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Abstract 

In this paper, the notions of fuzzy SU-subalgebra and fuzzy SU-ideal 
in SU-algebra are introduced and some of their properties are 
investigated. Moreover, we have discussed the relations between fuzzy 
SU-subalgebras and fuzzy SU-ideals of SU-algebras. 

1. Introduction 

The study of BCI/BCK-algebras was initiated by Iseki in 1966 as a 
generalization of a concept of set-theoretic difference and propositional 
calculus [1]. In 1983, Hu and Li introduced the notion of a BCH-algebra 
which is a generalization of BCI/BCK-algebras [2]. Recently, a new 
algebraic structure was presented as SU-algebra and a concept of ideal in SU-
algebra [3]. In 1965, Zadeh defined fuzzy subset of a non-empty set as a 
collection of objects with grade of membership in continuum, with each 
object being assigned a value between 0 and 1 by a membership function [4]. 
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In 1991, Xi applied the concept of fuzzy set in BCK-algebras and defined 
fuzzy subalgebra on BCK-algebras [5]. In 2011, Mostafa et al. [6] introduced 
the notion of fuzzy KU-ideals of KU-algebras and they also investigated 
several basic properties of fuzzy KU-ideals of KU-algebras. The aim of this 
work is to introduce the concept of fuzzy SU-subalgebras and fuzzy SU-
ideals of SU-algebras. Furthermore, we investigate some of their properties. 

2. Preliminaries 

We give some definitions and results which will be used in other 
sections. 

Definition 2.1 [3]. A SU-algebra is a non-empty set X with a constant 0 
and a binary operation “*” satisfying the following axioms: 

(1) ( ) ( )( ) ( ) ,0=∗∗∗∗∗ zyzxyx  

(2) ,0 xx =∗  

(3) if 0=∗ yx  implies yx =  

for all .,, Xzyx ∈  

From now on, a binary operation “*” will be denoted by juxtaposition. 

Example 2.2 [3]. Let { }3,2,1,0=X  be a set in which operation * is 

defined by the following: 

01233
10322
23011
32100
3210∗

 

Then X is a SU-algebra. 

Theorem 2.3 [3]. Let X be a SU-algebra. Then the following results hold 
for all :,, Xzyx ∈  
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(1) ,0=xx  

(2) ,yxxy =  

(3) ,0 xx =  

(4) ( ) ( ) ,yxzzxy =  

(5) ( ) ( ),yxzyzx =  

(6) ( ) ( ).yzxzxy =  

Theorem 2.4 [3]. Let X be a SU-algebra. A nonempty subset I of X is 
called a SU-subalgebra of X if Ixy ∈  for all ., Iyx ∈  

Definition 2.5 [3]. Let X be a SU-algebra. A nonempty subset I of X is 
called an ideal of X if it satisfies the following properties: 

(1) ,0 I∈  

(2) if ( ) Izxy ∈  and Iy ∈  imply Ixz ∈  

for all .,, Xzyx ∈  

Theorem 2.6 [3]. Let X be a SU-algebra. Then X is a BCI-algebra. 

Theorem 2.7 [7]. Let X be a BCI-algebra. A nonempty subset A of X is 
called an ideal of X if it satisfies the following properties: 

(1) ,0 A∈  

(2) if Axy ∈  and Ay ∈  imply ,Ax ∈  

for all ., Xyx ∈  

Definition 2.8 [4]. Let X be a set. A fuzzy set μ in X is a function 
[ ].1,0: →μ X  

Definition 2.9 [7]. Let X be a BCI-algebra. A fuzzy set μ in X is called a 
fuzzy BCI-ideal of X if it satisfies the following properties: 
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( )1F  ( ) ( ),0 xμ≥μ  

( )2F  ( ) ( ) ( ){ }yxyx μμ≥μ ,min  

for all ., Xyx ∈  

3. Fuzzy SU-subalgebras 

We first give the definition of fuzzy SU-subalgebra and provide some of 
its properties. 

Definition 3.1. Let X be a SU-algebra. A fuzzy set μ in X is called fuzzy 
SU-subalgebra of X if ( ) ( ) ( ){ }yxxy μμ≥μ ,min  for all ., Xyx ∈  

The set ( ) [ ] ( ){ }Xxtxt ∈=μ|∈=μ somefor1,0Im  is called the image 

set of μ. 

Definition 3.2. Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of 
X. The set ( ){ },txXxt ≥μ|∈=μ  where [ ]1,0∈t  is fixed, is called a level 

SU-subalgebra of μ. Clearly, st μ⊆μ  whenever [ ]1,0, ∈ts  with .st >  

Example 3.3. Let { }3,2,1,0=X  be a set in which operation * is 

defined as Example 2.2. Define a fuzzy set [ ]1,0: →μ X  by ( ) ( )1,10 μ=μ  

5.0=  and ( ) ( ) .032 =μ=μ  Then μ is a fuzzy SU-subalgebra of X. 

Lemma 3.4. Let X be a SU-algebra. If μ is a fuzzy SU-subalgebra of X, 
then ( ) ( )xμ≥μ 0  for all .Xx ∈  

Proof. Let .Xx ∈  Since ,0=xx  ( ) ( ) ( ) ( ){ }xxxx μμ≥μ=μ ,min0  

( ).xμ=  Thus, ( ) ( ).0 xμ≥μ  

Theorem 3.5. Let X be a SU-algebra and μ be a fuzzy set of X. Then tμ  

is a SU-subalgebra of X for any [ ]1,0∈t  and φ≠μt  if and only if μ is a 

fuzzy SU-subalgebra of X. 

Proof. Let [ ]1,0∈t  and .φ≠μt  Let tμ  be a SU-subalgebra of X. 

Assuming μ  is not a fuzzy SU-subalgebra of X, there exist Xyx ∈,  such 
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that ( ) ( ) ( ){ }.,min yxxy μμ<μ  Letting ( ) ( ) ( ){ }( ),,min2
1 yxxy μμ+μ=α  we 

have ( ) ( ) ( ){ }yxxy μμ<α<μ ,min  which implies [ ] αα μ∈μ∈∈α yx ,,1,0  

and ,αμ∉xy  then .φ≠μα  Hence αμ  is SU-subalgebra of X, we have 

,αμ∈xy  which is a contradiction. Thus, ( ) ( ) ( ){ }yxxy μμ≥μ ,min  for all 

., Xyx ∈  Therefore, μ  is a fuzzy SU-subalgebra of X. 

Conversely, let μ be a fuzzy SU-subalgebra of X. For any ,, tyx μ∈  then 

( ) ( ) ( ){ } ,,min tyxxy ≥μμ≥μ  we have .txy μ∈  Thus, tμ  is a SU-subalgebra 

of X. 

Theorem 3.6. Let X be a SU-algebra and A be a SU-subalgebra of X. 
Then for any ( ],1,0∈t  there exists a fuzzy SU-subalgebra μ of X such that 

.At =μ  

Proof. Let A be a SU-subalgebra of X and μ be a fuzzy set of X defined 
by 

( )
⎩
⎨
⎧

∉

∈
=μ

;if,0

;if,

Ax

Axt
x  

where ( ]1,0∈t  is fixed. 

We will show that μ is fuzzy SU-subalgebra of X. Let ., Xyx ∈  If 

,, Ayx ∈  then we have Axy ∈  and ( ) ( ) ( ) .txyyx =μ=μ=μ  Hence 

( ) ( ) ( ){ }.,min yxxy μμ≥μ  Assume that either x or y is not in A. We have 

( ) ( ){ } .0,min =μμ yx  Hence ( ) ( ) ( ){ }.,min yxxy μμ≥μ  Then μ is fuzzy 

SU-subalgebra of X. It is clear that At =μ  which completes the proof. 

Theorem 3.7. Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of 
X. If ts μμ ,  for some 10 ≤<≤ ts  are level SU-subalgebras of μ, then 

ts μ=μ  if and only if ( ){ } .φ=<μ≤|∈ txsXx  

Proof. Let ts μμ ,  be level SU-subalgebras of μ for some .10 ≤<≤ ts  

Let .ts μ=μ  Suppose ( ){ } .φ≠<μ≤|∈ txsXx  There exists Xy ∈  such 
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that ( ) ,tys <μ≤  then sy μ∈  but .ty μ∉  Hence ,ts μ≠μ  which is a 

contradiction. 

Conversely, let ( ){ } .φ=<μ≤|∈ txsXx  It is obvious that .st μ⊆μ  If 

,sx μ∈  then we have ( ) .sx ≥μ  Since ( ){ } ,φ=<μ≤|∈ txsXx  we have 

( ) ,tx ≥μ  ,tx μ∈  thus, .ts μ⊆μ  Therefore, .ts μ=μ  

Remark. If ( ),01 μ=t  then 1tμ  is the smallest level SU-subalgebra. 

Hence we have ,321 Xntttt =μ⊂⊂μ⊂μ⊂μ  where ( ) =μIm  

{ }ntttt ...,,,, 321  with ,321 ntttt >>>>  where n is positive integer. 

Note that in Example 3.3, if ,11 =t  then we have { }.01 =μt  If ,5.02 =t  

then we have { }.1,02 =μt  If ,03 =t  then we have { } .3,2,1,03 Xt ==μ  

Therefore, .321 Xttt =μ⊂μ⊂μ  

Corollary 3.8. Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of 
X. If ( ) { }ntttt ...,,,,Im 321=μ  with ,321 ntttt >>>>  then the set 

{ }niit ≤≤|μ 1  is the set of all level SU-subalgebras of μ. 

Proof. Let [ ]1,0∈β  and ( ).Im μ∉β  We will show that βμ  belongs to 

the set { }.1 niit ≤≤|μ  If ,1 β<t  then .1tμ⊆μβ  Since 1tμ  is smallest level 

SU-subalgebra, we have .φ=μβ  If ,1+<β< ii tt  then { ( )xXx μ≤β|∈  

} .1 φ=< +it  From Theorem 3.7, .1 βμ=μ
+it  If ,nt<β  then .βμ⊆μ nt  

Since ,Xnt =μ  we have .X=μβ  Hence .βμ=μ nt  Therefore, for any 

[ ],1,0∈β  the level SU-subalgebra is one of { }.1 niit ≤≤|μ  

Theorem 3.9. Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of 
X with finite image. If ts μ=μ  for some ( ),Im, μ∈ts  then .ts =  

Proof. Let Xx ∈  and ts μ=μ  for some ( ).Im, μ∈ts  We will show 

that .ts =  Assume .ts <  Since ( ),Im μ∈s  there exists Xx ∈  such that 
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( ) .tsx <=μ  We have sx μ∈  and .tx μ∉  Hence ,ts μ≠μ  which is a 

contradiction. Assume .st <  Since ( ),Im μ∈t  there exists Xx ∈  such that 

( ) .stx <=μ  We have tx μ∈  and .sx μ∉  Hence ,st μ≠μ  which is a 

contradiction. Therefore, .ts =  

4. Fuzzy SU-ideals of SU-algebras 

In this section, we introduce the notions of fuzzy SU-ideal and discuss 
the related properties. 

Definition 4.1. Let X be a SU-algebra. A fuzzy set μ in X is called fuzzy 
SU-ideal of X if it satisfies the following conditions: 

( )1SF  ( ) ( ),0 xμ≥μ  

( )2SF  ( ) { ( )( ) ( )}yzxyxz μμ≥μ ,min  

for all .,, Xzyx ∈  

Example 4.2. Let { }3,2,1,0=X  be a set in which operation * is 

defined as Example 2.2. A fuzzy set is defined as Example 3.3, then μ is a 
fuzzy SU-ideal of X. 

Definition 4.3. Let X be a SU-algebra and μ be a fuzzy SU-ideal of X. 
The set ( ){ },txXxt ≥μ|∈=μ  where [ ]1,0∈t  is fixed, is called a level 

SU-ideal of .μ  Clearly, st μ⊆μ  whenever [ ]1,0, ∈ts  with .st >  

Theorem 4.4. Let X be a SU-algebra. If 21, μμ  are fuzzy SU-ideals of X, 

then 2μ  is a fuzzy SU-ideal of X, where ( ) ( ) ( ){ }xxx 212 ,min μμ=μ  for all 

.Xx ∈  

Proof. Let 21, μμ  be fuzzy SU-ideals of X. Obviously, 2μ  is a fuzzy set 

of X. So ( ) ( ) ( ){ } ( ) ( ){ } ( ).,min0,0min0 221212 xxx μ=μμ≥μμ=μ  Thus, 

( ) ( )x22 0 μ≥μ  for all .Xx ∈  Now we will show that ( ) ≥μ xz2  

{ ( )( ) ( )}yzxy 22 ,min μμ  for all .,, Xzyx ∈  We have 
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( ) { ( ) ( )}xzxzxz 212 ,min μμ=μ  

{ { ( )( ) ( )} { ( )( ) ( )}}yzxyyzxy 2211 ,min,,minmin μμμμ≥  

{ { ( )( ) ( )( )} { ( ) ( )}}yyzxyzxy 2121 ,min,,minmin μμμμ=  

{ ( )( ) ( )}.,min 22 yzxy μμ=  

Thus, ( ) { ( )( ) ( )}yzxyxz 222 ,min μμ≥μ  for all .,, Xzyx ∈  Therefore, 2μ  

is a fuzzy SU-ideal of X. 

In general, we get the following result. 

Corollary 4.5. Let X be a SU-algebra. If nμμμ ...,,, 21  are fuzzy 

SU-ideals of X, then nμ  is a fuzzy SU-ideal of X, where ( ) =μ xn  

( ) ( ) ( ){ }xxx nμμμ ...,,,min 21  for all Xx ∈  and n is positive integer. 

Theorem 4.6. Let X be a SU-algebra and μ be a fuzzy set of X. Then tμ  

is a SU-ideal of X for any [ ]1,0∈t  and φ≠μt  if and only if μ is a fuzzy 

SU-ideal of X. 

Proof. Let [ ]1,0∈t  be such that .φ≠μt  Let tμ  be a SU-ideal of X and 

let .,, Xzyx ∈  Assuming ( ) ( )xμ≥μ 0  is not true, there exists Xy ∈  such 

that ( ) ( )yμ<μ 0  and letting ( ) ( )( ),02
1 yμ+μ=β  we have ( ) ( )yμ<β<μ 0  

which implies [ ],1,0∈β  βμ∈y  and ,0 βμ∉  then .φ≠μβ  Hence βμ  is 

SU-ideal of X, we have ,0 βμ∈  which is a contradiction. Thus, ( ) ( )xμ≥μ 0  

for all .Xx ∈  Assuming ( ) ( )( ) ( ){ }yzxyxz μμ≥μ ,min  is not true, there exist 

Xcba ∈,,  such that ( ) ( )( ) ( ){ }bcabac μμ<μ ,min  and letting ( ( )acμ=α 2
1  

{ ( )( ) ( )}),,min bcab μμ+  we have ( ) ( )( ) ( ){ }bcabac μμ<α<μ ,min  which 

implies [ ] ( ) αα μ∈μ∈∈α bcab ,,1,0  and ,αμ∉ac  then .φ≠μα  Hence 

αμ  is SU-ideal of X, we have ,αμ∈ac  which is a contradiction. Thus, 

( ) ( )( ) ( ){ }yzxyxz μμ≥μ ,min  for all .,, Xzyx ∈  Therefore, μ is a fuzzy 

SU-ideal of X. 
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Conversely, let μ be a fuzzy SU-ideal of X and let .,, Xzyx ∈  Since 

,φ≠μt  there exists Xy ∈  such that .ty μ∈  Since μ is a fuzzy SU-ideal of 

X, ( ) ( ) .0 ty ≥μ≥μ  Hence .0 tμ∈  Letting ( ) tzxy μ∈  and ,ty μ∈  we 

have ( ) ( )( ) ( ){ } ,,min tyzxyxz ≥μμ≥μ  hence .txz μ∈  Therefore, tμ  is a 
SU-ideal of X. 

Similarly as Theorem 3.7, we prove 

Theorem 4.7. Let X be a SU-algebra and μ be a fuzzy SU-ideal of X. If 

ts μμ ,  for some 10 ≤<≤ ts  are level SU-ideals of μ, then ts μ=μ  if and 

only if ( ){ } .φ=<μ≤|∈ txsXx  

Theorem 4.8. Let X be a SU-algebra and μ be a fuzzy set of X. Then μ is 
a fuzzy SU-subalgebra of X if and only if μ is a fuzzy SU-ideal of X. 

Proof. Let μ be a fuzzy SU-subalgebra of X. Let .,, Xzyx ∈  By 

Lemma 3.4, we have ( ) ( ).0 xμ≥μ  Since μ is a fuzzy SU-subalgebra of X,  

( ) ( ) ( ){ }.,min yzxyxz μμ≥μ  Thus, μ is a fuzzy SU-ideal of X. Conversely, 

assume μ is a fuzzy SU-ideal of X. Let .,, Xzyx ∈  By Theorem 2.3, we 

have ( ) ( ) .xyyxyxy ==  We put z with y in ( ),2SF  we have ( )xyμ  

( )( ) ( ){ } ( ) ( ){ }.,min,min yxyyxy μμ=μμ≥  Thus, μ is a fuzzy SU-subalgebra 
of X. 

Theorem 4.9. Let X be a SU-algebra and μ be a fuzzy set of X. If μ is a 
fuzzy SU-ideal of X, then μ is a fuzzy BCI-ideal of X. 

Proof. Let .,, Xzyx ∈  Assuming μ is a fuzzy SU-ideal of X, we have 

( ) ( ).0 xμ≥μ  We put 0=z  in ( ),2SF  we have ( ) ( ) ( ){ }.,min yxyx μμ≥μ  

Thus, μ is a fuzzy BCI-ideal of X. 

Corollary 4.10. Let X be a SU-algebra and μ be a fuzzy set of X. If μ is a 
fuzzy SU-subalgebra of X, then μ is a fuzzy BCI-ideal of X. 
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