSD  

30 0 0 0.0460*** 0.0500*** 0.0430** 

 0.1 3 0.0280* 0.0300* 0.0100 

  5 0.0260* 0.0330* 0.0100 

 0.2 3 0.0300* 0.0210 0.0050 

  5 0.0320* 0.0200 0.0000 

50 0 0 0.0530*** 0.0490*** 0.0650* 

 0.1 3 0.0270* 0.0350* 0.0130 

  5 0.0260* 0.0370* 0.0130 

 0.2 3 0.0260* 0.0220 0.0040 

  5 0.0250* 0.0230 0.0020 

100 0 0 0.0540*** 0.0380* 0.0320* 

 0.1 3 0.0290* 0.0300* 0.0140 

  5 0.0280* 0.0320* 0.0140 

 0.2 3 0.0300* 0.0170 0.0020 

  5 0.0290* 0.0190 0.0020 

200 0 0 0.0430** 0.0390* 0.0410** 

 0.1 3 0.0250* 0.0350* 0.0200 

  5 0.0240 0.0350* 0.0200 

 0.2 3 0.0270* 0.0220 0.0010 

  5 0.0270* 0.0220 0.0010 

Number of highlighted 10 10 0 
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Table 3. Type I error rate for 2=p  in Case B 

n ε 1μ  OMSD  MVVMSD  MCDMSD  

30 0 0 0.0530*** 0.0740* 0.0520*** 

 0.1 3 0.0260* 0.0540*** 0.0350* 

  5 0.0180 0.0480*** 0.0300* 

 0.2 3 0.0270* 0.0410** 0.0380* 

  5 0.0190 0.0280* 0.0220 

50 0 0 0.0590** 0.0900 0.0480*** 

 0.1 3 0.0390* 0.0640* 0.0380* 

  5 0.0290* 0.0520*** 0.0300* 

 0.2 3 0.0370* 0.0490*** 0.0340* 

  5 0.0280* 0.0270* 0.0160 

100 0 0 0.0560** 0.0980 0.0580** 

 0.1 3 0.0310* 0.0660* 0.0340* 

  5 0.0230 0.0580** 0.0250* 

 0.2 3 0.0310* 0.0380* 0.0280* 

  5 0.0230 0.0350* 0.0090 

200 0 0 0.0550*** 0.0660* 0.0460*** 

 0.1 3 0.0360* 0.0530*** 0.0250* 

  5 0.0240 0.0410** 0.0210 

 0.2 3 0.0310* 0.0330* 0.0190 

  5 0.0220 0.0210 0.0070 

Number of highlighted 4 12 4 
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Table 4. Type I error rate for 5=p  in Case B 

n ε 1μ  OMSD  MVVMSD  MCDMSD  

30 0 0 0.0460** 0.0980 0.0430** 

 0.1 3 0.0430*** 0.0810 0.0320* 

  5 0.0370* 0.0760 0.0320* 

 0.2 3 0.0420** 0.0680* 0.0360* 

  5 0.0350* 0.0450*** 0.0340* 

50 0 0 0.0530*** 0.1050 0.0650* 

 0.1 3 0.0460*** 0.0870 0.0480 

  5 0.0380* 0.0690* 0.0350* 

 0.2 3 0.0420** 0.0830 0.0390* 

  5 0.0360* 0.0550*** 0.0400** 

100 0 0 0.0540*** 0.0800 0.0320* 

 0.1 3 0.0470*** 0.0630* 0.0340* 

  5 0.0380* 0.0580** 0.0230 

 0.2 3 0.0460*** 0.0660* 0.0340* 

  5 0.0370* 0.0450*** 0.0300* 

200 0 0 0.0430** 0.0500*** 0.0410** 

 0.1 3 0.0370* 0.0440** 0.0400** 

  5 0.0340* 0.0430** 0.0330* 

 0.2 3 0.0350* 0.0470*** 0.0330* 

  5 0.0310* 0.0360* 0.0260* 

Number of highlighted 10 9 1 
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However, the result for MCDMSD  worsens, as this procedure can 

generate robust Type I error rates under ideal condition only, and 
furthermore it produces no highlighted cells. Across both dimensions (p), we 
notice that MVVMSD  in general is in control of Type I error rates even when 

sample size is small, nevertheless it falls short when 2.0=ε  and .51 =μ  

As we move to Case B (refer to Tables 3 and 4), one can observe that 
when 2=p  there are more robust values under MVVMSD  column than the 

other two (refer to Table 3). This procedure also produces the highest number 
of stringent values and even the highlighted cells outnumbered the rest. 
However, the nice result for MVVMSD  is marred by a few inflated Type I 

error rates (non-robust) under ideal condition. In contrast, all the non-robust 
values belong to MCDMSD  as well as OMSD  are conservative (small). As 

one can observe in Table 4, when ,5=p  there is a remarkable improvement 

in OMSD  and .MCDMSD  All the Type I error rates for OMSD  are robust 

with a considerable number of stringent values. Under MCDMSD  column, 

we notice that almost all the Type I error rates are robust even though this 
approach does not produce any stringent values. Despite a reduction in the 
number of robust values for ,MVVMSD  this approach produces quite a 

number of stringent robust Type I error rates. However, the problem of 
inflated Type I error rates in the case of 2=p  continues to occur and 

worsen when ,5=p  MVVMSD  even losses to OMSD  in the count of 

highlighted cells. The comparison between the two dimensions for Case B 
shows that the Type I error rates for most conditions of MVVMSD  increase 

when the dimension increase. 

The investigation continues to check on the effectiveness of the 
procedures in detecting changes. The results for probability of detection 
when the variables are assumed to be uncorrelated (Case A) are displayed in 
Figures 1 and 2. Overall, MVVMSD  and MCDMSD  perform better than the 

OMSD  when outliers are present. As the number of variables, sample size 
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and the shift in the mean increase, the probability of detection for both 
procedures approaches 1. However, in situation where there are 20% outliers 
with mean shift equals to 3, MVVMSD  performs better than the .MCDMSD  

Under most conditions, MVVMSD  is on par with MCDMSD  in detecting 

outliers under this case (uncorrelated). 

The effectiveness of the procedures in detecting outliers when the 
variables are assumed to be correlated (Case B) is illustrated in Figures 3 and 
4. From the figures, we observe that the MVVMSD  outperforms the other two 

procedures in detecting outliers for almost all conditions. The lines 
representing MVVMSD  are quite a distance above the lines for MCDMSD  

and the .OMSD  For this case, MCDMSD  performs as bad as the classical 

MSD in detecting outliers. 

4. Conclusion 

Apart from having the same properties with the popular MCD, MVV has 
the edge over MCD with respect to computational efficiency. Thus, in this 
paper, we proposed to use this estimator as alternatives to the classical mean 
vector and covariance matrix in Mahalanobis squared distance (MSD) 
procedure. The investigation which covered both the uncorrelated and 
correlated situations revealed that in general, the MSD issued from MVV 
estimators outperformed the classical MSD and MSD issued from MCD in 
terms of probability of detection and did considerably good in controlling 
Type I error rates. However, this approach needs further consideration to 
identify the problem of inflated Type I error rates that occur even under ideal 
conditions of correlated case. 
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Figure 1. Probability of signal when 2=p  for Case A. 
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Figure 2. Probability of signal when 5=p  for Case A. 
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Figure 3. Probability of detection when 2=p  for Case B. 
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Figure 4. Probability of detection when 5=p  for Case B. 
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