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Abstract

In this paper, the notions of fuzzy SU-subalgebra and fuzzy SU-ideal
in SU-algebra are introduced and some of their properties are
investigated. Moreover, we have discussed the relations between fuzzy
SU-subalgebras and fuzzy SU-ideals of SU-algebras.

1. Introduction

The study of BCI/BCK-algebras was initiated by Iseki in 1966 as a
generalization of a concept of set-theoretic difference and propositional
calculus [1]. In 1983, Hu and Li introduced the notion of a BCH-algebra
which is a generalization of BCI/BCK-algebras [2]. Recently, a new
algebraic structure was presented as SU-algebra and a concept of ideal in SU-
algebra [3]. In 1965, Zadeh defined fuzzy subset of a non-empty set as a
collection of objects with grade of membership in continuum, with each
object being assigned a value between 0 and 1 by a membership function [4].
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In 1991, Xi applied the concept of fuzzy set in BCK-algebras and defined
fuzzy subalgebra on BCK-algebras [5]. In 2011, Mostafa et al. [6] introduced
the notion of fuzzy KU-ideals of KU-algebras and they also investigated
several basic properties of fuzzy KU-ideals of KU-algebras. The aim of this
work is to introduce the concept of fuzzy SU-subalgebras and fuzzy SU-
ideals of SU-algebras. Furthermore, we investigate some of their properties.

2. Preliminaries

We give some definitions and results which will be used in other
sections.

Definition 2.1 [3]. A SU-algebra is a non-empty set X with a constant 0
and a binary operation “* satisfying the following axioms:

@) (x*y)*(x*2))*(y*2) =0,
(2) x*0 = x,
(3) if x*y =0 implies x =y
forall x, y, z € X.
From now on, a binary operation “*” will be denoted by juxtaposition.

Example 2.2 [3]. Let X ={0, 1, 2, 3} be a set in which operation * is
defined by the following:

(.A)I\)}—\Ol*
w N B OO
N W O |k
R O W NN
O P N Wliw

Then X is a SU-algebra.

Theorem 2.3 [3]. Let X be a SU-algebra. Then the following results hold
forall x, y, z € X:
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(1) xx =0,
(2) xy = yx,
(3) Ox = x,

4) (xy)z = (x2)y,
(5) x(yz) = z(yx),

(6) (xy)z = x(yz).

Theorem 2.4 [3]. Let X be a SU-algebra. A nonempty subset | of X is
called a SU-subalgebra of X if xy € | forall x, y  I.

Definition 2.5 [3]. Let X be a SU-algebra. A nonempty subset | of X is
called an ideal of X if it satisfies the following properties:

(1) 0el,
(2)if (xy)zel and y € | imply xz € |
forall x, y, z € X.

Theorem 2.6 [3]. Let X be a SU-algebra. Then X is a BCl-algebra.

Theorem 2.7 [7]. Let X be a BCl-algebra. A nonempty subset A of X is
called an ideal of X if it satisfies the following properties:

(1) 0e A
2 if xye Aand y € A imply x € A,
forall x, y € X.

Definition 2.8 [4]. Let X be a set. A fuzzy set p in X is a function
u: X —|[0,1].

Definition 2.9 [7]. Let X be a BCl-algebra. A fuzzy set pin X is called a
fuzzy BCl-ideal of X if it satisfies the following properties:
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(Fp) 1(0) > p(x),

(F2) w(x) = min{u(xy), n(y)}
forall x, y € X.

3. Fuzzy SU-subalgebras

We first give the definition of fuzzy SU-subalgebra and provide some of
its properties.

Definition 3.1. Let X be a SU-algebra. A fuzzy set p in X is called fuzzy
SU-subalgebra of X if p(xy) > min{u(x), u(y)} forall x, y € X.

The set Im(u) = {t € [0, 1]|u(x) =t for some x e X} is called the image
set of p.

Definition 3.2. Let X be a SU-algebra and p be a fuzzy SU-subalgebra of
X. The set py = {x € X |u(x) > t}, where t € [0, 1] is fixed, is called a level
SU-subalgebra of p. Clearly, uy < pug whenever s, t € [0, 1] with t > s.

Example 3.3. Let X ={0,1, 2, 3} be a set in which operation * is
defined as Example 2.2. Define a fuzzy set pu: X — [0, 1] by w(0) =1, u()
= 0.5 and w(2) = u(3) = 0. Then p is a fuzzy SU-subalgebra of X.

Lemma 3.4. Let X be a SU-algebra. If p is a fuzzy SU-subalgebra of X,
then w(0) > u(x) forall x e X.

Proof. Let xe X. Since xx =0, w0)=p(xx)> min{u(x), u(x)}
= u(x). Thus, u(0) > u(x).

Theorem 3.5. Let X be a SU-algebra and p be a fuzzy set of X. Then p
is a SU-subalgebra of X for any t € [0, 1] and p; = ¢ if and only if pis a
fuzzy SU-subalgebra of X.

Proof. Let t €[0,1] and p; = ¢. Let p; be a SU-subalgebra of X.
Assuming p is not a fuzzy SU-subalgebra of X, there exist x, y € X such
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. . 1 i
that p(xy) < minip(x), u(y)j. Letting a = 3 (u(xy) + min{u(x), u(y)), we
have u(xy) < a < min{u(x), u(y)} which implies o €[0,1], X € puy, Y € pg
and xy ¢ p,, then p, # ¢. Hence p, is SU-subalgebra of X, we have

Xy € p,, Which is a contradiction. Thus, w(xy) > min{u(x), u(y)} for all
X, y € X. Therefore, u is a fuzzy SU-subalgebra of X.

Conversely, let u be a fuzzy SU-subalgebra of X. For any X, y € p, then
w(xy) = min{u(x), u(y)} > t, we have xy e p;. Thus, p; is a SU-subalgebra
of X.

Theorem 3.6. Let X be a SU-algebra and A be a SU-subalgebra of X.
Then for any t e (0, 1], there exists a fuzzy SU-subalgebra p of X such that
ue = A

Proof. Let A be a SU-subalgebra of X and p be a fuzzy set of X defined
by

t, if xe A
H(x) = {0, if xe A

where t € (0, 1] is fixed.

We will show that u is fuzzy SU-subalgebra of X. Let x, y € X. If
X, y € A, then we have xy e A and p(x)=n(y) = u(xy)=1t. Hence
u(xy) = min{u(x), p(y)}. Assume that either x or y is not in A. We have

min{u(x), u(y)} = 0. Hence u(xy) = min{u(x), u(y)}. Then p is fuzzy
SU-subalgebra of X. It is clear that pu; = A which completes the proof.

Theorem 3.7. Let X be a SU-algebra and p be a fuzzy SU-subalgebra of
X If pg, pe for some 0 <s<t<1 are level SU-subalgebras of p, then

us =y ifandonly if {x e X |s < p(x) <t} = ¢.

Proof. Let pg, p; be level SU-subalgebras of p for some 0 <s <t <1.

Let ug = pt. Suppose {x € X |s < pu(x) <t} # ¢. There exists y € X such
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that s <u(y)<t, then y e ug but y ¢ . Hence pg # py, which is a
contradiction.

Conversely, let {x € X |s < u(x) <t} = ¢. Itis obvious that p; < pg. If
X € ug, then we have p(x) >s. Since {x € X |s < u(x) <t} = ¢, we have
w(x) >t, x e, thus, pg < . Therefore, pug = py.

Remark. If t = u(0), then py is the smallest level SU-subalgebra.
Hence we have wy cpy, < pyy - cpy, =X, where Im(u) =
{1, to, t3, ..., ty} With t; > t, > t3 > --- > t,,, where n is positive integer.

Note that in Example 3.3, if t =1, then we have py, = {0}. If t; = 0.5,
then we have He, = {0, 1}. If t3 = 0, then we have Hig = {0,1, 2,3} =X.
Therefore, py < py, < py = X.

Corollary 3.8. Let X be a SU-algebra and p be a fuzzy SU-subalgebra of

X Mf Im(p) = {ty, t, t3, ..., t,} with t >ty >t3 >--->1t,, then the set

{ng, |1 < i < n} is the set of all level SU-subalgebras of p.

Proof. Let B € [0, 1] and B ¢ Im(n). We will show that pg belongs to
the set {”ti |I1<i<n} Ift; <B, then Hp C M- Since My is smallest level
SU-subalgebra, we have pg =¢. If tj <B <tj,q, then {x e X|B < p(x)
<tjy1} = ¢. From Theorem 3.7, pg , =pg. If p<ty, then py < pg.
Since He, = X, we have ng = X. Hence Ht, = Hp- Therefore, for any
B € [0, 1], the level SU-subalgebra is one of {“ti |I1<i<n}

Theorem 3.9. Let X be a SU-algebra and p be a fuzzy SU-subalgebra of
X with finite image. If ug = p; for some s, t € Im(u), then s =t.

Proof. Let x € X and pg = p; for some s, t € Im(un). We will show

that s =t. Assume s <t. Since s € Im(n), there exists x € X such that



Fuzzy SU-subalgebras and Fuzzy SU-ideals 197

w(x) =s <t. We have x e ug and x ¢ p;. Hence pg # pt, which is a
contradiction. Assume t < s. Since t € Im(u), there exists x € X such that
w(x) =t <s. We have x e u; and x ¢ pg. Hence p # pg, which is a
contradiction. Therefore, s = t.

4. Fuzzy SU-ideals of SU-algebras
In this section, we introduce the notions of fuzzy SU-ideal and discuss

the related properties.

Definition 4.1. Let X be a SU-algebra. A fuzzy set u in X is called fuzzy
SU-ideal of X if it satisfies the following conditions:

(SF1) (0) = u(x),
(SF2) n(xz) = min{u((xy)z), u(y)}
forall x, y, z € X.

Example 4.2. Let X ={0,1, 2, 3} be a set in which operation * is

defined as Example 2.2. A fuzzy set is defined as Example 3.3, then p is a
fuzzy SU-ideal of X.

Definition 4.3. Let X be a SU-algebra and p be a fuzzy SU-ideal of X.
The set py = {x € X |u(x) >t}, where t € [0, 1] is fixed, is called a level

SU-ideal of p. Clearly, uy < pg whenever s, t € [0, 1] with t > s.
Theorem 4.4. Let X be a SU-algebra. If yy, py, are fuzzy SU-ideals of X,
then p, is a fuzzy SU-ideal of X, where p,(x) = min{uy(x), py(x)} for all

X e X.

Proof. Let g, ny be fuzzy SU-ideals of X. Obviously, H_z is a fuzzy set
of X. S0 pp(0) = minfuy(0), pa(0)} > minfuy(x), pa(X)} = pa(x). Thus,
1(0) > uy(x) for all xe X. Now we will show that poy(xz)>

min{u,((xy)z), ny(y)} forall x, y, z e X. We have
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Ha(x2) = minfuy (x2), po(x2)}
= min{min{uy ((xy)z), pg(y)}, min{ua((xy)z), ra(y)}}
= min{min{py ((xy)z), pa((xy)z)} min{uy(y), na(y)i}
= min{uz((xy)2), pa(y)}-
Thus, po(xz) = min{p,((xy)z), uo(y)! for all x, y, z € X. Therefore, p,
is a fuzzy SU-ideal of X.
In general, we get the following result.
Corollary 4.5. Let X be a SU-algebra. If pq, po, ..., uy are fuzzy
SU-ideals of X, then p, is a fuzzy SU-ideal of X, where pp(x)=

min{uy(x), po(X), ..., up(x)} forall x e X and n is positive integer.

Theorem 4.6. Let X be a SU-algebra and p be a fuzzy set of X. Then p
is a SU-ideal of X for any t € [0,1] and p; = ¢ if and only if u is a fuzzy
SU-ideal of X.

Proof. Let t € [0, 1] be such that p; = ¢. Let p; be a SU-ideal of X and

let X, y, z € X. Assuming w(0) > p(x) is not true, there exists y € X such

that w(0) < pu(y) and letting B = %(H(O) +u(y)), we have p(0) < B < wu(y)
which implies B € [0,1], y e pg and 0 ¢ pg, then pg # ¢. Hence pg is
SU-ideal of X, we have 0 € pg, which is a contradiction. Thus, p(0) > (x)
forall x e X. Assuming p(xz) > min{u((xy)z), u(y)} is not true, there exist

a, b, c e X such that p(ac) < min{u((ab)c), u(b)} and letting o = %(p(ac)

+ min{u((ab)c), w(b)}), we have p(ac) < a < min{u((ab)c), n(b)} which
implies o € [0, 1], (ab)c € py, b € p, and ac ¢ p,, then p, # ¢. Hence
Ko IS SU-ideal of X, we have ac € p,, which is a contradiction. Thus,
w(xz) > min{u((xy)z), w(y); for all x, y, z e X. Therefore, pn is a fuzzy
SU-ideal of X.
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Conversely, let u be a fuzzy SU-ideal of X and let x, y, z € X. Since
Ky # ¢, there exists y € X such that y € py. Since p is a fuzzy SU-ideal of
X, w(0)>p(y)>t. Hence 0 e p;. Letting (xy)z e puy and y e pg, we
have p(xz) > min{u((xy)z), p(y)} > t, hence xz e p;. Therefore, p; is a
SU-ideal of X.

Similarly as Theorem 3.7, we prove

Theorem 4.7. Let X be a SU-algebra and p be a fuzzy SU-ideal of X. If
ug, Kt forsome 0 <s <t <1 are level SU-ideals of , then pg = p; if and
only if {x € X|s < u(x) <t} = ¢.

Theorem 4.8. Let X be a SU-algebra and u be a fuzzy set of X. Then p is
a fuzzy SU-subalgebra of X if and only if p is a fuzzy SU-ideal of X.

Proof. Let u be a fuzzy SU-subalgebra of X. Let X, y,z e X. By
Lemma 3.4, we have p(0) > u(x). Since u is a fuzzy SU-subalgebra of X,
w(xz) = min{u(xy)z, u(y);. Thus, p is a fuzzy SU-ideal of X. Conversely,
assume p is a fuzzy SU-ideal of X. Let x, y, z € X. By Theorem 2.3, we
have (xy)y = x(yy) = x. We put z with y in (SF,), we have p(xy)
> min{u((xy)y), u(y)} = min{u(x), u(y)}. Thus, u is a fuzzy SU-subalgebra
of X.

Theorem 4.9. Let X be a SU-algebra and p be a fuzzy set of X. If pis a
fuzzy SU-ideal of X, then p is a fuzzy BCl-ideal of X.

Proof. Let X, y, z € X. Assuming u is a fuzzy SU-ideal of X, we have

w(0) > u(x). We put z =0 in (SF,), we have p(x) > min{u(xy), u(y);-
Thus, u is a fuzzy BCl-ideal of X.

Corollary 4.10. Let X be a SU-algebra and p be a fuzzy set of X. If pis a
fuzzy SU-subalgebra of X, then u is a fuzzy BCl-ideal of X.
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