Far East Journal of Mathematical Sciences (FJMS)
Volume 74, Number 1, 2013, Pages 119-138
Published Online: March 2013
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

DERIVATIONS OF BOOLEAN ALGEBRAS

Thanakorn Bunphan and Utsanee Leerawat*
Department of Mathematics
Faculty of Science
Kasetsart University
Bangkok, Thailand
e-mail: armpsu@windowslive.com; fsciutl@ku.ac.th

Abstract

In this paper, we introduce a derivation of Boolean algebra, namely Boolean derivation, and we also investigate some related properties. Moreover, we show that the fixed set and the kernel of Boolean algebras are ideals in Boolean algebra. Finally, we prove that the set of Boolean derivations and Boolean algebra are isomorphic.

1. Introduction

Boolean algebras are special lattices which are useful in the study of logic, both digital computer logic and that of human thinking, and of switching circuits. This latter application was initiated by C. E. Shannon, who showed that fundamental properties of electrical circuits of bistable elements can be represented by using Boolean algebras.

The notion of derivation, introduced from the analytic theory, is helpful

[^0]2010 Mathematics Subject Classification: 06E25, 03G05.
Keywords and phrases: derivation, Boolean algebra.
*Corresponding author
Submitted by K. K. Azad
Received October 8, 2012
to the research of structure and property in algebraic system. Several authors [2, 3, 7, 11] studied derivations in rings and near rings. In 2004, Jun and Xin [6] applied the notion of derivation in ring and near-ring theory to BCIalgebras. Further, in 2009, Prabprayak and Leerawat [12] also studied the derivation of BCC-algebra. In 2010, Alshehri [1] introduced the notion of derivation for an MV-algebra. In 2008, Xin et al. [13] studied derivation of lattice and obtained some related properties. In 2011, Harmaitree and Leerawat [5] studied f-derivation of lattice and investigated some of its properties. In this paper, we introduce a new derivation on Boolean algebra and investigate some related properties.

2. Preliminaries

We first recall some definitions and results which are essential in this paper.

Definition 2.1 [8]. A Boolean algebra ($B, \wedge, \vee,^{\prime}, 0,1$) is a nonempty set B with two binary operations \wedge (called "meet" or "and"), \vee (called "join" or "or"), a unary operation ' (called complement), and two elements 0 and 1 such that for all elements x, y, z of B, the following axioms holds:
(i) $x \wedge x=x, x \vee x=x$;
(ii) $x \wedge y=y \wedge x, x \vee y=y \vee x$;
(iii) $x \wedge(y \wedge z)=(x \wedge y) \wedge z, x \vee(y \vee z)=(x \vee y) \vee z$;
(iv) $x=x \wedge(x \vee y), x=x \vee(x \wedge y)$;
(v) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z), x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$;
(vi) $x \wedge 1=x$ and $0 \vee x=x$ for all $x \in B$;
(vii) for all $x \in B$, there is $x^{\prime} \in B$ such that $x \wedge x^{\prime}=0$ and $x \vee x^{\prime}=1$.

Example 2.2. Let $B=\{0, a, b, 1\}$ and \wedge, \vee are two binary operations and complement defined as follows:

\wedge	0	a	b	1									
0	0	0	0	0		\vee	0	a	b	1			x
:---:													
x^{\prime}													
a													

Therefore, $(B, \wedge, \vee, ', 0,1)$ is a Boolean algebra.

Example 2.3. Let $B=\{0, a, 1\}$ and \wedge, \vee are two binary operations defined as follows:

\wedge	0	a	1						
0	0	0	0		\vee	0	a	1	
a	0	a	a		0	a	1		x
1	0	a	1		1	1	1	1	
		1	0	1					

Thus $\left(B, \wedge, \vee,{ }^{\prime}, 0,1\right)$ is not a Boolean algebra.

Remark 1. From now on, B denotes a set with the two binary operations \wedge and \vee, with 0 and 1 and the unary operation complement ', that is $B=\left(B, \wedge, \vee,{ }^{\prime}, 0,1\right)$.

Lemma 2.4 [8]. Every Boolean algebras are modular.
Definition 2.5 [8]. Let B be a Boolean algebra. Define a binary relation " \leq " on B as follows: $x \leq y$ if and only if $x \wedge y=x$ and $x \vee y=y$.

Remark 2. By Definition 2.1(vi), we have $x \leq 1$ and $0 \leq x$ for all $x \in B$.

Lemma 2.6 [9]. Let B be a Boolean algebra. Define the binary relation " \leq " as Definition 2.5. Then (B, \leq) is a poset and for any $x, y \in B, x \wedge y$ is the greatest lower bound (g.l.b) of $\{x, y\}$ and $x \vee y$ is the least upper bound (l.u.b.) of $\{x, y\}$.

Remark 3. $x<y$ means $x \leq y$ and $x \neq y$.

Lemma 2.7. Let B be a Boolean algebra and $x, y \in B$. If $x \leq y$ and $y \leq x$, then $x=y$.

Proof. Let $x, y \in B$ be such that $x \leq y$ and $y \leq x$. Since $x \leq y$ and $y \leq x$, we have $x \wedge y=x$ and $y \wedge x=y$. By Definition 2.1(ii), we get $x=x \wedge y=y \wedge x=y$.

Lemma 2.8 [8]. Let B be a Boolean algebra and $x, y, z \in B$. Then the following hold:
(i) if $x \leq y$, then $x \wedge z \leq y \wedge z$ and $x \vee z \leq y \vee z$;
(ii) $(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime}$ and $(x \vee y)^{\prime}=x^{\prime} \wedge y^{\prime}$;
(iii) $x \leq y$ if and only if $y^{\prime} \leq x^{\prime}$.

Theorem 2.9 [8]. Let B be a Boolean algebra and $x, y \in B$. Then the following conditions are equivalent:
(i) $x \leq y$;
(ii) $x \wedge y^{\prime}=0$;
(iii) $x^{\prime} \vee y=1$;
(iv) $x \wedge y=x$;
(v) $x \vee y=y$.

Theorem 2.10 [9]. Let B be a Boolean algebra and $x, y, z \in B$. Then the following hold:
(i) $x \vee y=0$ if and only if $x=0$ and $y=0$;
(ii) $x \wedge y=1$ if and only if $x=1$ and $y=1$;
(iii) $x=0$ if and only if $y=\left(x \wedge y^{\prime}\right) \vee\left(x^{\prime} \wedge y\right)$;
(iv) $x=y$ if and only if $\left(x \wedge y^{\prime}\right) \vee\left(x^{\prime} \wedge y\right)=0$;
(v) if $x \vee y=x \vee z$ and $x^{\prime} \vee y=x^{\prime} \vee z$, then $y=z$.

Definition 2.11 [9]. If A is any nonempty subset of a Boolean algebra B closed under the operations $\wedge, \vee,{ }^{\prime}$, then $\left(A, \wedge_{A}, \vee_{A},{ }_{A}, 0,1\right)$ is a Boolean algebra, where $\wedge_{A}, \vee_{A},{ }_{A}$ are the restrictions of the operations \wedge, \vee,' to the set A. The Boolean algebra A is called a Boolean subalgebra of B.

Remark 4. (1) Observe that 0 and 1 must belong to a Boolean subalgebra A of B. For, if $x \in A$, then $x^{\prime} \in A$. Thus by Definition 2.1(vii), we obtain $0=x \wedge x^{\prime} \in A$ and $1=x \vee x^{\prime} \in A$.
(2) To show that a subset A of B is closed under the operation \wedge, \vee, ', it suffices to show that A is closed either under \wedge and ${ }^{\prime}$, or under \vee and ${ }^{\prime}$. For, if A is closed under \wedge and $^{\prime}$, then by Lemma 2.8(ii) we get for any $x, y \in A$, $x \vee y=\left(x^{\prime} \wedge y^{\prime}\right)^{\prime} \in A$. Likewise, if A is closed under \vee and ', then by Lemma 2.8(ii), we get for any $x, y \in A, x \wedge y=\left(x^{\prime} \vee y^{\prime}\right)^{\prime} \in A$.

Definition 2.12 [8]. Let $f: B_{1} \rightarrow B_{2}$ be a function from a Boolean algebra B_{1} to a Boolean algebra B_{2}. Then f is called a Boolean homomorphism (or homomorphism) when:
(i) $f(x \wedge y)=f(x) \wedge f(y)$ and $f(x \vee y)=f(x) \vee f(y)$ for all $x, y \in B_{1}$;
(ii) $f\left(x^{\prime}\right)=(f(x))^{\prime}$ for all $x \in B_{1}$.

Definition 2.13. Let $f: B_{1} \rightarrow B_{2}$ be a Boolean homomorphism from a Boolean algebra B_{1} to a Boolean algebra B_{2}. Then
(i) f is called an injective homomorphism if f is an injective function;
(ii) f is called a surjective homomorphism if f is a surjective function;
(iii) f is called an isomorphism if f is a bijective function.

Definition 2.14 [8]. An ideal is a nonempty subset I of a Boolean algebra B with the properties:
(i) If $x \in I$ and $b \in B$, then $x \wedge b \in I$;
(ii) If $x, y \in I$, then $x \vee y \in I$.

Remark 5. If I_{1} and I_{2} are ideals of a Boolean algebra B, so is $I_{1} \cap I_{2}$.

3. The Derivations of Boolean Algebras

The following definition introduces the notion of Boolean derivation of Boolean algebras.

Definition 3.1. Let B be a Boolean algebra and $d: B \rightarrow B$ be a function. We call d a Boolean derivation on B if it satisfies the following conditions: for all $x, y \in B$,
(i) $d(x \wedge y)=(d(x) \wedge y) \vee(x \wedge d(y))$;
(ii) $d(x \vee y)=d(x) \vee d(y)$.

Remark 6. We often abbreviate $d(x)$ to $d x$.
Now we give some examples and some properties for the Boolean derivations of Boolean algebras.

Example 3.2. Let $B=\{0, a, b, 1\}$ and \wedge, \vee are two binary operations defined as Example 2.2. Then B is a Boolean algebra. Define a function d on B by

$$
d x= \begin{cases}0, & \text { if } x=0, a, \\ b, & \text { if } x=b, 1\end{cases}
$$

Then d is a Boolean derivation of B.
Example 3.3. Let $B=\{0, a, b, 1\}$ and \wedge, \vee are two binary operations defined as Example 2.2. Then B is a Boolean algebra. Define a function d on B by

$$
d x= \begin{cases}0, & \text { if } x=0,1, b, \\ a, & \text { if } x=a .\end{cases}
$$

Then d is not a Boolean derivation of B.

Example 3.4. Let B be a Boolean algebra.
(i) If d is a function defined by $d x=0$ for all $x \in B$, then d is a Boolean derivation on B, which is called the zero derivation.
(ii) If d is an identity function on a Boolean algebra B, then d is a Boolean derivation on B, which is called the identity derivation.

Example 3.5. Let B be a Boolean algebra and $a \in B$. Define a function $d_{a}: B \rightarrow B$ by $d_{a}(x)=x \wedge a$ for all $x \in B$. Then d_{a} is a Boolean derivation on B.

Theorem 3.6. Let B be a Boolean algebra and d be Boolean derivation on B. Then the following hold: for any element $x, y \in B$,
(1) $d x \leq x$;
(2) $d 0=0$ and $d 1 \leq 1$;
(3) $d x \wedge x^{\prime}=x \wedge d x^{\prime}=0$;
(4) $d x \wedge d y \leq d(x \wedge y) \leq d(x \vee y)$;
(5) if I is an ideal of B, then $d I \subseteq I$.

Proof. Let $x, y \in B$.
(1) By Definition 2.1(i), we have $d x=d(x \wedge x)=(d x \wedge x) \vee(x \wedge d x)$ $=d x \wedge x$ and so $d x \leq x$.
(2) From (1), we get $d 1 \leq 1$ and $d 0 \leq 0$. Since Remark 2, we have $0 \leq d 0$. Thus, by Lemma 2.7, we get $d 0=0$.
(3) From (2) and Definition 2.1(vii), we have $0=d 0=d\left(x \wedge x^{\prime}\right)=$ $\left(d x \wedge x^{\prime}\right) \vee\left(x \wedge d x^{\prime}\right)$. Thus by Theorem 2.10(i), we get $d x \wedge x^{\prime}=x \wedge d x^{\prime}=0$.
(4) From (1) and Lemma 2.8(i), we have

$$
d x \wedge d y \leq x \wedge d y \leq(d x \wedge y) \vee(x \wedge d y)=d(x \wedge y)
$$

We know that $d x \wedge y \leq d x$ and $x \wedge d y \leq d y$. Thus

$$
d(x \wedge y)=(d x \wedge y) \vee(x \wedge d y) \leq d x \vee d y=d(x \vee y) .
$$

(5) Let $a \in d I$. Then $a=d b$ for some $b \in I$. From (1), we have $a=$ $d b \leq b$. Since I is an ideal of B, we have $a=a \wedge b \in I$. Thus $a \in I$ and so $d I \subseteq I$.

By Theorem 3.6(2), we can get the following corollary.
Corollary 3.7. Let B be a Boolean algebra and $d: B \rightarrow B$ be function. If $d 0 \neq 0$, then d is not a Boolean derivation on B.

Example 3.8. Let B be a Boolean algebra and $b \in B$ be such that $b \neq 0$. Define a function $d_{b}: B \rightarrow B$ by $d_{b}(x)=x \vee b$ for all $x \in B$. Note that $d_{b}(0)=0 \vee b=b \neq 0$. Therefore, d_{b} is not a Boolean derivation on B by Corollary 3.7.

Definition 3.9. Let B be a Boolean algebra. A function $d: B \rightarrow B$ is said to be regular if $d 0=0$.

Corollary 3.10. Every Boolean derivations are regular.
Theorem 3.11. Let d be Boolean derivation on a Boolean algebra B. If $x, y \in B$ are such that $x \leq y$, then the following hold:
(1) $d\left(x \wedge y^{\prime}\right)=0$;
(2) $d y^{\prime} \leq x^{\prime}$;
(3) $d x \wedge d y^{\prime}=0$.

Proof. Let $x, y \in B$ be such that $x \leq y$.
(1) By Theorem 2.9 implies that $x \wedge y^{\prime}=0$. Thus by Theorem 3.6(2), we have $d\left(x \wedge y^{\prime}\right)=d 0=0$.
(2) By Lemma 2.8(iii) implies that $y^{\prime} \leq x^{\prime}$. Thus by Theorem 3.6(1), we have $d y^{\prime} \leq y^{\prime} \leq x^{\prime}$.
(3) By Theorem 3.6(1), we have $d x \leq x \leq y$. Thus by Lemma 2.8(i), we have $d x \wedge d y^{\prime} \leq y \wedge d y^{\prime}$.

Since $d y^{\prime} \leq y^{\prime}$ by Lemma 2.8(i), we have $y \wedge d y^{\prime} \leq y \wedge y^{\prime}=0$. Hence $d x \wedge d y^{\prime} \leq 0$. From Remark 2, we have $0 \leq d x \wedge d y^{\prime}$. By Lemma 2.7, we get $d x \wedge d y^{\prime}=0$.

Theorem 3.12. Let B be a Boolean algebra and d be a Boolean derivation on B. Then, the following hold:
(1) $d x \wedge d x^{\prime}=0$;
(2) $d x^{\prime}=(d x)^{\prime}$ if and only if d is the identity derivation on B.

Proof. (1) It follows directly from Theorem 3.11(3).
(2) Assume that $d x^{\prime}=(d x)^{\prime}$. From Theorem 3.6(3), we have $x \wedge(d x)^{\prime}=$ $x \wedge d x^{\prime}=0$. Since Theorem 2.9, we have $x \leq d x$. By Theorem 3.6(1), we get $d x \leq x$. Therefore, by Lemma 2.7, we have $d x=x$. Conversely, if d is the identity derivation on B, then $d x^{\prime}=x^{\prime}=(d x)^{\prime}$.

Definition 3.13. Let B be a Boolean algebra and d be a Boolean derivation on B. Then
(i) d is called an order derivation if $x \leq y$ implies $d x \leq d y$;
(ii) d is called an injective derivation if d is an injective function;
(iii) d is called a surjective derivation if d is a surjective function.

Theorem 3.14. A Boolean derivation d on a Boolean algebra B is an order derivation.

Proof. Let $x, y \in B$ and $x \leq y$. Since d is a Boolean derivation, we have $d y=d(x \vee y)=d x \vee d y$. That is $d x \leq d y$. Thus, d is an order derivation.

Theorem 3.15. Let B be a Boolean algebra and d be a Boolean derivation on B. If $d x=d x^{\prime}$ for all $x \in B$, then d is zero derivation.

Proof. Let $x \in B$, from Remark 2, we have $x \leq 1$. By Theorem 3.14, we get d is an order derivation. Hence $d x \leq d 1$. Since $d x=d x^{\prime}$, we have $d 1=d 0=0$. Thus $d x \leq d 1=0$. From Remark 2, we have $0 \leq d x$, by Lemma 2.7, we get $d x=0$ and so d is zero derivation.

Theorem 3.16. Let B be a Boolean algebra and d be a Boolean derivation on B. Then $d x=x \wedge d 1$ for all $x \in B$.

Proof. Let $x \in B$. Note that $x \leq 1$ and

$$
d x=d(x \wedge 1)=(d x \wedge 1) \vee(x \wedge d 1)=d x \vee(x \wedge d 1)
$$

that is $x \wedge d 1 \leq d x$. By Theorem 3.14, we have d is an order derivation. Hence $d x \leq d 1$. From Theorem 3.6(1), we get $d x \leq x$. Thus $d x \leq x \wedge d 1$. By Lemma 2.7, we have $d x=x \wedge d 1$.

The following corollary is an immediate consequence of Theorem 3.16.
Corollary 3.17. Let B be a Boolean algebra and d be a Boolean derivation on B. Then the following hold:
(1) if $d 1 \leq x$, then $d x=d 1$;
(2) if $x \leq d 1$, then $d x=x$.

Theorem 3.18. Let B be a Boolean algebra and d be a Boolean derivation on B. Let $x, y \in B$ be such that $y \leq x$. If $d x=x$, then $d y=y$.

Proof. Let $x, y \in B$ be such that $y \leq x$ and $d x=x$. By Theorem 3.6(1), we have $d y \leq y \leq x$. Then

$$
d y=d(x \wedge y)=(d x \wedge y) \vee(x \wedge d y)=(x \wedge y) \vee d y=y \vee d y=y .
$$

Theorem 3.19. Let B be a Boolean algebra and d be a Boolean derivation on B. Let $x_{1}, x_{2}, \ldots, x_{n} \in B$ be such that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. If $d x_{n}=x_{n}$, then $d x_{i}=x_{i}$ for all positive integer $i \leq n$.

Proof. For $n=2$. If $x_{1} \leq x_{2}$ and $d x_{2}=x_{2}$, then by Theorem 3.18, we have $d x_{1}=x_{1}$. Let $n \geq 3$ be positive integer and assume that if $x_{1} \leq x_{2} \leq$
$\cdots \leq x_{n}$ and $d x_{n}=x_{n}$, then $d x_{i}=x_{i}$ for all $i<n$. Suppose that $x_{1} \leq x_{2} \leq$ $\cdots \leq x_{n} \leq x_{n+1}$ and $d x_{n+1}=x_{n+1}$. Since $x_{n} \leq x_{n+1}$ and $d x_{n+1}=x_{n+1}$ by Theorem 3.18, we get $d x_{n}=x_{n}$. Now we have if $x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq x_{n+1}$ and $d x_{n+1}=x_{n+1}$, then $d x_{i}=x_{i}$ for all positive integer $i \leq n+1$.

By Theorem 3.18, we can get the following corollary.
Corollary 3.20. Let B be a Boolean algebra and $d: B \rightarrow B$ be a function. If there exists a pair $x, y \in B$ such that $y \leq x, d x=x$ and $d y \neq y$, then d is not a Boolean derivation on B.

Proof. Assume that there exists a pair $x, y \in B$ such that $y \leq x, d x=x$ and $d y \neq y$. Suppose that d is a Boolean derivation on B. By Theorem 3.6(1), we have $d y \leq y \leq x$. Then

$$
d y=d(x \wedge y)=(d x \wedge y) \vee(x \wedge d y)=(x \wedge y) \vee d y=y \vee d y
$$

it follows that $y \leq d y$. By Lemma 2.7, we get $d y=y$, which is a contradiction. Thus d is not a Boolean derivation on B.

Example 3.21. Let $B=\{0, a, b, 1\}$ and \wedge, \vee are two binary operations defined as Example 2.2. Then B is a Boolean algebra. Define a function d on B by

$$
d x= \begin{cases}a, & \text { if } x=0,1, a, \\ b, & \text { if } x=b\end{cases}
$$

Note that $d b=b$ and $0 \leq b$, but $d 0=a \neq 0$. Therefore, d is not a Boolean derivation of B by Corollary 3.20.

Example 3.22. Let $B=\{0, a, b, 1\}$ and \wedge, \vee are two binary operations defined as Example 2.2. Then B is a Boolean algebra. Define a function d on B by

$$
d x= \begin{cases}1, & \text { if } x=1, a \\ a, & \text { if } x=b, \\ 0, & \text { if } x=0\end{cases}
$$

Note that $d 1=1$ and $b \leq 1$, but $d b=a \neq b$. Therefore, d is not a Boolean derivation of B by Corollary 3.20.

Theorem 3.23. Let B be a Boolean algebra and d be a Boolean derivation on B. Then $d x=x \wedge d(x \vee y)$ for all $x, y \in B$.

Proof. Let $x, y \in B$. By Theorem 3.6(1), we have $d x \leq x \leq x \vee y$. By Definition 2.1(iv), we have $x=(x \vee y) \wedge x$. So

$$
\begin{aligned}
d x & =d((x \vee y) \wedge x)=(d(x \vee y) \wedge x) \vee((x \vee y) \wedge d x) \\
& =(d(x \vee y) \wedge x) \vee d x,
\end{aligned}
$$

that is, $d(x \vee y) \wedge x \leq d x$. By Theorem 3.14, we have d is an order derivation. Hence $d x \leq d(x \vee y)$. From Theorem 3.6(1), we get $d x \leq x$, so $d x \leq d(x \vee y) \wedge x$. Thus, by Lemma 2.7, we have $d x=x \wedge d(x \vee y)$.

Theorem 3.24. Let B be a Boolean algebra and d be a Boolean derivation on B. Then
(1) $d 1=1$ if and only if d is the identity derivation;
(2) $d 1=0$ if and only if d is the zero derivation.

Proof. Let $x \in B$.
(1) Assume that $d 1=1$. By Remark 2, we have $x \leq 1$. By Theorem 3.18, we get $d x=x$. Thus d is the identity derivation. Conversely, if d is the identity derivation, then we have $d 1=1$.
(2) Suppose that $d 1=0$. By Theorem 3.16, we get $d x=x \wedge d 1=x \wedge 0$ $=0$. Thus d is the zero derivation. Conversely, it is trivial.

Theorem 3.25. Let B be a Boolean algebra and d be a Boolean derivation on B. Then $d(x \wedge y)=d x \wedge d y$ for all $x, y \in B$.

Proof. Suppose that $x, y \in B$. By Theorem 3.16, we get

$$
d x \wedge d y=(x \wedge d 1) \wedge(y \wedge d 1)=(x \wedge y) \wedge d 1=d(x \wedge y)
$$

Converse of Theorem 3.25 need not be true as the following example.
Example 3.26. Let B be a Boolean algebra and $b \in B$ be such that $b \neq 0$. Define a function $d_{b}: B \rightarrow B$ by $d_{b}(x)=x \vee b$ for all $x \in B$. Note that for all $x, y \in B$, we have

$$
d_{b}(x \wedge y)=(x \wedge y) \vee b=(x \vee b) \wedge(y \vee b)=d_{b}(x) \wedge d_{b}(y) .
$$

But d_{b} is not a Boolean derivation on B by Example 3.8.
Theorem 3.27. Let B be a Boolean algebra and d be a Boolean derivation on B. Then $d\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}\right)=d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{n}$ for all $x_{1}, x_{2}, \ldots, x_{n} \in B$ and for integer $n \geq 2$.

Proof. For $n=2$. By Theorem 3.25, we get $d\left(x_{1} \wedge x_{2}\right)=d x_{1} \wedge d x_{2}$. Let $n \geq 3$ be positive integer and assume that $d\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}\right)=$ $d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{n}$. Suppose that $a=x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}$. Then

$$
\begin{aligned}
d\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n} \wedge x_{n+1}\right) & =d\left(a \wedge x_{n+1}\right) \\
& =d a \wedge d x_{n+1}=d\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}\right) \wedge x_{n+1} \\
& =x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{n} \wedge d x_{n+1} .
\end{aligned}
$$

Theorem 3.28. Let B be a Boolean algebra and d be a Boolean derivation on B. Then the following are equivalent: for any $x, y \in B$,
(1) $d(x \wedge y)=d x \wedge y$;
(2) $d(x \wedge y)=d x \wedge d y$.

Proof. Let $x, y \in B$.
(1) \Rightarrow (2) Assume that (1) holds. By Theorem 3.6(4), we have $d x \wedge d y \leq d(x \wedge y)$. From (1), we have $d x \wedge y=d(x \wedge y)=d(y \wedge x)=$ $d y \wedge x$. Since $d x \wedge y \leq d x$ and $d y \wedge x \leq d y$, we can get $d(x \wedge y)=d x \wedge y$ $=d y \wedge x \leq d x \wedge d y$, that is, $d(x \wedge y) \leq d x \wedge d y$. Thus, by Lemma 2.7, we have $d(x \wedge y)=d x \wedge d y$.
(2) \Rightarrow (1) Suppose that (2) holds. We know that $d x \wedge d y \leq d x$ and $d x \wedge d y \leq d y \leq y$, thus $d x \wedge d y \leq d x \wedge y$. From (2), we can get $d(x \wedge y) \leq$ $d x \wedge y$. Since $d(x \wedge y)=(d x \wedge y) \vee(x \wedge d y)$, that is, $d x \wedge y \leq d(x \wedge y)$. Hence, by Lemma 2.7, we have $d(x \wedge y)=d x \wedge y$.

From Theorem 3.25 and Theorem 3.28, we have the following theorem.
Theorem 3.29. Let B be a Boolean algebra and d be a Boolean derivation on B. Then $d(x \wedge y)=d x \wedge y$ for all $x, y \in B$.

Theorem 3.30. Let B be a Boolean algebra and d_{1}, d_{2} be two Boolean derivations on B. Define $d_{1} \circ d_{2}(x)=d_{1}\left(d_{2} x\right)$ for all $x \in B$. Then $d_{1} \circ d_{2}$ is a Boolean derivation on B.

Proof. Let $x, y \in B$. Since d_{1}, d_{2} are two Boolean derivations on B and by Theorem 3.29, we have

$$
\begin{aligned}
d_{1} \circ d_{2}(x \wedge y) & =d_{1}\left(d_{2}(x \wedge y)\right)=d_{1}\left(\left(d_{2} x \wedge y\right) \vee\left(x \wedge d_{2} y\right)\right) \\
& =d_{1}\left(d_{2} x \wedge y\right) \vee d_{1}\left(x \wedge d_{2} y\right) \\
& =\left(d_{1}\left(d_{2} x\right) \wedge y\right) \vee\left(x \wedge d_{1}\left(d_{2} y\right)\right) \\
& =\left(d_{1} \circ d_{2}(x) \wedge y\right) \vee\left(x \wedge d_{1} \circ d_{2}(y)\right) .
\end{aligned}
$$

Moreover, we get

$$
\begin{aligned}
d_{1} \circ d_{2}(x \vee y) & =d_{1}\left(d_{2}(x \vee y)\right)=d_{1}\left(d_{2} x\right) \vee d_{1}\left(d_{2} y\right) \\
& =d_{1} \circ d_{2}(x) \vee d_{1} \circ d_{2}(y) .
\end{aligned}
$$

Hence $d_{1} \circ d_{2}$ is a Boolean derivation on B.
Theorem 3.31. Let B be a Boolean algebra and $d_{1}, d_{2}, \ldots, d_{n}$ be Boolean derivations on B. Define $d_{1} \circ d_{2} \circ \cdots \circ d_{n}(x)=d_{1}\left(d_{2} \cdots\left(d_{n} x\right)\right)$ for all $x \in B$. Then $d_{1} \circ d_{2} \circ \cdots \circ d_{n}$ is a Boolean derivation on B for positive integer $n \geq 2$.

Proof. For $n=2$. By Theorem 3.30, we get $d_{1} \circ d_{2}$ is a Boolean derivation on B. Let $n \geq 3$ be positive integer and assume that $d_{1} \circ d_{2} \circ$ $\cdots \circ d_{n}$ is a Boolean derivation on B. Let $D_{n}=d_{1} \circ d_{2} \circ \cdots \circ d_{n}$. Thus D_{n} is a Boolean derivation on B. Since d_{n+1} is a Boolean derivation on B and by Theorem 3.30, we have $d_{1} \circ d_{2} \circ \cdots \circ d_{n} \circ d_{n+1}=D_{n} \circ d_{n+1}$ is a Boolean derivation on B.

Theorem 3.32. Let B be a Boolean algebra and d be a Boolean derivation on B. Define $d^{2} x=d(d x)$ for all $x \in B$. Then we have $d^{2}=d$.

Proof. Let $x \in B$. By Theorem 3.6(1), we get $d^{2} x=d(d x) \leq d x \leq x$. Then

$$
d^{2} x=d(d x)=d(x \wedge d x)=(d x \wedge d x) \vee\left(x \wedge d^{2} x\right)=d x \vee d^{2} x=d x
$$

Theorem 3.33. Let B be a Boolean algebra and d be a Boolean derivation on B. Define $d^{n} x=\underbrace{d(d \cdots d(d x))}_{n}$ for all $x \in B$. Then we have $d^{n}=d$ for integer $n \geq 2$.

Proof. Assume that $x \in B$. For $n=2$. By Theorem 3.32, we get $d^{2} x$ $=d x$. Let $n \geq 3$ be positive integer and assume that $d^{n} x=\underbrace{d(d \cdots d(d x))}_{n}$ $=d x$. Then

$$
d^{n+1} x=\underbrace{d(d \cdots d(d x))}_{n+1}=d\left(d^{n} x\right)=d(d x)=d^{2} x=d x .
$$

Remark 7. If d is a Boolean derivation on B, then by Theorem 3.33, we get d^{n} is a Boolean derivation on B for positive integer $n \geq 2$.

Theorem 3.34. Let B be a Boolean algebra and d be a Boolean derivation on B. Then the following conditions are equivalent:
(1) d is the identity derivation;
(2) d is an injective derivation;
(3) d is a surjective derivation.

Proof. (1) $\Rightarrow(2)$ is trivial.
(2) \Rightarrow (1) Let d be an injective derivation. If there is $a \in B$ such that $d a \neq a$, then $d a<a$. Denote $a_{1}=d a$, by Theorem 3.6(1), we have $d a_{1} \leq$ $a_{1}<a$. Thus

$$
d a_{1}=d\left(a_{1} \wedge a\right)=\left(d a_{1} \wedge a\right) \vee\left(a_{1} \wedge d a\right)=d a_{1} \vee a_{1}=a_{1}=d a .
$$

Since $a_{1} \neq a$, this contradicts that d is an injective derivation.
$(1) \Rightarrow(3)$ is straightforward.
(3) \Rightarrow (1) Assume that d is a surjective derivation, that is, $d B=B$. Thus for any $x \in B$, there is $y \in B$ such that $x=d y$. By Theorem 3.32, we have $d x=d(d y)=d^{2} y=d y=x$. This shows that d is the identity derivation.

Let B be Boolean algebra and d be a Boolean derivation on B. Denote $\operatorname{Fix}(B, d)=\{x \in B \mid d x=x\}$.

Remark 8. (1) By Theorem 3.6(2), we have $0 \in \operatorname{Fix}(B, d)$.
(2) By Theorem 3.18, we see that if $x \in \operatorname{Fix}(B, d)$ and $y \leq x$, then $y \in \operatorname{Fix}(B, d)$.
(3) By Theorem 3.32, we have $d(d x)=d^{2} x=d x$. Thus $d x \in \operatorname{Fix}(B, d)$.

Theorem 3.35. Let B be a Boolean algebra and $d_{1}, d_{2}, \ldots, d_{n}$ be Boolean derivations on B. Then $d_{i}=d_{j}$ if and only if $\operatorname{Fix}\left(B, d_{i}\right)=$ $\operatorname{Fix}\left(B, d_{j}\right)$ for positive integers $i, j \leq n$.

Proof. It is clear that if $d_{i}=d_{j}$ implies $\operatorname{Fix}\left(B, d_{i}\right)=\operatorname{Fix}\left(B, d_{j}\right)$. Conversely, let $\operatorname{Fix}\left(B, d_{i}\right)=\operatorname{Fix}\left(B, d_{j}\right)$ for some $i, j \leq n$ and $x \in B$. By Remark 8(3), we have $d_{i} x \in \operatorname{Fix}\left(B, d_{i}\right)=\operatorname{Fix}\left(B, d_{j}\right)$ and so $d_{j} d_{i} x=d_{i} x$.

Similarly, we can get $d_{i} d_{j} x=d_{j} x$. From Theorem 3.6(1), we know that $d_{i} x \leq x$ and by Theorem 3.14, we get d_{i} and d_{j} are order derivations on B. Thus we have $d_{j} d_{i} x \leq d_{j} x=d_{i} d_{j} x$ and so $d_{j} d_{i} x \leq d_{i} d_{j} x$. Symmetrically we can also get $d_{i} d_{j} x \leq d_{j} d_{i} x$. By Lemma 2.7, we get $d_{i} d_{j} x=d_{j} d_{i} x$. It follows that $d_{i} x=d_{j} d_{i} x=d_{i} d_{j} x=d_{j} x$, that is $d_{i}=d_{j}$.

Theorem 3.36. Let B be a Boolean algebra and d be a Boolean derivation on B. Then $\operatorname{Fix}(B, d)$ is an ideal of B.

Proof. Let $x, y \in \operatorname{Fix}(B, d)$ and $b \in B$. Since $x, y \in \operatorname{Fix}(B, d)$, we have $d x=x$ and $d y=y$. Thus $d(x \vee y)=d x \vee d y=x \vee y$, this shows that $x \vee y \in \operatorname{Fix}(B, d)$. Next, we will show that $x \wedge b \in \operatorname{Fix}(B, d)$. By Theorem 3.6(1) and Lemma 2.8(i), we can get $x \wedge d b \leq x \wedge b$. Then

$$
d(x \wedge b)=(d x \wedge b) \vee(x \wedge d b)=(x \wedge b) \vee(x \wedge d b)=x \wedge b
$$

this shows that $x \wedge b \in \operatorname{Fix}(B, d)$. Hence $\operatorname{Fix}(B, d)$ is an ideal of B.
From Theorem 3.31, Theorem 3.33 and Theorem 3.36, we have the following corollary.

Corollary 3.37. Let B be a Boolean algebra and $n \geq 2$ be positive integer. Then
(1) if d is a Boolean derivation on B, then $\operatorname{Fix}\left(B, d^{n}\right)$ is an ideal of B;
(2) if $d_{1}, d_{2}, \ldots, d_{n}$ are Boolean derivations on B, then $\operatorname{Fix}\left(B, d_{1} \circ d_{2} \circ \cdots \circ d_{n}\right)$ is an ideal of B.

Let B be a Boolean algebra and d be a Boolean derivation on B. Then, by the kernel of d we mean the set of all elements x of B such that $d x=0$. The kernel of d will be denoted by $\operatorname{Ker}(B, d)$.

Remark 9. By Theorem 3.6(2), we have $d 0=0$. That is $0 \in \operatorname{Ker}(B, d)$.
Theorem 3.38. Let B be a Boolean algebra and d be a Boolean derivation on B. Then $\operatorname{Ker}(B, d)$ is an ideal of B.

Proof. Let $x, y \in \operatorname{Ker}(B, d)$ and $b \in B$. Since $x, y \in \operatorname{Ker}(B, d)$, we have $d x=0$ and $d y=0$. Thus $d(x \vee y)=d x \vee d y=0$, that is, $x \vee y \in$ $\operatorname{Ker}(B, d)$. Next, we want to show that $x \wedge b \in \operatorname{Ker}(B, d)$. By Theorem 3.25, we have $d(x \wedge b)=d x \wedge d b=0 \wedge d b=0$, this shows that $x \wedge b \in$ $\operatorname{Ker}(B, d)$. Hence $\operatorname{Ker}(B, d)$ is an ideal of B.

From Theorems 3.31, 3.33 and 3.38, we have the following corollary.
Corollary 3.39. Let B be a Boolean algebra and $n \geq 2$ be positive integer. Then
(1) if d is a Boolean derivation on B, then $\operatorname{Ker}\left(B, d^{n}\right)$ is an ideal of B;
(2) if $d_{1}, d_{2}, \ldots, d_{n}$ are Boolean derivations on B, then $\operatorname{Ker}\left(B, d_{1} \circ d_{2} \circ \cdots \circ d_{n}\right)$ is an ideal of B.

Let B be a Boolean algebra and $a \in B$. Let d_{a} be Boolean derivation defined by $d_{a} x=x \wedge a$ for all $x \in B$. Define $D(B)=\left\{d_{a} \mid a \in B\right\}$. In the following we investigate the relation between B and $D(B)$.

For any $d_{a}, d_{b} \in D(B)$, define two binary orperations "." and " + " by $\left(d_{a} \cdot d_{b}\right) x=\left(d_{a} x\right) \wedge\left(d_{b} x\right)$ and $\left(d_{a}+d_{b}\right) x=\left(d_{a} x\right) \vee\left(d_{b} x\right)$ for all $x \in B$. Then, we have

$$
\left(d_{a} \cdot d_{b}\right) x=\left(d_{a} x\right) \wedge\left(d_{b} x\right)=(x \wedge a) \wedge(x \wedge b)=x \wedge(a \wedge b)=d_{a \wedge b}(x)
$$

and

$$
\left(d_{a}+d_{b}\right) x=\left(d_{a} x\right) \vee\left(d_{b} x\right)=(x \wedge a) \vee(x \wedge b)=x \wedge(a \vee b)=d_{a \vee b}(x),
$$

that is, $d_{a} \cdot d_{b}=d_{a \wedge b}$ and $d_{a}+d_{b}=d_{a \vee b}$. Hence the definitions of "." and " + " are well-defined. It is not difficult to prove that $\left(D(B), \cdot,+, ', d_{0}, d_{1}\right)$ form a Boolean algebra, so we omit the proof of this.

Theorem 3.40. Let B be a Boolean algebra. Then B is isomorphic to $D(B)$.

Proof. Define a function $\varphi: B \rightarrow D(B)$ by $\varphi(a)=d_{a}$ for all $a \in B$. Then we can easily see that φ is a bijective function. Next we need to show that φ is Boolean homomorphism. Assume that $a, b \in B$. Then, we have $\varphi(a \wedge b)=d_{a \wedge b}=d_{a} \cdot d_{b}=\varphi(a) \cdot \varphi(b)$ and $\varphi(a \vee b)=d_{a \vee b}=d_{a}+d_{b}$ $=\varphi(a)+\varphi(b)$. Thus $\varphi(a \wedge b)=\varphi(a) \cdot \varphi(b)$ and $\varphi(a \vee b)=\varphi(a)+\varphi(b)$. Now $\varphi(a) \cdot \varphi\left(a^{\prime}\right)=d_{a} \cdot d_{a^{\prime}}=d_{0}$ and $\varphi(a)+\varphi\left(a^{\prime}\right)=d_{a}+d_{a^{\prime}}=d_{1}$, that is, $\varphi(a)^{\prime}=\varphi\left(a^{\prime}\right)$. By Definition 2.12, we get φ is Boolean homomorphism. Thus B is isomorphic to $D(B)$.

Acknowledgements

We wish to thank the anonymous referees for their valuable comments and suggestions. Moreover, this work was supported by a grant from Kasetsart University.

References

[1] N. O. Alshehri, Derivations of MV-algebras, Int. J. Math. Math. Sci. 2010 (2010), 1-7.
[2] H. E. Bell and G. N. Mason, On derivations in near-rings and near-fields, NorthHolland Math. Stud. 137 (1985), 31-35.
[3] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53(3-4) (1989), 339-346.
[4] A. S. A. Hamza and N. O. Al-Shehri, On left derivations of BCI-algebras, Soochow J. Math. 33(3) (2007), 435-444.
[5] S. Harmaitree and U. Leerawat, On f-derivations in lattice, Far East J. Math. Sci. (FJMS) 51(1) (2011), 27-40.
[6] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167-176.
[7] K. Kaya, Prime rings with α-derivations, Hacettepe Bulletin of Natural Sciences and Engineering 16-17 (1988), 63-71.
[8] R. Lidl and G. Pilz, Applied Abstract Algebra, 7th ed., Springer-Verlag, Inc., New York, U.S.A., 1984.
[9] E. Mendelson, Schaum's Outline of Theory and Problems of Boolean Algebra and Switching Circuits, McGraw-Hill Inc., U.S.A., 1970.
[10] F. Nisar, On F-derivation of BCI-algebra, J. Prime Res. Math. 5 (2009), 176-191.
[11] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[12] C. Prabprayak and U. Leerawat, On derivations of BCC-algebras, Kasetsart J. 43 (2009), 398-401.
[13] L. X. Xin, T. Y. Li and J. H. Lu, On derivations of lattice, Inform. Sci. 178 (2008), 307-316.
[14] J. Zhan and Y. L. Liut, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. 11 (2005), 1675-1684.

[^0]: © 2013 Pushpa Publishing House

