Far East Journal of Mathematical Sciences (FJMS) Volume 74, Number 1, 2013, Pages 191-200 Published Online: March 2013 Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA ## FUZZY SU-SUBALGEBRAS AND FUZZY SU-IDEALS #### Rattana Sukklin and Utsanee Leerawat* Department of Mathematics Kasetsart University Bangkok, Thailand e-mail: rattana.nueng@gmail.com fsciutl@ku.ac.th #### **Abstract** In this paper, the notions of fuzzy SU-subalgebra and fuzzy SU-ideal in SU-algebra are introduced and some of their properties are investigated. Moreover, we have discussed the relations between fuzzy SU-subalgebras and fuzzy SU-ideals of SU-algebras. #### 1. Introduction The study of BCI/BCK-algebras was initiated by Iseki in 1966 as a generalization of a concept of set-theoretic difference and propositional calculus [1]. In 1983, Hu and Li introduced the notion of a BCH-algebra which is a generalization of BCI/BCK-algebras [2]. Recently, a new algebraic structure was presented as SU-algebra and a concept of ideal in SU-algebra [3]. In 1965, Zadeh defined fuzzy subset of a non-empty set as a collection of objects with grade of membership in continuum, with each object being assigned a value between 0 and 1 by a membership function [4]. © 2013 Pushpa Publishing House 2010 Mathematics Subject Classification: 03G25, 06F35, 08A72. Keywords and phrases: SU-algebra, fuzzy SU-subalgebra, fuzzy SU-ideal. *Corresponding author Submitted by K. K. Azad Received October 31, 2012 In 1991, Xi applied the concept of fuzzy set in BCK-algebras and defined fuzzy subalgebra on BCK-algebras [5]. In 2011, Mostafa et al. [6] introduced the notion of fuzzy KU-ideals of KU-algebras and they also investigated several basic properties of fuzzy KU-ideals of KU-algebras. The aim of this work is to introduce the concept of fuzzy SU-subalgebras and fuzzy SU-ideals of SU-algebras. Furthermore, we investigate some of their properties. ## 2. Preliminaries We give some definitions and results which will be used in other sections. **Definition 2.1** [3]. A SU-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms: $$(1) ((x * y) * (x * z)) * (y * z) = 0,$$ (2) $$x * 0 = x$$, (3) if $$x * y = 0$$ implies $x = y$ for all $x, y, z \in X$. From now on, a binary operation "*" will be denoted by juxtaposition. **Example 2.2** [3]. Let $X = \{0, 1, 2, 3\}$ be a set in which operation * is defined by the following: Then *X* is a SU-algebra. **Theorem 2.3** [3]. Let X be a SU-algebra. Then the following results hold for all $x, y, z \in X$: - (1) xx = 0, - (2) xy = yx, - (3) 0x = x, - (4) (xy)z = (xz)y, - (5) x(yz) = z(yx), - (6) (xy)z = x(yz). **Theorem 2.4** [3]. Let X be a SU-algebra. A nonempty subset I of X is called a SU-subalgebra of X if $xy \in I$ for all $x, y \in I$. **Definition 2.5** [3]. Let X be a SU-algebra. A nonempty subset I of X is called an *ideal* of X if it satisfies the following properties: - $(1) \ 0 \in I$, - (2) if $(xy)z \in I$ and $y \in I$ imply $xz \in I$ for all $x, y, z \in X$. **Theorem 2.6** [3]. Let X be a SU-algebra. Then X is a BCI-algebra. **Theorem 2.7** [7]. Let X be a BCI-algebra. A nonempty subset A of X is called an ideal of X if it satisfies the following properties: - $(1) \ 0 \in A$, - (2) if $xy \in A$ and $y \in A$ imply $x \in A$, for all $x, y \in X$. **Definition 2.8** [4]. Let X be a set. A fuzzy set μ in X is a function $\mu: X \to [0, 1]$. **Definition 2.9** [7]. Let X be a BCI-algebra. A fuzzy set μ in X is called a *fuzzy BCI-ideal* of X if it satisfies the following properties: - $(F_1) \ \mu(0) \ge \mu(x),$ - (F_2) $\mu(x) \ge \min\{\mu(xy), \mu(y)\}$ for all $x, y \in X$. ### 3. Fuzzy SU-subalgebras We first give the definition of fuzzy SU-subalgebra and provide some of its properties. **Definition 3.1.** Let *X* be a SU-algebra. A fuzzy set μ in *X* is called *fuzzy* SU-subalgebra of *X* if $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. The set $Im(\mu) = \{t \in [0, 1] | \mu(x) = t \text{ for some } x \in X\}$ is called the *image* set of μ . **Definition 3.2.** Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of X. The set $\mu_t = \{x \in X \mid \mu(x) \geq t\}$, where $t \in [0, 1]$ is fixed, is called a *level SU-subalgebra* of μ . Clearly, $\mu_t \subseteq \mu_s$ whenever $s, t \in [0, 1]$ with t > s. **Example 3.3.** Let $X = \{0, 1, 2, 3\}$ be a set in which operation * is defined as Example 2.2. Define a fuzzy set $\mu: X \to [0, 1]$ by $\mu(0) = 1$, $\mu(1) = 0.5$ and $\mu(2) = \mu(3) = 0$. Then μ is a fuzzy SU-subalgebra of X. **Lemma 3.4.** Let X be a SU-algebra. If μ is a fuzzy SU-subalgebra of X, then $\mu(0) \ge \mu(x)$ for all $x \in X$. **Proof.** Let $x \in X$. Since xx = 0, $\mu(0) = \mu(xx) \ge \min\{\mu(x), \mu(x)\}$ = $\mu(x)$. Thus, $\mu(0) \ge \mu(x)$. **Theorem 3.5.** Let X be a SU-algebra and μ be a fuzzy set of X. Then μ_t is a SU-subalgebra of X for any $t \in [0, 1]$ and $\mu_t \neq \phi$ if and only if μ is a fuzzy SU-subalgebra of X. **Proof.** Let $t \in [0, 1]$ and $\mu_t \neq \emptyset$. Let μ_t be a SU-subalgebra of X. Assuming μ is not a fuzzy SU-subalgebra of X, there exist $x, y \in X$ such that $\mu(xy) < \min\{\mu(x), \mu(y)\}$. Letting $\alpha = \frac{1}{2}(\mu(xy) + \min\{\mu(x), \mu(y)\})$, we have $\mu(xy) < \alpha < \min\{\mu(x), \mu(y)\}$ which implies $\alpha \in [0, 1]$, $x \in \mu_{\alpha}$, $y \in \mu_{\alpha}$ and $xy \notin \mu_{\alpha}$, then $\mu_{\alpha} \neq \phi$. Hence μ_{α} is SU-subalgebra of X, we have $xy \in \mu_{\alpha}$, which is a contradiction. Thus, $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. Therefore, μ is a fuzzy SU-subalgebra of X. Conversely, let μ be a fuzzy SU-subalgebra of X. For any $x, y \in \mu_t$, then $\mu(xy) \ge \min\{\mu(x), \mu(y)\} \ge t$, we have $xy \in \mu_t$. Thus, μ_t is a SU-subalgebra of X. **Theorem 3.6.** Let X be a SU-algebra and A be a SU-subalgebra of X. Then for any $t \in (0, 1]$, there exists a fuzzy SU-subalgebra μ of X such that $\mu_t = A$. **Proof.** Let A be a SU-subalgebra of X and μ be a fuzzy set of X defined by $$\mu(x) = \begin{cases} t, & \text{if } x \in A; \\ 0, & \text{if } x \notin A; \end{cases}$$ where $t \in (0, 1]$ is fixed. We will show that μ is fuzzy SU-subalgebra of X. Let $x, y \in X$. If $x, y \in A$, then we have $xy \in A$ and $\mu(x) = \mu(y) = \mu(xy) = t$. Hence $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$. Assume that either x or y is not in A. We have $\min\{\mu(x), \mu(y)\} = 0$. Hence $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$. Then μ is fuzzy SU-subalgebra of X. It is clear that $\mu_t = A$ which completes the proof. **Theorem 3.7.** Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of X. If μ_S , μ_t for some $0 \le s < t \le 1$ are level SU-subalgebras of μ , then $\mu_S = \mu_t$ if and only if $\{x \in X \mid s \le \mu(x) < t\} = \emptyset$. **Proof.** Let μ_s , μ_t be level SU-subalgebras of μ for some $0 \le s < t \le 1$. Let $\mu_s = \mu_t$. Suppose $\{x \in X \mid s \le \mu(x) < t\} \ne \emptyset$. There exists $y \in X$ such that $s \le \mu(y) < t$, then $y \in \mu_s$ but $y \notin \mu_t$. Hence $\mu_s \ne \mu_t$, which is a contradiction. Conversely, let $\{x \in X \mid s \leq \mu(x) < t\} = \emptyset$. It is obvious that $\mu_t \subseteq \mu_s$. If $x \in \mu_s$, then we have $\mu(x) \geq s$. Since $\{x \in X \mid s \leq \mu(x) < t\} = \emptyset$, we have $\mu(x) \geq t$, $x \in \mu_t$, thus, $\mu_s \subseteq \mu_t$. Therefore, $\mu_s = \mu_t$. **Remark.** If $t_1 = \mu(0)$, then μ_{t_1} is the smallest level SU-subalgebra. Hence we have $\mu_{t_1} \subset \mu_{t_2} \subset \mu_{t_3} \subset \cdots \subset \mu_{t_n} = X$, where $\text{Im}(\mu) = \{t_1, t_2, t_3, ..., t_n\}$ with $t_1 > t_2 > t_3 > \cdots > t_n$, where n is positive integer. Note that in Example 3.3, if $t_1 = 1$, then we have $\mu_{t_1} = \{0\}$. If $t_2 = 0.5$, then we have $\mu_{t_2} = \{0, 1\}$. If $t_3 = 0$, then we have $\mu_{t_3} = \{0, 1, 2, 3\} = X$. Therefore, $\mu_{t_1} \subset \mu_{t_2} \subset \mu_{t_3} = X$. **Corollary 3.8.** Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of X. If $\operatorname{Im}(\mu) = \{t_1, t_2, t_3, ..., t_n\}$ with $t_1 > t_2 > t_3 > \cdots > t_n$, then the set $\{\mu_{t_i} \mid 1 \leq i \leq n\}$ is the set of all level SU-subalgebras of μ . **Proof.** Let $\beta \in [0, 1]$ and $\beta \notin \operatorname{Im}(\mu)$. We will show that μ_{β} belongs to the set $\{\mu_{t_i} \mid 1 \leq i \leq n\}$. If $t_1 < \beta$, then $\mu_{\beta} \subseteq \mu_{t_1}$. Since μ_{t_1} is smallest level SU-subalgebra, we have $\mu_{\beta} = \emptyset$. If $t_i < \beta < t_{i+1}$, then $\{x \in X \mid \beta \leq \mu(x) < t_{i+1}\} = \emptyset$. From Theorem 3.7, $\mu_{t_{i+1}} = \mu_{\beta}$. If $\beta < t_n$, then $\mu_{t_n} \subseteq \mu_{\beta}$. Since $\mu_{t_n} = X$, we have $\mu_{\beta} = X$. Hence $\mu_{t_n} = \mu_{\beta}$. Therefore, for any $\beta \in [0, 1]$, the level SU-subalgebra is one of $\{\mu_{t_i} \mid 1 \leq i \leq n\}$. **Theorem 3.9.** Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of X with finite image. If $\mu_S = \mu_t$ for some $s, t \in Im(\mu)$, then s = t. **Proof.** Let $x \in X$ and $\mu_s = \mu_t$ for some $s, t \in \text{Im}(\mu)$. We will show that s = t. Assume s < t. Since $s \in \text{Im}(\mu)$, there exists $x \in X$ such that $\mu(x) = s < t$. We have $x \in \mu_s$ and $x \notin \mu_t$. Hence $\mu_s \neq \mu_t$, which is a contradiction. Assume t < s. Since $t \in \text{Im}(\mu)$, there exists $x \in X$ such that $\mu(x) = t < s$. We have $x \in \mu_t$ and $x \notin \mu_s$. Hence $\mu_t \neq \mu_s$, which is a contradiction. Therefore, s = t. ## 4. Fuzzy SU-ideals of SU-algebras In this section, we introduce the notions of fuzzy SU-ideal and discuss the related properties. **Definition 4.1.** Let X be a SU-algebra. A fuzzy set μ in X is called *fuzzy* SU-ideal of X if it satisfies the following conditions: $$(SF_1)$$ $\mu(0) \ge \mu(x)$, $$(SF_2) \ \mu(xz) \ge \min\{\mu((xy)z), \ \mu(y)\}\$$ for all $x, y, z \in X$. **Example 4.2.** Let $X = \{0, 1, 2, 3\}$ be a set in which operation * is defined as Example 2.2. A fuzzy set is defined as Example 3.3, then μ is a fuzzy SU-ideal of X. **Definition 4.3.** Let X be a SU-algebra and μ be a fuzzy SU-ideal of X. The set $\mu_t = \{x \in X \mid \mu(x) \geq t\}$, where $t \in [0, 1]$ is fixed, is called a level SU-ideal of μ . Clearly, $\mu_t \subseteq \mu_s$ whenever $s, t \in [0, 1]$ with t > s. **Theorem 4.4.** Let X be a SU-algebra. If μ_1 , μ_2 are fuzzy SU-ideals of X, then $\overline{\mu_2}$ is a fuzzy SU-ideal of X, where $\overline{\mu_2}(x) = \min\{\mu_1(x), \mu_2(x)\}$ for all $x \in X$. **Proof.** Let μ_1 , μ_2 be fuzzy SU-ideals of X. Obviously, $\overline{\mu_2}$ is a fuzzy set of X. So $\overline{\mu_2}(0) = \min\{\mu_1(0), \mu_2(0)\} \ge \min\{\mu_1(x), \mu_2(x)\} = \overline{\mu_2}(x)$. Thus, $\overline{\mu_2}(0) \ge \overline{\mu_2}(x)$ for all $x \in X$. Now we will show that $\overline{\mu_2}(xz) \ge \min\{\overline{\mu_2}((xy)z), \overline{\mu_2}(y)\}$ for all $x, y, z \in X$. We have $$\overline{\mu_{2}}(xz) = \min\{\mu_{1}(xz), \, \mu_{2}(xz)\}$$ $$\geq \min\{\min\{\mu_{1}((xy)z), \, \mu_{1}(y)\}, \, \min\{\mu_{2}((xy)z), \, \mu_{2}(y)\}\}$$ $$= \min\{\min\{\mu_{1}((xy)z), \, \mu_{2}((xy)z)\}, \, \min\{\mu_{1}(y), \, \mu_{2}(y)\}\}$$ $$= \min\{\overline{\mu_{2}}((xy)z), \, \overline{\mu_{2}}(y)\}.$$ Thus, $\overline{\mu_2}(xz) \ge \min\{\overline{\mu_2}((xy)z), \overline{\mu_2}(y)\}$ for all $x, y, z \in X$. Therefore, $\overline{\mu_2}$ is a fuzzy SU-ideal of X. In general, we get the following result. **Corollary 4.5.** Let X be a SU-algebra. If $\mu_1, \mu_2, ..., \mu_n$ are fuzzy SU-ideals of X, then $\overline{\mu_n}$ is a fuzzy SU-ideal of X, where $\overline{\mu_n}(x) = \min\{\mu_1(x), \mu_2(x), ..., \mu_n(x)\}$ for all $x \in X$ and n is positive integer. **Theorem 4.6.** Let X be a SU-algebra and μ be a fuzzy set of X. Then μ_t is a SU-ideal of X for any $t \in [0, 1]$ and $\mu_t \neq \phi$ if and only if μ is a fuzzy SU-ideal of X. **Proof.** Let $t \in [0, 1]$ be such that $\mu_t \neq \emptyset$. Let μ_t be a SU-ideal of X and let $x, y, z \in X$. Assuming $\mu(0) \geq \mu(x)$ is not true, there exists $y \in X$ such that $\mu(0) < \mu(y)$ and letting $\beta = \frac{1}{2}(\mu(0) + \mu(y))$, we have $\mu(0) < \beta < \mu(y)$ which implies $\beta \in [0, 1]$, $y \in \mu_{\beta}$ and $0 \notin \mu_{\beta}$, then $\mu_{\beta} \neq \emptyset$. Hence μ_{β} is SU-ideal of X, we have $0 \in \mu_{\beta}$, which is a contradiction. Thus, $\mu(0) \geq \mu(x)$ for all $x \in X$. Assuming $\mu(xz) \geq \min\{\mu((xy)z), \mu(y)\}$ is not true, there exist $a, b, c \in X$ such that $\mu(ac) < \min\{\mu((ab)c), \mu(b)\}$ and letting $\alpha = \frac{1}{2}(\mu(ac) + \min\{\mu((ab)c), \mu(b)\})$, we have $\mu(ac) < \alpha < \min\{\mu((ab)c), \mu(b)\}$ which implies $\alpha \in [0, 1]$, $(ab)c \in \mu_{\alpha}$, $b \in \mu_{\alpha}$ and $ac \notin \mu_{\alpha}$, then $\mu_{\alpha} \neq \emptyset$. Hence μ_{α} is SU-ideal of X, we have $ac \in \mu_{\alpha}$, which is a contradiction. Thus, $\mu(xz) \geq \min\{\mu((xy)z), \mu(y)\}$ for all $x, y, z \in X$. Therefore, μ is a fuzzy SU-ideal of X. Conversely, let μ be a fuzzy SU-ideal of X and let x, y, $z \in X$. Since $\mu_t \neq \phi$, there exists $y \in X$ such that $y \in \mu_t$. Since μ is a fuzzy SU-ideal of X, $\mu(0) \geq \mu(y) \geq t$. Hence $0 \in \mu_t$. Letting $(xy)z \in \mu_t$ and $y \in \mu_t$, we have $\mu(xz) \geq \min\{\mu((xy)z), \mu(y)\} \geq t$, hence $xz \in \mu_t$. Therefore, μ_t is a SU-ideal of X. Similarly as Theorem 3.7, we prove **Theorem 4.7.** Let X be a SU-algebra and μ be a fuzzy SU-ideal of X. If μ_s , μ_t for some $0 \le s < t \le 1$ are level SU-ideals of μ , then $\mu_s = \mu_t$ if and only if $\{x \in X \mid s \le \mu(x) < t\} = \phi$. **Theorem 4.8.** Let X be a SU-algebra and μ be a fuzzy set of X. Then μ is a fuzzy SU-subalgebra of X if and only if μ is a fuzzy SU-ideal of X. **Proof.** Let μ be a fuzzy SU-subalgebra of X. Let $x, y, z \in X$. By Lemma 3.4, we have $\mu(0) \geq \mu(x)$. Since μ is a fuzzy SU-subalgebra of X, $\mu(xz) \geq \min\{\mu(xy)z, \mu(y)\}$. Thus, μ is a fuzzy SU-ideal of X. Conversely, assume μ is a fuzzy SU-ideal of X. Let $x, y, z \in X$. By Theorem 2.3, we have (xy)y = x(yy) = x. We put z with y in (SF_2) , we have $\mu(xy) \geq \min\{\mu((xy)y), \mu(y)\} = \min\{\mu(x), \mu(y)\}$. Thus, μ is a fuzzy SU-subalgebra of X. **Theorem 4.9.** Let X be a SU-algebra and μ be a fuzzy set of X. If μ is a fuzzy SU-ideal of X, then μ is a fuzzy BCI-ideal of X. **Proof.** Let $x, y, z \in X$. Assuming μ is a fuzzy SU-ideal of X, we have $\mu(0) \ge \mu(x)$. We put z = 0 in (SF_2) , we have $\mu(x) \ge \min\{\mu(xy), \mu(y)\}$. Thus, μ is a fuzzy BCI-ideal of X. **Corollary 4.10.** Let X be a SU-algebra and μ be a fuzzy set of X. If μ is a fuzzy SU-subalgebra of X, then μ is a fuzzy BCI-ideal of X. # Acknowledgements The authors are highly grateful to the referees for several useful suggestions and valuable comments. Moreover, this work is supported by a grant from Kasetsart University. ## References - [1] Y. K. Iseki, An algebra related with a propositional calculus, M.J.A. 42 (1966), 26-29. - [2] Q. P. Hu and X. Li, On BCH-algebra, Mathematics Seminar Notes 11 (1983), 313-320. - [3] S. Keawrahun and U. Leerawat, On classification of a structure algebra: SU-algebras, Scientia Magna J. 7 (2011), 69-76. - [4] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353. - [5] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), 935-942. - [6] Samy M. Mostafa, Mokhtar A. Abd-Elnaby and Moustafa M. M. Yousef, Fuzzy ideals of KU-algebras, International Mathematical Forum 6 (2011), 3139-3149. - [7] A. Kordi and A. Moussavi, On fuzzy ideals of BCI-algebras, Pure Mathematics and Applications Journal 18 (2007), 301-310.