Far East Journal of Mathematical Sciences (FJMS)
Volume 74, Number 1, 2013, Pages 87-103
Published Online: March 2013
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

ON THE EULER CHARACTERISTIC OF A FINITE T_{0}-SPACE

Ryousuke Fujita

Mathematics and Statistics
Division of Premedical Sciences
Premedical Sciences
Dokkyo Medical University
Kitakobayashi 880, Mibu
Tochigi, 321-0293, Japan
e-mail: fujita@dokkyomed.ac.jp

Abstract

Given a finite topological space, there exists an adjacency matrix for the graph associated to the topology, which is called a topogenous matrix of the finite topological space. In this paper, we show that the Euler characteristic of a finite T_{0}-space is represented by the topogenous matrix.

1. Introduction

A finite set with a topology is called a finite topological space or finite space. Let X_{n} denote the finite set consisting of n elements, and \mathcal{O}_{n} a topology on X_{n}. We say that a finite topological space $\left(X_{n}, \mathcal{O}_{n}\right)$ is a finite T_{0}-space if it satisfies the T_{0}-separation axiom, that is, for each pair of
© 2013 Pushpa Publishing House
2010 Mathematics Subject Classification: 06A07, 57M15.
Keywords and phrases: finite T_{0}-space, topogenous matrix, Euler characteristic of a poest.
Submitted by K. K. Azad
Received November 11, 2012
distinct two points, there exists an open set containing one but not the other. We often write X_{n} for $\left(X_{n}, \mathcal{O}_{n}\right)$. Of course, a T_{1}-space is a T_{0}-space. A topology of a finite space can be represented by a suitable matrix, which is called a topogenous matrix.

A finite T_{0}-space is our target. For this reason, it has the structure of a partially ordered set (a poset, for short). Conversely, one can give any finite poset the structure of a finite T_{0}-space. In this paper, we focus on a productive relationship between graph theory, matrix algebra, finite T_{0}-topologies and finite poset theory.

Our main result is the following:
Theorem. Let X_{n} be a finite T_{0}-space consisting of n points, and A be a topogenous matrix of X_{n}. Then the Euler characteristic of X_{n} is the sum of entries of the inverse matrix of A.

The rest of this article is organized as follows: In Section 2, we give a brief introduction to topogenous matrices. In Section 3, we investigate the Euler characteristics of posets and prove the above Theorem. The last section gives some examples.

2. Topogenous Matrices

Let X_{n} denote a finite topological space consisting of n points. Let a set U_{j} be the minimal open set which contains x_{j}, that is, U_{j} is the intersection of all open sets containing x_{j}. It is easy to see that a set $\left\{U_{j}\right\}_{1 \leq j \leq n}$ constitutes a basis for the topology of X_{n}. Then we define a square $n \times n$ matrix $A=\left(a_{i j}\right)$ by

$$
a_{i j}= \begin{cases}1 & \text { if } x_{j} \in U_{i} \\ 0 & \text { otherwise }\end{cases}
$$

This matrix is called the topogenous matrix of X_{n}. A topogenous matrix
completely determines the topology on a finite topological space. By definition, any diagonal term of a topogenous matrix is one. The following proposition is well-known in finite topology theory, which was discovered by H. Sharp, Jr.

Proposition 2.1. A matrix $A=\left(a_{i j}\right)$ is a topogenous matrix if and only if A satisfies the following conditions:
(1) $a_{i j}=0$ or 1 .
(2) $a_{i i}=1$.
(3) $A^{2}=A$, where matrix multiplication involves Boolean arithmetic.

Now we can define a preorder on X_{n} by

$$
x_{i} \leq x_{j} \quad \text { if } \quad x_{i} \in U_{j}
$$

where a set U_{j} is the minimal open set which contains x_{j}, that is, U_{j} is the intersection of all open sets containing x_{j}. In other words, every open set containing x_{j} also contains x_{i} if and only if $x_{i} \leq x_{j}$.

Proposition 2.2. A T_{0}-space with the above preorder \leq is a poset.
Proof. Let us just verify the antisymmetry. Let $U_{i}=U_{j}$ and $x_{i} \neq x_{j}$. By T_{0}-separation axiom, U_{i} does not contain a point x_{j}. This is a contradiction. Thus, if $U_{i}=U_{j}$, then $x_{i}=x_{j}$. Assume that $x_{i} \leq x_{j}$ and $x_{j} \leq x_{i}$. By definition, it follows that $U_{i}=U_{j}$, and so $x_{i}=x_{j}$.

Conversely, we can give any finite poset a topology. Let $\left(X_{n}, \leq\right)$ be a finite poset. We let $U_{i}=\left\{y \in X_{n} \mid y \leq x_{i}\right\}_{x_{i} \in X_{n}}$. Then we can define a topology on X_{n}, the open base of which is a set $\left\{U_{i} \mid x_{i} \in X_{n}\right\}$. Moreover, each U_{i} is the minimal open set containing x_{i}, and so we can deduce that X_{n} is a finite T_{0}-space. Consequently, we have:

Proposition 2.3. A finite T_{0}-space corresponds to a finite poset.
Example 2.4. Let $X_{3}=\left\{x_{1}, x_{2}, x_{3}\right\}$ be a finite space whose topology is $\left\{\varnothing,\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\}\right\}$. This space is T_{0}. Immediately, $U_{1}=$ $\left\{x_{1}, x_{2}, x_{3}\right\}, U_{2}=\left\{x_{2}\right\}$ and $U_{3}=\left\{x_{3}\right\}$. Therefore $x_{2} \leq x_{1}$ and $x_{3} \leq x_{1}$, but there exists no order relation between x_{2} and x_{3}. Then the topogenous matrix of X_{3} is $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

Example 2.5. Let $X_{4}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a finite space whose topology is $\left\{\varnothing,\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{x_{2}, x_{3}, x_{4}\right\},\left\{x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{2}, x_{4}\right\}\right\}$. This space is also T_{0}. Immediately, $U_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, U_{2}=\left\{x_{2}\right\}, U_{3}=\left\{x_{2}, x_{3}\right\}$ and $U_{4}=\left\{x_{2}, x_{4}\right\}$. The topogenous matrix of X_{4} is $\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$. On the order relation, we see the following Hasse diagram:

Figure 1
The Hasse diagram of a poset \mathcal{P} is a digraph, whose vertices are the points of \mathcal{P} and whose edges are the ordered pairs (x, y) such that $x<y$ and there exists no $z \in \mathcal{P}$ such that $x<z<y$. In the graphical representation of a Hasse diagram, we will abbreviate an arrow from x to y, but write a segment with y over x. Moreover, we also abbreviate a loop at each point of \mathcal{P}.

As shown above, graphs for T_{0}-topologies can be streamlined to Hasse diagrams. To convert back from a Hasse diagram to a directed graph, we insert an arrow on every line segment that points upward, and we invoke transitivity as needed to add extra edges. Any finite directed graph with n nodes, given in some fixed order, is equivalent to an $n \times n$ adjacency matrix $M=\left(m_{i j}\right)$ consisting of zeroes and ones, where $m_{i j}=1$ if and only if there is an edge from node x_{i} to node x_{j}. The following proposition can be understood easily from the viewpoint of Hasse diagrams.

Proposition 2.6. Let X_{n} be a finite T_{0}-space. Then the topogenous matrix of X_{n} is an adjacency matrix for the graph associated to the topology.

A permutation matrix is a square matrix such that it contains only zeros and ones, with a unique one in every row and column. The identity matrix is a special case of a permutation matrix.

Proposition 2.7. A topogenous matrix A of a finite T_{0}-space is equivalent to a triangular matrix, that is, there exists a permutation matrix P such that ${ }^{t} P A P$ is a triangular matrix.

Proof. Let $\left(X_{n}, \mathcal{O}_{n}\right)$ be a finite T_{0}-space with a topogenous matrix A. Let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and let U_{i} be the minimal open set which contains x_{i}. Put n_{i} as the number of the element of U_{i}. We rearrange X_{n} as $X_{n}=\left\{x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right\}$ such that if $i \leq j$, then $n_{\sigma(i)} \leq n_{\sigma(j)}$, where σ is some permutation on $\{1,2, \ldots, n\}$. We define a matrix $B=\left(b_{i j}\right)$ by $b_{i j}=a_{\sigma(i) \sigma(j)}$. If $i<j$, then we have $x_{\sigma(j)} \notin U_{\sigma(i)}$, and $b_{i j}=0$. Thus, B is a triangular matrix. Moreover, we define $P=\left(p_{i j}\right)$ by $p_{i j}=\left\{\begin{array}{lc}1 & \sigma(j)=i, \\ 0 & \text { otherwise. }\end{array}\right.$ Then P is a permutation matrix and we obtain that $B={ }^{t} P A P$.

Each diagonal term of ${ }^{t} P A P$ equals one, and thus

Corollary 2.8. A topogenous matrix of a finite T_{0}-space is nonsingular.
In Example 2.4, we rearrange X_{3} as $X_{3}=\left\{x_{2}, x_{3}, x_{1}\right\}$. Next we define a permutation matrix $P=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ by the permutation $\sigma=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$. For the topogenous matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, we have a triangular matrix $B={ }^{t} P A P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$.

The following proposition is a remarkable result.
Proposition 2.9. Let \mathcal{O}_{1} and \mathcal{O}_{2} be two T_{0}-topologies in a finite set X_{n}, and let A_{1} and A_{2} be the topogenous matrices of $\left(X_{n}, \mathcal{O}_{1}\right)$ and $\left(X_{n}, \mathcal{O}_{2}\right)$, respectively. Moreover, let G_{1} and G_{2} be the directed graphs associated to the topologies of \mathcal{O}_{1} and \mathcal{O}_{2}, respectively. Then the following conditions are equivalent:
(1) $\left(X_{n}, \mathcal{O}_{1}\right)$ and $\left(X_{n}, \mathcal{O}_{2}\right)$ are homeomorphic.
(2) A_{1} and A_{2} are equivalent, that is, there exists a permutation matrix Q such that $A_{2}={ }^{t} Q A_{1} Q$.
(3) G_{1} and G_{2} are isomorphic.

Proof. (1) \Rightarrow (2) Let U_{i} be the minimal open set which contains x_{i} on the topology \mathcal{O}_{1}, and V_{i} be the minimal open set which contains x_{i} on the topology \mathcal{O}_{2} for each element x_{i} of $X_{n}(i=1,2, \ldots, n)$. Let a map f from $\left(X_{n}, \mathcal{O}_{1}\right)$ to $\left(X_{n}, \mathcal{O}_{2}\right)$ be a homeomorphism by

$$
f\left(x_{i}\right)=x_{\sigma(i)}(i=1,2, \ldots, n),
$$

where σ is some permutation on $\{1,2, \ldots, n\}$. It follows that f induces a mapping $f\left(U_{i}\right)=V_{\sigma(i)}(i=1,2, \ldots, n)$, which preserves the inclusion relation. If A_{1} is noted as $\left(a_{i j}\right)$, we have $A_{2}=\left(a_{\sigma(i) \sigma(j)}\right)$. Moreover, we define $Q=\left(\delta_{i \sigma(j)}\right)$, where $\delta_{i \sigma(j)}$ is the Kronecker's delta. Then we obtain that $A_{2}={ }^{t} Q A_{1} Q$.
(2) \Rightarrow (3) Assume that there exists a permutation matrix $Q=\left(\delta_{i \sigma(j)}\right)$ such that $A_{2}={ }^{t} Q A_{1} Q$. Define $f: G_{1} \rightarrow G_{2}$ by

$$
f\left(x_{i}\right)=x_{\sigma(i)},
$$

then f is an isomorphism from G_{1} to G_{2}.
(3) $\Rightarrow(1)$ Let a map g from G_{1} to G_{2} be an isomorphism. Since $g\left(x_{i}\right)$ is a unique element of X_{n}, we can put $g\left(x_{i}\right)=x_{\tau(i)}$, where τ is a permutation on $\{1,2, \ldots, n\}$. Then g induces a homeomorphism from $\left(X_{n}, \mathcal{O}_{1}\right)$ to $\left(X_{n}, \mathcal{O}_{2}\right)$.

3. Euler Characteristics of Posets

Next we shall investigate the Euler characteristic of a poset. See our general reference Aigner [1] for details. Let \mathcal{P} be a finite poset and $\mathcal{P} \times \mathcal{P}$ be the set of all pairs (x, y) with $x, y \in \mathcal{P}$. Let \mathbb{Q} be the field of rational numbers. We let

$$
A_{\mathbb{Q}}(\mathcal{P}):=\{f: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{Q} \mid x \notin y \Rightarrow f(x, y)=0\},
$$

Then $A_{\mathbb{Q}}(\mathcal{P})$ is a vector space over \mathbb{Q} in the usual way, where $f, g \in$ $A_{\mathbb{Q}}(\mathcal{P}), r \in \mathbb{Q}$,

$$
\begin{aligned}
& (f+g)(x, y):=f(x, y)+g(x, y), \\
& (r f)(x, y):=r f(x, y) .
\end{aligned}
$$

We define the multiplication $f * g$ of $f, g \in A_{\mathbb{Q}}(\mathcal{P})$ by

$$
(f * g)(x, y):=\sum_{x \leq z \leq y} f(x, z) g(z, y) .
$$

Notice that the right-hand side is well-defined by the finiteness of \mathcal{P}. Obviously, $(f * g) \in A_{\mathbb{Q}}(\mathcal{P})$ again. Also, we have an element δ of $A_{\mathbb{Q}}(\mathcal{P})$ such that $\delta(x, y)=\left\{\begin{array}{ll}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{array}\right.$ and call δ the Kronecker function of \mathcal{P}.

Proposition 3.1. $A_{\mathbb{Q}}(\mathcal{P})$ is an associative \mathbb{Q}-algebra with Kronecker function δ as the unit element.

Proof. Let us first verify the associative law. For $f, g, h \in A_{\mathbb{Q}}(\mathcal{P})$, we have

$$
\begin{aligned}
(f *(g * h))(x, y) & =\sum_{x \leq z \leq y} f(x, z)(g * h)(z, y) \\
& =\sum_{x \leq z \leq y} f(x, z)\left(\sum_{z \leq w \leq y} g(z, w) h(w, y)\right) \\
& =\sum_{x \leq w \leq y}\left(\sum_{x \leq z \leq w} f(x, z) g(z, w)\right) h(w, y) \\
& =\sum_{x \leq w \leq y}(f * g)(x, w) h(w, y) \\
& =((f * g) * h)(x, y) .
\end{aligned}
$$

By the definition of Kronecker function, it follows that $f * \delta=\delta * f=f$.

Proposition 3.2. An element $f \in A_{\mathbb{Q}}(\mathcal{P})$ is a unit if and only if $f(x, x)$ $\neq 0$ for all $x \in \mathcal{P}$.

Proof. If f is a unit, there exists an element $g \in A_{\mathbb{Q}}(\mathcal{P})$ such that $f * g=\delta($ or $g * f=\delta)$. Then for all $x \in \mathcal{P}$,

$$
1=(f * g)(x, x)=(g * f)(x, x)=f(x, x) g(x, x)
$$

Thus $f(x, x) \neq 0$. Conversely, let $f(x, x) \neq 0$ for all $x \in \mathcal{P}$. We define the left inverse inductively by

$$
\begin{aligned}
f^{-1}(x, x) & =\frac{1}{f(x, x)} \\
f^{-1}(x, y) & =\frac{1}{f(y, y)}\left(-\sum_{x \leq z<y} f^{-1}(x, z) f(z, y)\right)
\end{aligned}
$$

In the same way, the right inverse is defined as follows:

$$
\begin{aligned}
f^{-1}(x, x) & =\frac{1}{f(x, x)} \\
f^{-1}(x, y) & =\frac{1}{f(x, x)}\left(-\sum_{x<x \leq y} f(x, z) f^{-1}(z, y)\right)
\end{aligned}
$$

Two inverses are the same by associativity.
We denote the set of all pairs (x, y) such that $x \leq y$ for $x, y \in \mathcal{P}$ by $I(\mathcal{P})$. Then we have an element ζ of $A_{\mathbb{Q}}(\mathcal{P})$ such that $\zeta(x, y)=1$ for all $(x, y) \in I(\mathcal{P})$, which is called the zeta function of \mathcal{P}. The element ζ has a multiplicative inverse in $A_{\mathbb{Q}}(\mathcal{P})$, denoted by μ.

Proposition 3.3. For $(x, y) \in I(\mathcal{P})$, one has

$$
\begin{aligned}
& \mu(x, x)=1 \\
& \mu(x, y)=-\sum_{x \leq z<y} \mu(x, z)=-\sum_{x<z \leq y} \mu(z, y) \text { if } x<y .
\end{aligned}
$$

Proof. By replacing f with ζ in the proof of the previous proposition, we get the assertion.

The following corollary is an immediate consequence of the above proposition.

Corollary 3.4. $\sum_{x \leq z \leq y} \mu(x, z)=\sum_{x \leq z \leq y} \mu(z, y)=\delta(x, y)$.
This function μ from $\mathcal{P} \times \mathcal{P}$ to \mathbb{Q} is called the Möbius function of \mathcal{P}. Moreover, $\zeta-\delta$ is also an element of $A_{\mathbb{Q}}(\mathcal{P})$ satisfying

$$
(\zeta-\delta)(x, y)= \begin{cases}1 & \text { if } x<y \\ 0 & \text { if } x=y\end{cases}
$$

We put $\eta=\zeta-\delta$. Notice that the value of μ is some integer and η is so again.

Proposition 3.5. For $x, y \in \mathcal{P}$, we have $\mu(x, y)=\sum_{k \geq 0}(-1)^{k} \eta^{k}(x, y)$, where $\eta^{0}=\delta$.

Proof. Recall that μ is the inverse of ζ. Hence

$$
\begin{aligned}
\mu(x, y) & =\zeta^{-1}(x, y) \\
& =(\delta+(\zeta-\delta))^{-1}(x, y) \\
& =\left(\delta-(\zeta-\delta)+(\zeta-\delta)^{2}-\cdots\right)(x, y) \\
& =\delta(x, y)-(\zeta-\delta)(x, y)+(\zeta-\delta)^{2}(x, y)-\cdots \\
& =\eta^{0}(x, y)-\eta^{1}(x, y)+\eta^{2}(x, y)-\cdots \\
& =\sum_{k \geq 0}(-1)^{k} \eta^{k}(x, y),
\end{aligned}
$$

which yields the result.
Recall that for a poset \mathcal{P}, the set $S \subset \mathcal{P}$ is called a chain if S is totally ordered with respect to the partial ordering on \mathcal{P}. Define the length $\ell(\mathcal{P})$ to
be the length of a longest chain of \mathcal{P}, where the length of a chain is one less than its number of elements. In particular, the length of the empty poset is -1 . The order complex $\Delta(\mathcal{P})$ of a poset \mathcal{P} is defined to be the abstract simplicial complex whose vertices are all elements of \mathcal{P} and whose simplices are all finite chains of \mathcal{P}, including the empty chain. Clearly, $\operatorname{dim} \Delta(\mathcal{P})=\ell(\mathcal{P})$. We denote the geometric realization of an abstract simplicial complex Δ by $\|\Delta\|$. The Euler characteristic $\chi(\mathcal{P})$ of \mathcal{P} is defined to be the Euler characteristic $\chi(\Delta(\mathcal{P}))$.

Proposition 3.6. $\chi(\mathcal{P})=\sum_{x, y \in \mathcal{P}} \mu(x, y)$.
Proof. We also set $\eta=\zeta-\delta$. Remark that $\eta^{k}(x, y)$ equals the number of the chain joining x and y whose length is k, where $k \geq 1$. In the case of $k=0$, we define $\eta^{0}(x, y)=\delta(x, y)$. Then the number of the vertices of \mathcal{P} is $\sum_{x, y \in \mathcal{P}} \delta(x, y)$. Let α_{k} be the number of k-simplices. By Proposition 3.5, we compute as follows:

$$
\begin{aligned}
\sum_{x, y \in \mathcal{P}} \mu(x, y) & =\sum_{x, y \in \mathcal{P}}\left(\sum_{k \geq 0}(-1)^{k} \eta^{k}(x, y)\right) \\
& =\sum_{x, y \in \mathcal{P}}\left(\eta^{0}(x, y)+\sum_{k>0}(-1)^{k} \eta^{k}(x, y)\right) \\
& =\sum_{x, y \in \mathcal{P}}\left(\delta(x, y)+\sum_{k>0}(-1)^{k} \eta^{k}(x, y)\right) \\
& =\sum_{x, y \in \mathcal{P}} \delta(x, y)+\sum_{x, y \in \mathcal{P}}\left(\sum_{k>0}(-1)^{k} \eta^{k}(x, y)\right) \\
& =\sum_{x, y \in \mathcal{P}} \delta(x, y)+\sum_{k>0}\left(\sum_{x, y \in \mathcal{P}}(-1)^{k} \eta^{k}(x, y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha_{0}+\sum_{k>0}\left(\sum_{x, y \in \mathcal{P}}(-1)^{k} \eta^{k}(x, y)\right) \\
& =\alpha_{0}+\sum_{k>0}(-1)^{k}\left(\sum_{x, y \in \mathcal{P}} \eta^{k}(x, y)\right) \\
& =\sum_{k \geq 0}(-1)^{k} \alpha_{k} \\
& =\chi(\mathcal{P}),
\end{aligned}
$$

which completes the proof.
Moreover, we consider two square matrices $M=(\mu(x, y))_{(x, y) \in \mathcal{P} \times \mathcal{P}}$ and $Z=(\zeta(x, y))_{(x, y) \in \mathcal{P} \times \mathcal{P}}$. The former is called the Möbius matrix of \mathcal{P}, and the latter is called the zeta matrix of \mathcal{P}.

Proposition 3.7. $M Z=Z M=I$, where I is the usual identity matrix.
Proof. By definition, $M Z=\left(\sum_{z \in \mathcal{P}} \mu(x, z) \zeta(z, y)\right)_{(x, y) \in \mathcal{P} \times \mathcal{P}}$. We now compute:

$$
\begin{aligned}
\sum_{z \in \mathcal{P}} \mu(x, z) \zeta(z, y) & =\sum_{x \leq z \leq y} \mu(x, z) \zeta(z, y) \\
& =\sum_{x \leq z \leq y} \mu(x, z) \cdot 1 \\
& =\sum_{x \leq z \leq y} \mu(x, z) \\
& =\delta(x, y) .
\end{aligned}
$$

Hence $M Z=I$. Similarly $Z M=I$.
Therefore, both M and Z are nonsingular. By definition, diagonal entries of both matrices are all ones.

Definition 3.8. The Euler characteristic of a finite T_{0}-space X_{n}, which is as usual denoted by $\chi\left(X_{n}\right)$, is the Euler characteristic of a poset (X_{n}, \leq), where a partial ordering \leq has been produced in Section 2 .

We can now prove the result mentioned in the introduction.
Theorem 3.9. Let X_{n} be a finite T_{0}-space consisting n points, and A be a topogenous matrix of X_{n}. Then the Euler characteristic of X_{n} is the sum of entries of the inverse matrix of A.

Proof. The zeta matrix of a poset (X_{n}, \leq) equals the adjacency matrix for the graph associated to the topology. By Proposition 2.6, the topogenous matrix of a finite T_{0}-space X_{n} is the zeta matrix of a poset (X_{n}, \leq).

By Proposition 3.6, the Euler characteristic of \mathcal{P} is the sum of entries of the Möbius matrix of \mathcal{P}. Since the Euler characteristic of a finite T_{0}-space X_{n} is defined to be the Euler characteristic $\chi\left(\left(X_{n}, \leq\right)\right)$, after all, it is the sum of entries of the Möbius matrix of (X_{n}, \leq). Remark that the Möbius matrix is the inverse matrix of the zeta matrix, and the proof is complete.

For any $n \times n$ matrix A, we denote the sum of all entries of A by $s(A)$. Another representation on the Euler characteristic of X_{n} is the following. This was first proved in [8].

Proposition 3.10 [8, Theorem]. Let X_{n} be a finite T_{0}-space consisting n points, and A be a topogenous matrix of X_{n}. Let $\alpha_{q}=s\left((A-I)^{q}\right)$ ($0 \leq q \leq n-1$). Then we have

$$
\chi\left(X_{n}\right)=\sum_{q=0}^{n-1}(-1)^{q} \alpha_{q},
$$

where $(A-I)^{0}=I$.
Proof. The assertion follows from Proposition 3.5 and Proposition 3.6.

4. Examples

In this section, we present some examples of application of Theorem 3.9. By Proposition 2.7 and Proposition 2.9, it is no loss to assume that any topogenous matrix is a triangular matrix.

Example 4.1. We let $X_{2}=\left\{x_{1}, x_{2}\right\}$, and $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Let X_{2} be a finite T_{0}-space determined by A. Since the inverse matrix of A is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, we have $\chi\left(X_{2}\right)=2$. Indeed, $\Delta\left(\left(X_{2}, \leq\right)\right)$ is the disjoint union of two elements.

Example 4.2. We let $X_{2}=\left\{x_{1}, x_{2}\right\}$, and $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Let X_{2} be a finite T_{0}-space determined by A. Since the inverse matrix of A is $\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$, we have $\chi\left(X_{2}\right)=1$. Indeed, $\left\|\Delta\left(\left(X_{2}, \leq\right)\right)\right\|$ is homeomorphic to a segment.

Example 4.3. We let $X_{3}=\left\{x_{1}, x_{2}, x_{3}\right\}$, and $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$, which is equivalent to the topogenous matrix in Example 2.4. Let X_{3} be a finite T_{0}-space determined by A. Since the inverse matrix of A is $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1\end{array}\right)$, we have $\chi\left(X_{3}\right)=1$. The following Hasse diagram indicates that $\left\|\Delta\left(\left(X_{3}, \leq\right)\right)\right\|$ is homeomorphic to a segment.

Figure 2

Example 4.4. We let $X_{3}=\left\{x_{1}, x_{2}, x_{3}\right\}$, and $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$. Let X_{3} be a finite T_{0}-space determined by A. The inverse matrix of A is $\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)$, and so $\chi\left(X_{3}\right)=1$. Since $\ell\left(\left(X_{3}, \leq\right)\right)=2$, it follows that $\operatorname{dim} \Delta\left(\left(X_{3} \leq\right)\right)=2$. Then $\left\|\Delta\left(\left(X_{3}, \leq\right)\right)\right\|$ is homeomorphic to a 2-disc D^{2}.

Example 4.5. We let $X_{4}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and $A=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$, which is equivalent to the topogenous matrix in Example 2.5. Let X_{4} be a finite T_{0}-space determined by A. Since the inverse matrix of A is $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & -1 & -1 & 1\end{array}\right)$, we have $\chi\left(X_{4}\right)=1$. Indeed, $\left\|\Delta\left(\left(X_{4}, \leq\right)\right)\right\|$ is homeomorphic to the one-point union of two 2-disks, that is, the wedge of two 2-disks.

Example 4.6. We let $X_{4}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and $A=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$.
Let X_{4} be a finite T_{0}-space determined by A. Since the inverse matrix of A is $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right)$, we have $\chi\left(X_{4}\right)=1$. In this case, $\left\|\Delta\left(\left(X_{4}, \leq\right)\right)\right\|$ is homeomorphic to a 3-disk D^{3}.

Example 4.7. We let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and $A=\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1\end{array}\right)$
($n \times n$ matrix). Let X_{n} be a finite T_{0}-space determined by A. Since the inverse matrix of A is $\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ -1 & 1 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right)$, we have $\chi\left(X_{n}\right)=1$. Then $\left\|\Delta\left(\left(X_{n}, \leq\right)\right)\right\|$ is homeomorphic to a $(n-1)$-disk D^{n-1}.

Acknowledgements

The author would like to express his thanks to Professor Fumihiro Ushitaki for his valuable suggestions. The author would also like to thank the referee for his suggestions brushing up the manuscript. This article was partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

References

[1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, 1979.
[2] J. A. Barmak, Algebraic topology of finite topological spaces and applications, Lecture Notes in Math., 2032, Springer-Verlag, 2011.
[3] S. Kono and F. Ushitaki, Geometry of finite topological spaces and equivariant finite topological spaces, Current Trends in Transformation Groups, A. Bak, M. Morimoto and F. Ushitaki, eds., Kluwer Academic Publishers, Dordrecht, 2002, pp. 53-63.
[4] H. Sharp, Jr., Quasi-orderings and topologies on finite sets, Proc. Amer. Math. Soc. 17 (1966), 1344-1349.
[5] M. Shiraki, On finite topological spaces, Rep. Fac. Sci. Kagoshima Univ. 1 (1968), 1-8.
[6] M. Shiraki, On finite topological spaces II, Rep. Fac. Sci. Kagoshima Univ. 2 (1969), 1-15.
[7] R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325-340.
[8] F. Ushitaki, The topogenous matrices and Euler characteristics of finite T_{0}-spaces (in Japanese), RIMS Kokyuroku 1540 (2007), 29-34.

