
 

Far East Journal of Mathematical Sciences (FJMS) 
Volume 74, Number 1, 2013, Pages 87-103 
Published Online: March 2013 
Available online at http://pphmj.com/journals/fjms.htm 
Published by Pushpa Publishing House, Allahabad, INDIA 

 

 HousePublishingPushpa2013©  
2010 Mathematics Subject Classification: 06A07, 57M15.

 Keywords and phrases: finite 0T -space, topogenous matrix, Euler characteristic of a poest. 

Submitted by K. K. Azad 
Received November 11, 2012 

ON THE EULER CHARACTERISTIC OF 
A FINITE 0T -SPACE 

Ryousuke Fujita 

Mathematics and Statistics 
Division of Premedical Sciences 
Premedical Sciences 
Dokkyo Medical University 
Kitakobayashi 880, Mibu 
Tochigi, 321-0293, Japan 
e-mail: fujita@dokkyomed.ac.jp 

Abstract 

Given a finite topological space, there exists an adjacency matrix for 
the graph associated to the topology, which is called a topogenous 
matrix of the finite topological space. In this paper, we show that the 
Euler characteristic of a finite 0T -space is represented by the 

topogenous matrix. 

1. Introduction 

A finite set with a topology is called a finite topological space or finite 
space. Let nX  denote the finite set consisting of n elements, and nO  a 

topology on .nX  We say that a finite topological space ( )nnX O,  is a finite 

0T -space if it satisfies the 0T -separation axiom, that is, for each pair of 
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distinct two points, there exists an open set containing one but not the other. 
We often write nX  for ( )., nnX O  Of course, a 1T -space is a 0T -space. A 

topology of a finite space can be represented by a suitable matrix, which is 
called a topogenous matrix. 

A finite 0T -space is our target. For this reason, it has the structure of a 

partially ordered set (a poset, for short). Conversely, one can give any finite 
poset the structure of a finite 0T -space. In this paper, we focus on a 

productive relationship between graph theory, matrix algebra, finite              

0T -topologies and finite poset theory. 

Our main result is the following: 

Theorem. Let nX  be a finite 0T -space consisting of n points, and A be a 

topogenous matrix of .nX  Then the Euler characteristic of nX  is the sum of 

entries of the inverse matrix of A. 

The rest of this article is organized as follows: In Section 2, we give a 
brief introduction to topogenous matrices. In Section 3, we investigate the 
Euler characteristics of posets and prove the above Theorem. The last section 
gives some examples. 

2. Topogenous Matrices 

Let nX  denote a finite topological space consisting of n points. Let a set 

jU  be the minimal open set which contains ,jx  that is, jU  is the 

intersection of all open sets containing .jx  It is easy to see that a set 

{ } njjU ≤≤1  constitutes a basis for the topology of .nX  Then we define a 

square nn ×  matrix ( )ijaA =  by 

⎪⎩

⎪
⎨
⎧ ∈

=
.otherwise0

,if1 ij
ij

Ux
a  

This matrix is called the topogenous matrix of .nX  A topogenous matrix 
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completely determines the topology on a finite topological space. By 
definition, any diagonal term of a topogenous matrix is one. The following 
proposition is well-known in finite topology theory, which was discovered 
by H. Sharp, Jr. 

Proposition 2.1. A matrix ( )ijaA =  is a topogenous matrix if and only if 

A satisfies the following conditions: 

(1) 0=ija  or 1. 

(2) .1=iia  

(3) ,2 AA =  where matrix multiplication involves Boolean arithmetic. 

Now we can define a preorder on nX  by 

ji xx ≤    if   ,ji Ux ∈  

where a set jU  is the minimal open set which contains ,jx  that is, jU  is the 

intersection of all open sets containing .jx  In other words, every open set 

containing jx  also contains ix  if and only if .ji xx ≤  

Proposition 2.2. A 0T -space with the above preorder ≤  is a poset. 

Proof. Let us just verify the antisymmetry. Let ji UU =  and .ji xx ≠  

By 0T -separation axiom, iU  does not contain a point .jx  This is a 

contradiction. Thus, if ,ji UU =  then .ji xx =  Assume that ji xx ≤  and 

.ij xx ≤  By definition, it follows that ,ji UU =  and so .ji xx =  ~ 

Conversely, we can give any finite poset a topology. Let ( )≤,nX  be a 

finite poset. We let { } .
ni Xxini xyXyU ∈≤|∈=  Then we can define a 

topology on ,nX  the open base of which is a set { }.nii XxU ∈|  Moreover, 

each iU  is the minimal open set containing ,ix  and so we can deduce that 

nX  is a finite 0T -space. Consequently, we have: 
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Proposition 2.3. A finite 0T -space corresponds to a finite poset. 

Example 2.4. Let { }3213 ,, xxxX =  be a finite space whose topology is 

{ } { } { } { }{ }.,,,,,,, 3232321 xxxxxxx∅  This space is .0T  Immediately, =1U  

{ },,, 321 xxx  { }22 xU =  and { }.33 xU =  Therefore 12 xx ≤  and ,13 xx ≤  

but there exists no order relation between 2x  and .3x  Then the topogenous 

matrix of 3X  is .
100
010
111

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
 

Example 2.5. Let { }43214 ,,, xxxxX =  be a finite space whose topology 

is { } { } { } { } { }{ }.,,,,,,,,,,,, 423224324321 xxxxxxxxxxxx∅  This space is 

also .0T  Immediately, { },,,, 43211 xxxxU =  { },22 xU =  { }323 , xxU =  and 

{ }., 424 xxU =  The topogenous matrix of 4X  is .

1010
0110
0010
1111

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

 On the 

order relation, we see the following Hasse diagram: 

 
Figure 1 

The Hasse diagram of a poset P  is a digraph, whose vertices are the 
points of P  and whose edges are the ordered pairs ( )yx,  such that yx <  and 

there exists no P∈z  such that .yzx <<  In the graphical representation of a 

Hasse diagram, we will abbreviate an arrow from x to y, but write a segment 
with y over x. Moreover, we also abbreviate a loop at each point of .P  
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As shown above, graphs for 0T -topologies can be streamlined to Hasse 

diagrams. To convert back from a Hasse diagram to a directed graph, we 
insert an arrow on every line segment that points upward, and we invoke 
transitivity as needed to add extra edges. Any finite directed graph with n 
nodes, given in some fixed order, is equivalent to an nn ×  adjacency matrix 

( )ijmM =  consisting of zeroes and ones, where 1=ijm  if and only if there 

is an edge from node ix  to node .jx  The following proposition can be 

understood easily from the viewpoint of Hasse diagrams. 

Proposition 2.6. Let nX  be a finite 0T -space. Then the topogenous 

matrix of nX  is an adjacency matrix for the graph associated to the 

topology. 

A permutation matrix is a square matrix such that it contains only zeros 
and ones, with a unique one in every row and column. The identity matrix is 
a special case of a permutation matrix. 

Proposition 2.7. A topogenous matrix A of a finite 0T -space is 

equivalent to a triangular matrix, that is, there exists a permutation matrix P 

such that PAPt  is a triangular matrix. 

Proof. Let ( )nnX O,  be a finite 0T -space with a topogenous matrix A. 

Let { },...,,, 21 nn xxxX =  and let iU  be the minimal open set which 

contains .ix  Put in  as the number of the element of .iU  We rearrange nX  as 

{ ( ) ( ) ( )}nn xxxX σσσ= ...,,, 21  such that if ,ji ≤  then ( ) ( ),ji nn σσ ≤  where 

σ is some permutation on { }....,,2,1 n  We define a matrix ( )ijbB =  by 

( ) ( ).jiij ab σσ=  If ,ji <  then we have ( ) ( ),ij Ux σσ ∉  and .0=ijb  Thus, B is 

a triangular matrix. Moreover, we define ( )ijpP =  by 
( )

⎪⎩

⎪
⎨
⎧ =σ

=
.otherwise0

,1 ij
pij  

Then P is a permutation matrix and we obtain that .PAPB t=  ~ 

Each diagonal term of PAPt  equals one, and thus 
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Corollary 2.8. A topogenous matrix of a finite 0T -space is nonsingular. 

In Example 2.4, we rearrange 3X  as { }.,, 1323 xxxX =  Next we define a 

permutation matrix 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

010
001
100

P  by the permutation .
132
321
⎟
⎠
⎞

⎜
⎝
⎛=σ  

For the topogenous matrix ,
100
010
111

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=A  we have a triangular matrix 

.
111
010
001

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
== PAPB t  

The following proposition is a remarkable result. 

Proposition 2.9. Let 1O  and 2O  be two 0T -topologies in a finite set 

,nX  and let 1A  and 2A  be the topogenous matrices of ( )1, OnX  and 

( ),, 2OnX  respectively. Moreover, let 1G  and 2G  be the directed graphs 

associated to the topologies of 1O  and ,2O  respectively. Then the following 

conditions are equivalent: 

(1) ( )1, OnX  and ( )2, OnX  are homeomorphic. 

(2) 1A  and 2A  are equivalent, that is, there exists a permutation matrix 

Q such that .12 QQAA t=  

(3) 1G  and 2G  are isomorphic. 

Proof. (1) ⇒ (2) Let iU  be the minimal open set which contains ix  on 

the topology ,1O  and iV  be the minimal open set which contains ix  on the 

topology 2O  for each element ix  of ( )....,,2,1 niXn =  Let a map f from 

( )1, OnX  to ( )2, OnX  be a homeomorphism by 

( ) ( ) ( ),...,,2,1 nixxf ii == σ  
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where σ is some permutation on { }....,,2,1 n  It follows that f induces a 

mapping ( ) ( ) ( ),...,,2,1 niVUf ii == σ  which preserves the inclusion 

relation. If 1A  is noted as ( ),ija  we have ( ( ) ( ) ).2 jiaA σσ=  Moreover, we 

define ( ( ) ),jiQ σδ=  where ( )jiσδ  is the Kronecker’s delta. Then we obtain 

that .12 QQAA t=  

(2) ⇒ (3) Assume that there exists a permutation matrix ( ( ) )jiQ σδ=  

such that .12 QQAA t=  Define 21: GGf →  by 

( ) ( ),ii xxf σ=  

then f is an isomorphism from 1G  to .2G  

(3) ⇒ (1) Let a map g from 1G  to 2G  be an isomorphism. Since ( )ixg  is 

a unique element of ,nX  we can put ( ) ( ),ii xxg τ=  where τ is a permutation 

on { }....,,2,1 n  Then g induces a homeomorphism from ( )1, OnX  to 

( )., 2OnX  ~ 

3. Euler Characteristics of Posets 

Next we shall investigate the Euler characteristic of a poset. See our 
general reference Aigner [1] for details. Let P  be a finite poset and PP ×  
be the set of all pairs ( )yx,  with ., P∈yx  Let Q  be the field of rational 

numbers. We let 

( ) ( ){ },0,:: =⇒≤/|→×= yxfyxfA QQ PPP  

Then ( )PQA  is a vector space over Q  in the usual way, where ∈gf ,  

( ),PQA  ,Q∈r  

( ) ( ) ( ) ( ),,,:, yxgyxfyxgf +=+  

( ) ( ) ( ).,:, yxrfyxrf =  
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We define the multiplication gf ∗  of ( )PQAgf ∈,  by 

( ) ( ) ( ) ( )∑
≤≤

=∗
yzx

yzgzxfyxgf .,,:,  

Notice that the right-hand side is well-defined by the finiteness of .P  
Obviously, ( ) ( )PQAgf ∈∗  again. Also, we have an element δ of ( )PQA  

such that ( )
⎪⎩

⎪
⎨
⎧ =

=δ
otherwise0

if1
,

yx
yx  and call δ the Kronecker function of .P  

Proposition 3.1. ( )PQA  is an associative Q -algebra with Kronecker 

function δ as the unit element. 

Proof. Let us first verify the associative law. For ( ),,, PQAhgf ∈  we 

have 

( )( ) ( ) ( ) ( ) ( )∑
≤≤

∗=∗∗
yzx

yzhgzxfyxhgf ,,,  

( ) ( ) ( )∑ ∑
≤≤ ≤≤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

yzx ywz
ywhwzgzxf ,,,  

( ) ( ) ( )∑ ∑
≤≤ ≤≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ywx wzx
ywhwzgzxf ,,,  

( ) ( ) ( )∑
≤≤

∗=
ywx

ywhwxgf ,,  

( )( ) ( )., yxhgf ∗∗=  

By the definition of Kronecker function, it follows that .fff =∗δ=δ∗  
 ~ 

Proposition 3.2. An element ( )PQAf ∈  is a unit if and only if ( )xxf ,  

0≠  for all .P∈x  
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Proof. If f is a unit, there exists an element ( )PQAg ∈  such that 

( ).or δ=∗δ=∗ fggf  Then for all ,P∈x  

( ) ( ) ( ) ( ) ( ) ( ).,,,,1 xxgxxfxxfgxxgf =∗=∗=  

Thus ( ) .0, ≠xxf  Conversely, let ( ) 0, ≠xxf  for all .P∈x  We define the 

left inverse inductively by 

( ) ( ) ,,
1,1

xxfxxf =−  

( ) ( ) ( ) ( ) .,,,
1, 11

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∑

<≤

−−

yzx
yzfzxfyyfyxf  

In the same way, the right inverse is defined as follows: 

( ) ( ) ,,
1,1

xxfxxf =−  

( ) ( ) ( ) ( ) .,,,
1, 11

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∑

≤<

−−

yxx
yzfzxfxxfyxf  

Two inverses are the same by associativity. ~ 

We denote the set of all pairs ( )yx,  such that yx ≤  for P∈yx,  by 

( ).PI  Then we have an element ζ of ( )PQA  such that ( ) 1, =ζ yx  for all 

( ) ( ),, PIyx ∈  which is called the zeta function of .P  The element ζ has a 

multiplicative inverse in ( ),PQA  denoted by μ. 

Proposition 3.3. For ( ) ( ),, PIyx ∈  one has 

( ) ,1, =μ xx  

( ) ( ) ( )∑ ∑
<≤ ≤<

μ−=μ−=μ
yzx yzx

yzzxyx ,,,  if .yx <  

Proof. By replacing f with ζ in the proof of the previous proposition, we 
get the assertion. ~ 
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The following corollary is an immediate consequence of the above 
proposition. 

Corollary 3.4. ( ) ( ) ( )∑ ∑
≤≤ ≤≤

δ=μ=μ
yzx yzx

yxyzzx .,,,  

This function μ from PP ×  to Q  is called the Möbius function of .P  

Moreover, δ−ζ  is also an element of ( )PQA  satisfying 

( ) ( )
⎪⎩

⎪
⎨
⎧

=

<
=δ−ζ

.if0

,if1
,

yx

yx
yx  

We put .δ−ζ=η  Notice that the value of μ is some integer and η is so 

again. 

Proposition 3.5. For ,, P∈yx  we have ( ) ( ) ( )∑
≥

η−=μ
0

,,1,
k

kk yxyx  

where .0 δ=η  

Proof. Recall that μ is the inverse of .ζ  Hence 

( ) ( )yxyx ,, 1−ζ=μ  

( )( ) ( )yx,1−δ−ζ+δ=  

( ( ) ( ) ) ( )yx,2 −δ−ζ+δ−ζ−δ=  

( ) ( ) ( ) ( ) ( ) −δ−ζ+δ−ζ−δ= yxyxyx ,,, 2  

( ) ( ) ( ) −η+η−η= yxyxyx ,,, 210  

( ) ( )∑
≥

η−=
0

,,1
k

kk yx  

which yields the result. ~ 

Recall that for a poset ,P  the set P⊂S  is called a chain if S is totally 

ordered with respect to the partial ordering on .P  Define the length ( )P  to 
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be the length of a longest chain of ,P  where the length of a chain is one less 
than its number of elements. In particular, the length of the empty poset is –1. 
The order complex ( )PΔ  of a poset P  is defined to be the abstract simplicial 

complex whose vertices are all elements of P  and whose simplices are all 
finite chains of ,P  including the empty chain. Clearly, ( ) ( ).dim PP =Δ  

We denote the geometric realization of an abstract simplicial complex Δ  by 
.Δ  The Euler characteristic ( )Pχ  of P  is defined to be the Euler 

characteristic ( )( ).PΔχ  

Proposition 3.6. ( ) ( )∑
∈

μ=χ
P

P
yx

yx
,

.,  

Proof. We also set .δ−ζ=η  Remark that ( )yxk ,η  equals the number 

of the chain joining x and y whose length is k, where .1≥k  In the case of 

,0=k  we define ( ) ( ).,,0 yxyx δ=η  Then the number of the vertices of P  

is ( )∑
∈

δ
Pyx

yx
,

.,  Let kα  be the number of k-simplices. By Proposition 3.5, 

we compute as follows: 

( ) ( ) ( )∑ ∑ ∑
∈ ∈ ≥

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
η−=μ

P Pyx yx k

kk yxyx
, , 0

,1,  

( ) ( ) ( )∑ ∑
∈ >

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
η−+η=

Pyx k

kk yxyx
, 0

0 ,1,  

( ) ( ) ( )∑ ∑
∈ >

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
η−+δ=

Pyx k

kk yxyx
, 0

,1,  

( ) ( ) ( )∑ ∑ ∑
∈ ∈ >

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
η−+δ=

P Pyx yx k

kk yxyx
, , 0

,1,  

( ) ( ) ( )∑ ∑ ∑
∈ > ∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
η−+δ=

P Pyx k yx

kk yxyx
, 0 ,

,1,  
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( ) ( )∑ ∑
> ∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
η−+α=

0 ,
0 ,1

k yx

kk yx
P

 

( ) ( )∑ ∑
> ∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
η−+α=

0 ,
0 ,1

k yx

kk yx
P

 

( )∑
≥

α−=
0

1
k

k
k  

( ),Pχ=  

which completes the proof. ~ 

Moreover, we consider two square matrices ( )( )( ) PP×∈μ= yxyxM ,,  

and ( )( )( ) ., , PP×∈ζ= yxyxZ  The former is called the Möbius matrix of ,P  

and the latter is called the zeta matrix of .P  

Proposition 3.7. ,IZMMZ ==  where I is the usual identity matrix. 

Proof. By definition, ( ) ( )
( )

.,,
, PPP ×∈∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ζμ= ∑

yxz
yzzxMZ  We now 

compute: 

( ) ( ) ( ) ( )∑ ∑
∈ ≤≤

ζμ=ζμ
Pz yzx

yzzxyzzx ,,,,  

( )∑
≤≤

⋅μ=
yzx

zx 1,  

( )∑
≤≤
μ=

yzx
zx,  

( )., yxδ=  

Hence .IMZ =  Similarly .IZM =  ~ 

Therefore, both M and Z are nonsingular. By definition, diagonal entries 
of both matrices are all ones. 
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Definition 3.8. The Euler characteristic of a finite 0T -space ,nX  which 

is as usual denoted by ( ),nXχ  is the Euler characteristic of a poset ( ),, ≤nX  

where a partial ordering ≤ has been produced in Section 2. 

We can now prove the result mentioned in the introduction. 

Theorem 3.9. Let nX  be a finite 0T -space consisting n points, and A be 

a topogenous matrix of .nX  Then the Euler characteristic of nX  is the sum 

of entries of the inverse matrix of A. 

Proof. The zeta matrix of a poset ( )≤,nX  equals the adjacency matrix 

for the graph associated to the topology. By Proposition 2.6, the topogenous 
matrix of a finite 0T -space nX  is the zeta matrix of a poset ( )., ≤nX  

By Proposition 3.6, the Euler characteristic of P  is the sum of entries of 
the Möbius matrix of .P  Since the Euler characteristic of a finite 0T -space 

nX  is defined to be the Euler characteristic ( )( ),, ≤χ nX  after all, it is the 

sum of entries of the Möbius matrix of ( )., ≤nX  Remark that the Möbius 

matrix is the inverse matrix of the zeta matrix, and the proof is complete. ~ 

For any nn ×  matrix A, we denote the sum of all entries of A by ( ).As  

Another representation on the Euler characteristic of nX  is the following. 

This was first proved in [8]. 

Proposition 3.10 [8, Theorem]. Let nX  be a finite 0T -space consisting       

n points, and A be a topogenous matrix of .nX  Let (( ) )q
q IAs −=α  

( ).10 −≤≤ nq  Then we have 

( ) ( )∑
−

=
α−=χ

1

0
,1

n

q
q

q
nX  

where ( ) .0 IIA =−  

Proof. The assertion follows from Proposition 3.5 and Proposition 3.6. ~ 
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4. Examples 

In this section, we present some examples of application of Theorem 3.9. 
By Proposition 2.7 and Proposition 2.9, it is no loss to assume that any 
topogenous matrix is a triangular matrix. 

Example 4.1. We let { },, 212 xxX =  and .
10
01
⎟
⎠
⎞

⎜
⎝
⎛=A  Let 2X  be a 

finite 0T -space determined by A. Since the inverse matrix of A is ,
10
01
⎟
⎠
⎞

⎜
⎝
⎛  

we have ( ) .22 =χ X  Indeed, ( )( )≤Δ ,2X  is the disjoint union of two 
elements. 

Example 4.2. We let { },, 212 xxX =  and .
11
01
⎟
⎠
⎞

⎜
⎝
⎛=A  Let 2X  be a 

finite 0T -space determined by A. Since the inverse matrix of A is ,
11
01
⎟
⎠
⎞

⎜
⎝
⎛
−

 

we have ( ) .12 =χ X  Indeed, ( )( )≤Δ ,2X  is homeomorphic to a segment. 

Example 4.3. We let { },,, 3213 xxxX =  and ,
111
010
001

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=A  which 

is equivalent to the topogenous matrix in Example 2.4. Let 3X  be a finite 

0T -space determined by A. Since the inverse matrix of A is ,
111
010
001

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−−
 we 

have ( ) .13 =χ X  The following Hasse diagram indicates that ( )( )≤Δ ,3X  is 
homeomorphic to a segment. 

 
Figure 2 
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Example 4.4. We let { },,, 3213 xxxX =  and .
111
011
001

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=A  Let 3X  

be a finite 0T -space determined by A. The inverse matrix of A is 

,
110
011
001

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−  and so ( ) .13 =χ X  Since ( )( ) ,2,3 =≤X  it follows that 

( )( ) .2dim 3 =≤Δ X  Then ( )( )≤Δ ,3X  is homeomorphic to a 2-disc .2D  

Example 4.5. We let { },,,, 43214 xxxxX =  and ,

1111
0101
0011
0001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=A  

which is equivalent to the topogenous matrix in Example 2.5. Let 4X  be          

a finite 0T -space determined by A. Since the inverse matrix of A                      

is ,

1111
0101
0011
0001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−
−
−

 we have ( ) .14 =χ X  Indeed, ( )( )≤Δ ,4X  is 

homeomorphic to the one-point union of two 2-disks, that is, the wedge of 
two 2-disks. 

Example 4.6. We let { },,,, 43214 xxxxX =  and .

1111
0111
0011
0001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=A  

Let 4X  be a finite 0T -space determined by A. Since the inverse matrix of A 

is ,

1100
0110
0011
0001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
 we have ( ) .14 =χ X  In this case, ( )( )≤Δ ,4X  is 

homeomorphic to a 3-disk .3D  
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Example 4.7. We let { },...,,, 21 nn xxxX =  and 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

111

011
001

A  

( ).matrixnn ×  Let nX  be a finite 0T -space determined by A. Since the 

inverse matrix of A is ,

100

010
011
001

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

 we have ( ) .1=χ nX  Then 

( )( )≤Δ ,nX  is homeomorphic to a ( )1−n -disk .1−nD  
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