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Abstract 

The purpose of this study is to present a simple and efficient approach 
to calculate the eigenvalues of the Sturm-Liouville problem. By 
expanding the unknown function as power series, we directly get the 
corresponding polynomial characteristic equations for kinds of 
boundary conditions, and the lower- and higher-order eigenvalues can 
be determined simultaneously from the multi-roots. Several examples 
for numerical computation used frequently in Sturm-Liouville problem 
of estimating eigenvalues are given to show that our method has fast 
convergence and the obtained numerical results have high accuracy. 
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1. Introduction 

In this paper, the Liouville normal form of the Sturm-Liouville problem 
is considered: 

 ( ) ( ) ( ) ( ),xyxyxqxy λ=+′′−  (1) 

where ( )xq  is defined on the interval of bxa ≤≤  and the parameter λ is 

the characteristic value needed to be determined. Such Sturm-Liouville value 
problem arises in many physical, engineering and other scientific fields, 
which plays a very important role in both theory and applications [1, 2]. 

Generally speaking, it seems unlikely to obtain an analytical solution in 
explicit form or it is difficult to obtain exact eigenvalues of the above 
problems. Therefore, some numerical and approximate methods have been 
proposed for determining the solution of Sturm-Liouville eigenvalue problem 
[3]. Based on the asymptotic correction with Numerov’s method and finite 
element method, Andrew and Paine improved the results for Sturm-Liouville 
problems with natural boundary conditions [4-6]. Ghelardoni [7] used some 
linear multistep methods, called Boundary Value Methods (BVM), to 
discretize the Sturm-Liouville problem and investigate the approximations of 
eigenvalues, where the correction technique of Andrew-Paine [5] is extended 
to BVM. In [8] and [9], Çelik and Gokmen used the Chebyshev collocation 
method to investigate for the approximate computation of higher Sturm-
Liouville eigenvalues by transforming the problems and given boundary 
conditions to matrix equation. For computing the approximate eigenvalues of 
regular Sturm-Liouville problems with two points or periodic or semi-
periodic boundary conditions, Yuan et al. [10] utilized the Chebyshev 
collocation method combined with an improved step in order to solve a 
generalized eigenvalue problem. Unlike the classical Chebyshev collocation 
method, Chen and Ma [11] introduced the Legendre-Galerkin-Chebyshev 
collocation method, which preserves the symmetry of the problem, to 
compute the approximate eigenvalues of the Sturm-Liouville problem with 
kinds of different boundary conditions. Recently, Zhang [12] discretized the 
Sturm-Liouville problems (SLPs) into standard matrix eigenvalue problems 
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in order to achieve high accuracy and high efficiency by using the mapped 
barycentric Chebyshev differentiation matrix method. 

In this paper, we will introduce a simple approach for determining the 
eigenvalues of Sturm-Liouville problem with kinds of boundary conditions. 
By expanding the mode shapes as power series, we transform the governing 
differential equation to a system of algebraic equations in unknown 
coefficients. The characteristic values λ can be easily determined from the 
existence condition of a nontrivial solution in the resulting system. We will 
apply the method to evaluate the eigenvalues for the examples used 
frequently in Sturm-Liouville problem to demonstrate the accuracy of 
approximation. 

2. Formulas and Method 

For the Sturm-Liouville problem, the key thing is to calculate the 
characteristic values λ of resulting governing equation (1). Since the 
eigenvalues are closely related to the end supports, it is instructive to give 
explicit expressions for boundary conditions. Without loss of generality, the 
most homogeny conditions can be stated below [8]: 
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Actually, the problem becomes solving a set of a second-order ordinary 
differential governing equation (1) combining with the above boundary 
conditions. In this section, avoiding solving the differential equation (1) 
directly, we introduce a simple method to determine the eigenvalues of 
Sturm-Liouville equation. First of all, we expand ( )xy  as power series. Or 

rather, if neglecting sufficient small error, the unknown ( )xy  can be 

approximately expanded as: 
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where ic  are unknown coefficients and N is a certain positive integer, which 

is chosen large enough such that the rest have a negligible error. It should be 
pointed out that besides the above expansion equation (4) of ( ),xy  other 

expansion approximations of the unknown y such as Chebyshev polynomial, 
trigonometric functions, etc., are also applicable and even better because of 
their orthogonality. Bearing equation (4) in mind, application of the 
condition (2) leads to yield a linear equation of 1+N  unknown coefficients 
of ,...,,, 10 Nccc  
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On the other hand, using the condition (3), one has 
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It is easily found that in order to solve the linear equations (5) and (7), 
another 1−N  independent equations are needed for uniquely determining 

.ic  This can be achieved by using the following method. Inserting (4) into 

the differential equation (1) for each case leads to 
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We multiply both sides of (9) by ( )2...,,2,1,0 −= Nnxn  and then 

integrate with respect to x between a and b, yielding another 1−N  linear 
algebraic equations of unknown coefficients :ic  
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Therefore, equations (5), (7) and (10) form a system of 1+N  linear 
algebraic equations for 1+N  unknown coefficients ( ),...,,1,0 Nici =  

which can be rewritten in a compact form as 

 ( ) ,0=λ− nnnnn CKF  (12) 

with 

( )( ) ( ) ( )( ) ( ) ( )( ) .,, 111111 ×++×++×+ === NinNNijnnNNijnn cCkKfF  

To obtain a nontrivial solution of the resulting system, the determinant of 
the coefficient matrix of the system has to vanish, that is ( )nnnn KF λ−det  

.0=  Then we immediately get a characteristic equation in eigenvalues λ. By 
inspecting the above procedure, one readily finds that the obtained 
corresponding characteristic equation has multi-roots since that it is a 
polynomial in eigenvalue λ. Therefore, a numerical procedure to look for its 
roots is very simple and easy with the aid of commercial software. As a 
result, both the lower and higher characteristic values of Sturm-Liouville 
equation (1) can be determined simultaneously from the multi-roots. 

It should be noted that for other general boundary conditions, we can 
deal with the problem in the same way. For example, if we choose the 
common conditions 

 ( ) ( ) ,00 =π= yy  (13) 
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where 0=a  and .π=b  Substituting (4) into the above conditions, the first 
two linear equations can be derived as 

,00 =c  (14) 

∑
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i
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0
.0  (15) 

Then one can replace equations (5) and (7) for the above linear algebraic 
equations, while keeping the last 1−N  equations as the same form (10). For 
any other boundary conditions such as 

 ( ) ( ) ,00 =π′=′ yy  (16) 

and 
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the corresponding characteristic equations can be similarly obtained, which 
are omitted here. 

3. Numerical Examples 

In order to examine the effectiveness of the method proposed in this 
paper, several numerical examples used frequently in Sturm-Liouville 
problem are given to demonstrate the accuracy of approximation as 
compared to the exact solution and other numerical results. 

Example 1. We first consider the simple Sturm-Liouville problem 

 ( ) ( ),xyxy λ=′′−  (18) 

subjected to 

( ) ( ) ,00 =π′= yy  

where ( ) .0=xq  Obviously, the exact characteristic values of (18) is ,2k=λ  

Zk ∈  [12]. For checking the convergence of the suggested method, we have 
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calculated the lower and higher characteristic values of Sturm-Liouville 
equation (1) by taking different N values in (4). Evaluated absolute errors 

exactnum λ−λ  of first six eigenvalues between the numerical results and 

the exact ones are tabulated in Table 1. By comparing our numerical results 
with the exact ones, it is clear from Table 1 that the numerical results have a 
rapid convergence. With N increasing from 6 to 14, the errors between the 
numerical and exact results dramatically decrease and the results when taking 

14=N  are nearly identical to the exact ones up to 6 decimal digits for the 
first four eigenvalues, which indicates that the present approach is very 
efficient. But the accuracy of the results drops with the modes increasing. 
However, if increasing N, the accuracy becomes very satisfactory. As a 
result, a higher accuracy can be achieved through increasing N. 

Table 1. Absolute errors exactnum λ−λ  for Example 1 

k 6=N  8=N  10=N  12=N  14=N  

1 2.64E-7 3.39E-11 2.89E-15 1.11E-15 1.55E-15 

2 2.90E-2 1.34E-4 1.85E-7 1.04E-10 2.04E-12 

3 2.43E-1 3.78E-3 1.94E-5 2.38E-8 8.38E-9 

4 22.52 1.01 3.45E-2 4.34E-4 2.66E-6 

5 49.87 2.94 1.73E-1 3.11E-3 2.77E-3 

6 - 96.18 6.84 5.94E-1 1.19E-1 

Example 2. As a second example, we solve the following Sturm-
Liouville problem: 

 ( ) ( ) ( ).xyxyexy x λ=+′′−  (19) 

Here two boundary conditions are evaluated. One is that ( ) ( ) ,00 =π= yy  

which has been studied in [4] and [7] based on Numerov’s method and 
boundary value methods, respectively; and the other is that ( ) ( ) 00 =π′= yy  

and the corresponding numerical solutions have been investigated by using 
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Chebyshev collocation method [8] and Numerov’s method (NM) [6]. 
According to the present method, the numerical results of first six 
eigenvalues are calculated for .14=N  The numerical results compared to 
the exact solutions and those obtained by some other methods, such as the 
corrected Numerov method (CNM), the uniderivative Simpson method 
(USM) [10], are given for two cases in Tables 2 and 3, respectively. As 
comparing to the existing results, we can find that the accuracy is very 
satisfactory by using a relatively small order ( )14=N  for both cases. 

Table 2. Numerical results for Example 2 with ( ) ( ) 00 =π= yy  

Eigenvalues λ  Absolute errors exactnum λ−λ  

Exact [10] Present  [6] USM [10] CNM [10] Present k 

 ( )14=N   ( )40=N ( )39=N  ( )39=N ( )14=N  

1 4.8966694 4.89666937998  2.25E-6 1.39E-5 2.6E-6 2.0023E-8 

2 10.045190 10.04518989709  2.87E-5 7.53E-5 3.26E-5 1.0291E-7 

3 16.019267 16.01927824811  4.54E-5 2.940E-4 1.111E-4 1.1248E-5 

4 23.266271 23.26666096023  9.35E-5 4.927E-4 2.318E-4 3.8996E-4 

5 32.263707 32.25761510080  4.76E-4 1.1286E-3 3.878E-4 6.0918E-3 

6 43.220020 43.42520272001  9.76E-4 1.6781E-3 5.823E-4 2.0518E-1 

Table 3. Numerical results for Example 2 with ( ) ( ) 00 =π′= yy  

Eigenvalues λ Absolute errors exactnum λ−λ  

Exact [6] Present NM [6] CNM [6] Present k 

 ( )14=N  ( )40=N ( )40=N  ( )14=N  

1 4.89571 4.895713259646 2.52E-6 2.52E-6 3.2596E-6 

2 9.99955 9.999549844573 3.04E-5 2.87E-5 1.5542E-7 

3 15.4685 15.468519155137 8.41E-5 4.54E-5 1.9155E-5 

4 21.0371 21.037295988923 3.86E-4 9.35E-5 1.9598E-4 

5 28.1893 28.188932386472 1.80E-3 4.76E-4 3.6761E-4 

6 37.7907 37.796206842212 5.40E-3 9.76E-4 5.5068E-3 
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Example 3. Next, we discuss the following periodic Sturm-Liouville 
problem: 

 ( ) ( ) ( ) ( ),2cos10 xyxyxxy λ=+′′−  (20) 

under the constraints 
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In the following, we employ the approach described in this paper to 
determine the first six eigenvalues’ approximations when .14=N  The 
absolute errors between the exact solution and its approximations are 
tabulated in Tables 4 and 5 for two cases, respectively. Other numerical 
results based on the Legendre-Galerkin-Chebyshev collocation method 
(LFCC) [11] and the corrected finite difference (CFD) [5] are also presented 
in those tables. From Tables 4 and 5, it can be seen that our results are in 
excellent agreement with the existing results for both cases. 

Table 4. Numerical results of eigenvalues and absolute errors for case 1 

Eigenvalues λ  Absolute errors exactnum λ−λ  

Exact [12] Present  CFD LGCC Present k 

 ( )14=N   ( )40=N ( )39=N ( )14=N  

1 2.09946044548547 2.09945653298  1.75E-2 4.55E-8 3.9125E-6 

2 7.44910973952939 7.44911398503  2.35E-2 3.95E-8 4.2455E-6 

3 16.6482199371686 16.64825148895  1.69E-2 6.28E-8 3.1551E-5 

4 17.0965816843648 17.09668059919  4.8E-3 3.16E-7 9.8914E-5 

5 36.3588668480280 36.36896284201  1.34E-2 1.52E-7 1.0095E-2 
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Table 5. Numerical results of eigenvalues and absolute errors for case 2 

k Exact λ [11] Present λ exactnum λ−λ  

1 –5.79008059863 –5.79007822454 2.3740E-6 

2 1.85818754154 1.85819009746 2.5559E-6 

3 9.236327713693 9.23645545404 1.2774E-4 

4 11.548832036343 11.54884282673 1.0790E-5 

5 25.510816046303 25.51361310254 2.7971E-3 

6 25.549971749981 25.55001133158 3.9581E-5 

Example 4. Finally, we consider the following Sturm-Liouville problem: 

 ( ) ( ) ( ) ( ),1.0 2 xyxyxxy λ=++′′− −  (21) 

where the boundary condition is ( ) ( ) .00 =π= yy  When N in (4) takes 14, 

the numerical results together with the exact results are tabulated in Table 6. 
Other absolute errors derived previously by the Numerov’s method ( )19=N  

[4] and boundary value methods with 40=N  [7] are also presented in the 
table. Table 6 demonstrates that the present numerical results are in very 
good agreement with the exact solutions and existing numerical results. 

Table 6. Numerical results of eigenvalues and absolute errors 

Eigenvalues λ Absolute errors exactnum λ−λ  

Exact [4] Present [4] [7] Present k 

 ( )14=N  ( )19=N ( )40=N  ( )14=N  

1 1.5198658 1.519865189 4.3250E-4 1.4300E-5 6.1100E-7 

2 4.9433098 4.943306263 2.7664E-3 1.0390E-4 3.5370E-6 

3 10.284663 10.28464398 8.6229E-3 6.0420E-4 1.9020E-5 

4 17.559958 17.55965280 1.9436E-2 2.3847E-3 3.0520E-4 

5 26.782863 26.79196486 3.6391E-2 8.0143E-3 9.1018E-3 

6 37.964426 37.68308759 6.0481E-1 2.1852E-2 2.8133E-1 
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4. Conclusions 

An efficient approach has been presented to deal with the Sturm-
Liouville problem. Instead of directly solving the differential equation, we 
transform the governing equation to a system of linear algebraic equations by 
making use of power series; then a characteristic equation will be obtained, 
which can be effectively computed through using symbolic computing codes 
on any personal computer. The effectiveness of the method has been 
confirmed by comparing our numerical results with the exact ones and other 
numerical results available for numerical examples used frequently in Sturm-
Liouville problem. It has been seen that our numerical results show excellent 
consistency with the existing results. 
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