Far East Journal of Mathematical Sciences (FJMS)

Volume 74, Number 1, 2013, Pages 191-200 Published Online: March 2013

Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

FUZZY SU-SUBALGEBRAS AND FUZZY SU-IDEALS

Rattana Sukklin and Utsanee Leerawat*

Department of Mathematics
Kasetsart University
Bangkok, Thailand

e-mail: rattana.nueng@gmail.com

fsciutl@ku.ac.th

Abstract

In this paper, the notions of fuzzy SU-subalgebra and fuzzy SU-ideal in SU-algebra are introduced and some of their properties are investigated. Moreover, we have discussed the relations between fuzzy SU-subalgebras and fuzzy SU-ideals of SU-algebras.

1. Introduction

The study of BCI/BCK-algebras was initiated by Iseki in 1966 as a generalization of a concept of set-theoretic difference and propositional calculus [1]. In 1983, Hu and Li introduced the notion of a BCH-algebra which is a generalization of BCI/BCK-algebras [2]. Recently, a new algebraic structure was presented as SU-algebra and a concept of ideal in SU-algebra [3]. In 1965, Zadeh defined fuzzy subset of a non-empty set as a collection of objects with grade of membership in continuum, with each object being assigned a value between 0 and 1 by a membership function [4]. © 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 03G25, 06F35, 08A72.

Keywords and phrases: SU-algebra, fuzzy SU-subalgebra, fuzzy SU-ideal.

*Corresponding author Submitted by K. K. Azad Received October 31, 2012 In 1991, Xi applied the concept of fuzzy set in BCK-algebras and defined fuzzy subalgebra on BCK-algebras [5]. In 2011, Mostafa et al. [6] introduced the notion of fuzzy KU-ideals of KU-algebras and they also investigated several basic properties of fuzzy KU-ideals of KU-algebras. The aim of this work is to introduce the concept of fuzzy SU-subalgebras and fuzzy SU-ideals of SU-algebras. Furthermore, we investigate some of their properties.

2. Preliminaries

We give some definitions and results which will be used in other sections.

Definition 2.1 [3]. A SU-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

$$(1) ((x * y) * (x * z)) * (y * z) = 0,$$

(2)
$$x * 0 = x$$
,

(3) if
$$x * y = 0$$
 implies $x = y$

for all $x, y, z \in X$.

From now on, a binary operation "*" will be denoted by juxtaposition.

Example 2.2 [3]. Let $X = \{0, 1, 2, 3\}$ be a set in which operation * is defined by the following:

Then *X* is a SU-algebra.

Theorem 2.3 [3]. Let X be a SU-algebra. Then the following results hold for all $x, y, z \in X$:

- (1) xx = 0,
- (2) xy = yx,
- (3) 0x = x,
- (4) (xy)z = (xz)y,
- (5) x(yz) = z(yx),
- (6) (xy)z = x(yz).

Theorem 2.4 [3]. Let X be a SU-algebra. A nonempty subset I of X is called a SU-subalgebra of X if $xy \in I$ for all $x, y \in I$.

Definition 2.5 [3]. Let X be a SU-algebra. A nonempty subset I of X is called an *ideal* of X if it satisfies the following properties:

- $(1) \ 0 \in I$,
- (2) if $(xy)z \in I$ and $y \in I$ imply $xz \in I$

for all $x, y, z \in X$.

Theorem 2.6 [3]. Let X be a SU-algebra. Then X is a BCI-algebra.

Theorem 2.7 [7]. Let X be a BCI-algebra. A nonempty subset A of X is called an ideal of X if it satisfies the following properties:

- $(1) \ 0 \in A$,
- (2) if $xy \in A$ and $y \in A$ imply $x \in A$,

for all $x, y \in X$.

Definition 2.8 [4]. Let X be a set. A fuzzy set μ in X is a function $\mu: X \to [0, 1]$.

Definition 2.9 [7]. Let X be a BCI-algebra. A fuzzy set μ in X is called a *fuzzy BCI-ideal* of X if it satisfies the following properties:

- $(F_1) \ \mu(0) \ge \mu(x),$
- (F_2) $\mu(x) \ge \min\{\mu(xy), \mu(y)\}$

for all $x, y \in X$.

3. Fuzzy SU-subalgebras

We first give the definition of fuzzy SU-subalgebra and provide some of its properties.

Definition 3.1. Let *X* be a SU-algebra. A fuzzy set μ in *X* is called *fuzzy* SU-subalgebra of *X* if $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

The set $Im(\mu) = \{t \in [0, 1] | \mu(x) = t \text{ for some } x \in X\}$ is called the *image* set of μ .

Definition 3.2. Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of X. The set $\mu_t = \{x \in X \mid \mu(x) \geq t\}$, where $t \in [0, 1]$ is fixed, is called a *level SU-subalgebra* of μ . Clearly, $\mu_t \subseteq \mu_s$ whenever $s, t \in [0, 1]$ with t > s.

Example 3.3. Let $X = \{0, 1, 2, 3\}$ be a set in which operation * is defined as Example 2.2. Define a fuzzy set $\mu: X \to [0, 1]$ by $\mu(0) = 1$, $\mu(1) = 0.5$ and $\mu(2) = \mu(3) = 0$. Then μ is a fuzzy SU-subalgebra of X.

Lemma 3.4. Let X be a SU-algebra. If μ is a fuzzy SU-subalgebra of X, then $\mu(0) \ge \mu(x)$ for all $x \in X$.

Proof. Let $x \in X$. Since xx = 0, $\mu(0) = \mu(xx) \ge \min\{\mu(x), \mu(x)\}$ = $\mu(x)$. Thus, $\mu(0) \ge \mu(x)$.

Theorem 3.5. Let X be a SU-algebra and μ be a fuzzy set of X. Then μ_t is a SU-subalgebra of X for any $t \in [0, 1]$ and $\mu_t \neq \phi$ if and only if μ is a fuzzy SU-subalgebra of X.

Proof. Let $t \in [0, 1]$ and $\mu_t \neq \emptyset$. Let μ_t be a SU-subalgebra of X. Assuming μ is not a fuzzy SU-subalgebra of X, there exist $x, y \in X$ such

that $\mu(xy) < \min\{\mu(x), \mu(y)\}$. Letting $\alpha = \frac{1}{2}(\mu(xy) + \min\{\mu(x), \mu(y)\})$, we have $\mu(xy) < \alpha < \min\{\mu(x), \mu(y)\}$ which implies $\alpha \in [0, 1]$, $x \in \mu_{\alpha}$, $y \in \mu_{\alpha}$ and $xy \notin \mu_{\alpha}$, then $\mu_{\alpha} \neq \phi$. Hence μ_{α} is SU-subalgebra of X, we have $xy \in \mu_{\alpha}$, which is a contradiction. Thus, $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. Therefore, μ is a fuzzy SU-subalgebra of X.

Conversely, let μ be a fuzzy SU-subalgebra of X. For any $x, y \in \mu_t$, then $\mu(xy) \ge \min\{\mu(x), \mu(y)\} \ge t$, we have $xy \in \mu_t$. Thus, μ_t is a SU-subalgebra of X.

Theorem 3.6. Let X be a SU-algebra and A be a SU-subalgebra of X. Then for any $t \in (0, 1]$, there exists a fuzzy SU-subalgebra μ of X such that $\mu_t = A$.

Proof. Let A be a SU-subalgebra of X and μ be a fuzzy set of X defined by

$$\mu(x) = \begin{cases} t, & \text{if } x \in A; \\ 0, & \text{if } x \notin A; \end{cases}$$

where $t \in (0, 1]$ is fixed.

We will show that μ is fuzzy SU-subalgebra of X. Let $x, y \in X$. If $x, y \in A$, then we have $xy \in A$ and $\mu(x) = \mu(y) = \mu(xy) = t$. Hence $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$. Assume that either x or y is not in A. We have $\min\{\mu(x), \mu(y)\} = 0$. Hence $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$. Then μ is fuzzy SU-subalgebra of X. It is clear that $\mu_t = A$ which completes the proof.

Theorem 3.7. Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of X. If μ_S , μ_t for some $0 \le s < t \le 1$ are level SU-subalgebras of μ , then $\mu_S = \mu_t$ if and only if $\{x \in X \mid s \le \mu(x) < t\} = \emptyset$.

Proof. Let μ_s , μ_t be level SU-subalgebras of μ for some $0 \le s < t \le 1$. Let $\mu_s = \mu_t$. Suppose $\{x \in X \mid s \le \mu(x) < t\} \ne \emptyset$. There exists $y \in X$ such that $s \le \mu(y) < t$, then $y \in \mu_s$ but $y \notin \mu_t$. Hence $\mu_s \ne \mu_t$, which is a contradiction.

Conversely, let $\{x \in X \mid s \leq \mu(x) < t\} = \emptyset$. It is obvious that $\mu_t \subseteq \mu_s$. If $x \in \mu_s$, then we have $\mu(x) \geq s$. Since $\{x \in X \mid s \leq \mu(x) < t\} = \emptyset$, we have $\mu(x) \geq t$, $x \in \mu_t$, thus, $\mu_s \subseteq \mu_t$. Therefore, $\mu_s = \mu_t$.

Remark. If $t_1 = \mu(0)$, then μ_{t_1} is the smallest level SU-subalgebra. Hence we have $\mu_{t_1} \subset \mu_{t_2} \subset \mu_{t_3} \subset \cdots \subset \mu_{t_n} = X$, where $\text{Im}(\mu) = \{t_1, t_2, t_3, ..., t_n\}$ with $t_1 > t_2 > t_3 > \cdots > t_n$, where n is positive integer.

Note that in Example 3.3, if $t_1 = 1$, then we have $\mu_{t_1} = \{0\}$. If $t_2 = 0.5$, then we have $\mu_{t_2} = \{0, 1\}$. If $t_3 = 0$, then we have $\mu_{t_3} = \{0, 1, 2, 3\} = X$. Therefore, $\mu_{t_1} \subset \mu_{t_2} \subset \mu_{t_3} = X$.

Corollary 3.8. Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of X. If $\operatorname{Im}(\mu) = \{t_1, t_2, t_3, ..., t_n\}$ with $t_1 > t_2 > t_3 > \cdots > t_n$, then the set $\{\mu_{t_i} \mid 1 \leq i \leq n\}$ is the set of all level SU-subalgebras of μ .

Proof. Let $\beta \in [0, 1]$ and $\beta \notin \operatorname{Im}(\mu)$. We will show that μ_{β} belongs to the set $\{\mu_{t_i} \mid 1 \leq i \leq n\}$. If $t_1 < \beta$, then $\mu_{\beta} \subseteq \mu_{t_1}$. Since μ_{t_1} is smallest level SU-subalgebra, we have $\mu_{\beta} = \emptyset$. If $t_i < \beta < t_{i+1}$, then $\{x \in X \mid \beta \leq \mu(x) < t_{i+1}\} = \emptyset$. From Theorem 3.7, $\mu_{t_{i+1}} = \mu_{\beta}$. If $\beta < t_n$, then $\mu_{t_n} \subseteq \mu_{\beta}$. Since $\mu_{t_n} = X$, we have $\mu_{\beta} = X$. Hence $\mu_{t_n} = \mu_{\beta}$. Therefore, for any $\beta \in [0, 1]$, the level SU-subalgebra is one of $\{\mu_{t_i} \mid 1 \leq i \leq n\}$.

Theorem 3.9. Let X be a SU-algebra and μ be a fuzzy SU-subalgebra of X with finite image. If $\mu_S = \mu_t$ for some $s, t \in Im(\mu)$, then s = t.

Proof. Let $x \in X$ and $\mu_s = \mu_t$ for some $s, t \in \text{Im}(\mu)$. We will show that s = t. Assume s < t. Since $s \in \text{Im}(\mu)$, there exists $x \in X$ such that

 $\mu(x) = s < t$. We have $x \in \mu_s$ and $x \notin \mu_t$. Hence $\mu_s \neq \mu_t$, which is a contradiction. Assume t < s. Since $t \in \text{Im}(\mu)$, there exists $x \in X$ such that $\mu(x) = t < s$. We have $x \in \mu_t$ and $x \notin \mu_s$. Hence $\mu_t \neq \mu_s$, which is a contradiction. Therefore, s = t.

4. Fuzzy SU-ideals of SU-algebras

In this section, we introduce the notions of fuzzy SU-ideal and discuss the related properties.

Definition 4.1. Let X be a SU-algebra. A fuzzy set μ in X is called *fuzzy* SU-ideal of X if it satisfies the following conditions:

$$(SF_1)$$
 $\mu(0) \ge \mu(x)$,

$$(SF_2) \ \mu(xz) \ge \min\{\mu((xy)z), \ \mu(y)\}\$$

for all $x, y, z \in X$.

Example 4.2. Let $X = \{0, 1, 2, 3\}$ be a set in which operation * is defined as Example 2.2. A fuzzy set is defined as Example 3.3, then μ is a fuzzy SU-ideal of X.

Definition 4.3. Let X be a SU-algebra and μ be a fuzzy SU-ideal of X. The set $\mu_t = \{x \in X \mid \mu(x) \geq t\}$, where $t \in [0, 1]$ is fixed, is called a level SU-ideal of μ . Clearly, $\mu_t \subseteq \mu_s$ whenever $s, t \in [0, 1]$ with t > s.

Theorem 4.4. Let X be a SU-algebra. If μ_1 , μ_2 are fuzzy SU-ideals of X, then $\overline{\mu_2}$ is a fuzzy SU-ideal of X, where $\overline{\mu_2}(x) = \min\{\mu_1(x), \mu_2(x)\}$ for all $x \in X$.

Proof. Let μ_1 , μ_2 be fuzzy SU-ideals of X. Obviously, $\overline{\mu_2}$ is a fuzzy set of X. So $\overline{\mu_2}(0) = \min\{\mu_1(0), \mu_2(0)\} \ge \min\{\mu_1(x), \mu_2(x)\} = \overline{\mu_2}(x)$. Thus, $\overline{\mu_2}(0) \ge \overline{\mu_2}(x)$ for all $x \in X$. Now we will show that $\overline{\mu_2}(xz) \ge \min\{\overline{\mu_2}((xy)z), \overline{\mu_2}(y)\}$ for all $x, y, z \in X$. We have

$$\overline{\mu_{2}}(xz) = \min\{\mu_{1}(xz), \, \mu_{2}(xz)\}$$

$$\geq \min\{\min\{\mu_{1}((xy)z), \, \mu_{1}(y)\}, \, \min\{\mu_{2}((xy)z), \, \mu_{2}(y)\}\}$$

$$= \min\{\min\{\mu_{1}((xy)z), \, \mu_{2}((xy)z)\}, \, \min\{\mu_{1}(y), \, \mu_{2}(y)\}\}$$

$$= \min\{\overline{\mu_{2}}((xy)z), \, \overline{\mu_{2}}(y)\}.$$

Thus, $\overline{\mu_2}(xz) \ge \min\{\overline{\mu_2}((xy)z), \overline{\mu_2}(y)\}$ for all $x, y, z \in X$. Therefore, $\overline{\mu_2}$ is a fuzzy SU-ideal of X.

In general, we get the following result.

Corollary 4.5. Let X be a SU-algebra. If $\mu_1, \mu_2, ..., \mu_n$ are fuzzy SU-ideals of X, then $\overline{\mu_n}$ is a fuzzy SU-ideal of X, where $\overline{\mu_n}(x) = \min\{\mu_1(x), \mu_2(x), ..., \mu_n(x)\}$ for all $x \in X$ and n is positive integer.

Theorem 4.6. Let X be a SU-algebra and μ be a fuzzy set of X. Then μ_t is a SU-ideal of X for any $t \in [0, 1]$ and $\mu_t \neq \phi$ if and only if μ is a fuzzy SU-ideal of X.

Proof. Let $t \in [0, 1]$ be such that $\mu_t \neq \emptyset$. Let μ_t be a SU-ideal of X and let $x, y, z \in X$. Assuming $\mu(0) \geq \mu(x)$ is not true, there exists $y \in X$ such that $\mu(0) < \mu(y)$ and letting $\beta = \frac{1}{2}(\mu(0) + \mu(y))$, we have $\mu(0) < \beta < \mu(y)$ which implies $\beta \in [0, 1]$, $y \in \mu_{\beta}$ and $0 \notin \mu_{\beta}$, then $\mu_{\beta} \neq \emptyset$. Hence μ_{β} is SU-ideal of X, we have $0 \in \mu_{\beta}$, which is a contradiction. Thus, $\mu(0) \geq \mu(x)$ for all $x \in X$. Assuming $\mu(xz) \geq \min\{\mu((xy)z), \mu(y)\}$ is not true, there exist $a, b, c \in X$ such that $\mu(ac) < \min\{\mu((ab)c), \mu(b)\}$ and letting $\alpha = \frac{1}{2}(\mu(ac) + \min\{\mu((ab)c), \mu(b)\})$, we have $\mu(ac) < \alpha < \min\{\mu((ab)c), \mu(b)\}$ which implies $\alpha \in [0, 1]$, $(ab)c \in \mu_{\alpha}$, $b \in \mu_{\alpha}$ and $ac \notin \mu_{\alpha}$, then $\mu_{\alpha} \neq \emptyset$. Hence μ_{α} is SU-ideal of X, we have $ac \in \mu_{\alpha}$, which is a contradiction. Thus, $\mu(xz) \geq \min\{\mu((xy)z), \mu(y)\}$ for all $x, y, z \in X$. Therefore, μ is a fuzzy SU-ideal of X.

Conversely, let μ be a fuzzy SU-ideal of X and let x, y, $z \in X$. Since $\mu_t \neq \phi$, there exists $y \in X$ such that $y \in \mu_t$. Since μ is a fuzzy SU-ideal of X, $\mu(0) \geq \mu(y) \geq t$. Hence $0 \in \mu_t$. Letting $(xy)z \in \mu_t$ and $y \in \mu_t$, we have $\mu(xz) \geq \min\{\mu((xy)z), \mu(y)\} \geq t$, hence $xz \in \mu_t$. Therefore, μ_t is a SU-ideal of X.

Similarly as Theorem 3.7, we prove

Theorem 4.7. Let X be a SU-algebra and μ be a fuzzy SU-ideal of X. If μ_s , μ_t for some $0 \le s < t \le 1$ are level SU-ideals of μ , then $\mu_s = \mu_t$ if and only if $\{x \in X \mid s \le \mu(x) < t\} = \phi$.

Theorem 4.8. Let X be a SU-algebra and μ be a fuzzy set of X. Then μ is a fuzzy SU-subalgebra of X if and only if μ is a fuzzy SU-ideal of X.

Proof. Let μ be a fuzzy SU-subalgebra of X. Let $x, y, z \in X$. By Lemma 3.4, we have $\mu(0) \geq \mu(x)$. Since μ is a fuzzy SU-subalgebra of X, $\mu(xz) \geq \min\{\mu(xy)z, \mu(y)\}$. Thus, μ is a fuzzy SU-ideal of X. Conversely, assume μ is a fuzzy SU-ideal of X. Let $x, y, z \in X$. By Theorem 2.3, we have (xy)y = x(yy) = x. We put z with y in (SF_2) , we have $\mu(xy) \geq \min\{\mu((xy)y), \mu(y)\} = \min\{\mu(x), \mu(y)\}$. Thus, μ is a fuzzy SU-subalgebra of X.

Theorem 4.9. Let X be a SU-algebra and μ be a fuzzy set of X. If μ is a fuzzy SU-ideal of X, then μ is a fuzzy BCI-ideal of X.

Proof. Let $x, y, z \in X$. Assuming μ is a fuzzy SU-ideal of X, we have $\mu(0) \ge \mu(x)$. We put z = 0 in (SF_2) , we have $\mu(x) \ge \min\{\mu(xy), \mu(y)\}$. Thus, μ is a fuzzy BCI-ideal of X.

Corollary 4.10. Let X be a SU-algebra and μ be a fuzzy set of X. If μ is a fuzzy SU-subalgebra of X, then μ is a fuzzy BCI-ideal of X.

Acknowledgements

The authors are highly grateful to the referees for several useful

suggestions and valuable comments. Moreover, this work is supported by a grant from Kasetsart University.

References

- [1] Y. K. Iseki, An algebra related with a propositional calculus, M.J.A. 42 (1966), 26-29.
- [2] Q. P. Hu and X. Li, On BCH-algebra, Mathematics Seminar Notes 11 (1983), 313-320.
- [3] S. Keawrahun and U. Leerawat, On classification of a structure algebra: SU-algebras, Scientia Magna J. 7 (2011), 69-76.
- [4] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
- [5] O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), 935-942.
- [6] Samy M. Mostafa, Mokhtar A. Abd-Elnaby and Moustafa M. M. Yousef, Fuzzy ideals of KU-algebras, International Mathematical Forum 6 (2011), 3139-3149.
- [7] A. Kordi and A. Moussavi, On fuzzy ideals of BCI-algebras, Pure Mathematics and Applications Journal 18 (2007), 301-310.