

SOME FIXED POINT RESULTS IN LINEAR 2-BANACH SPACES

Y. Dominic and M. Marudai

Department of Mathematics St. Joseph's College Tiruchirappalli, Tamil Nadu, India e-mail: dominic.yesu@gmail.com

Department of Mathematics Bharathidasan University Tiruchirappalli, Tamil Nadu, India e-mail: mmarudai@yahoo.co.in

Abstract

In this paper, we prove the existence and uniqueness of fixed point for generalized (ϕ, ψ) weak contraction in the setting of 2-Banach spaces.

1. Introduction

The concept of linear 2-normed spaces was introduced and investigated by S. Gähler in 1960s. Thereafter, the subject has got great attention of mathematicians around the world. A. White introduced the concept of 2-Banach space. Zofia Lewandowska a Poland mathematician introduced the concept of generalized 2-normed space and proved the Hahn-Banach

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: Primary 41A65, 41A15.

Keywords and phrases: 2-Banach spaces, generalized (ϕ, ψ) weak contraction, fixed points.

Submitted by E. Thandapani

Received September 10, 2012

theorem. Like other spaces, the fixed point theory has also been developed in the framework 2-normed and 2-metric spaces. I'seki was the first man who obtained the basic results of fixed points in 2-metric and 2-normed spaces. In this paper, we prove an analogue of the fixed point theorem for generalized (ϕ, ψ) weak contraction in the setting of 2-normed spaces, which generalizes the results of Gangopadhyay et al. [4].

2. Preliminaries

Definition 2.1. Let X be a real linear space of dimension greater than 1. Suppose $\|.,.\|$ is a real valued function on $X \times X$ satisfying the following conditions:

- (i) ||x, y|| = 0 if and only if x and y are linearly dependent vectors.
- (ii) ||x, y|| = ||y, x||.
- (iii) $\|\lambda x, y\| = \|\lambda\| \|x, y\|$ for all $\lambda \in \mathbb{R}$ and $x, y \in X$.
- (iv) $||x + y, z|| \le ||x, z|| + ||y, z||$ for all x, y and $z \in X$.

Then $\|.,.\|$ is called a 2-norm on X and $(X,\|.,.\|)$ is called *linear 2-normed space* over \mathbb{R} .

Every 2-normed space X is a locally convex topological vector space. In fact, for a fixed $b \in X$, $p_b = ||x, b||$; $x \in X$ is a semi-norm on X and the family $P = \{p_b : b \in X\}$ of semi-norms generates a locally convex topology.

Definition 2.2. A sequence $\{x_n\}$ in a 2-normed space X is said to converge to some point x in X if for every $y \in X$,

$$\lim_{n\to\infty} \|x_n - x, y\| = 0.$$

Definition 2.3. Let X be a 2-normed space. A sequence $\{x_n\}$ in X is called *Cauchy sequence* if for any $x \in X$,

$$\lim_{n, m \to \infty} ||x_n - x_m, x|| = 0.$$

Definition 2.4. A 2-normed space X is said to be a 2-Banach space if every Cauchy sequence in X converges to some point in X.

Lemma 2.5 [7]. Let $\{x_n\}$ be a convergent sequence in a linear 2-normed space X. Then for all $y \in X$,

$$\lim_{n\to\infty} \|x_n, y\| = \|\lim_{n\to\infty} x_n, y\|.$$

3. Main Results

For all $x, y, u \in X$ and for a self-map T on X, we use the following notation throughout the paper:

$$= \max \left\{ \left\| \, x - y, \, u \, \right\|, \, \left\| \, x - Tx, \, u \, \right\|, \, \left\| \, y - Ty, \, u \, \right\|, \, \frac{\left\| \, x - Ty, \, u \, \right\| + \left\| \, y - Tx, \, u \, \right\|}{2} \right\}.$$

Theorem 3.1. Let $(X, \|., \|)$ be a 2-Banach space and $T: X \to X$ be a self-map satisfying the condition

$$\psi(\|Tx - Ty, u\|) \le \psi(M(x, y)) - \phi(M(x, y)), \tag{1}$$

where

- (i) $\psi:[0,\infty)\to[0,\infty)$ is a monotone nondecreasing function with $\psi(t)=0$ if and only if t=0.
- (ii) $\phi: [0, \infty) \to [0, \infty)$ is a function with $\phi(t) = 0$ if and only if t = 0 and $\liminf_{n \to \infty} \phi(a_n) > 0$ if $\lim_{n \to \infty} a_n > 0$.
- (iii) $\phi(a) > \psi(a) \psi(a-)$ for any a > 0, where $\psi(a-)$ is the left limit of ψ at a. Then T has a unique fixed point.

Proof. Let x be any element in X and let $x_n = T^n(x)$ for $n = 1, 2, 3 \dots$

Suppose $x_n = x_{n+1}$ for some n. Then $x_n = x_{n+1} = T^{n+1}(x) = T(x_n)$. That is, x_n is a fixed point of T. So we assume that $x_n \neq x_{n+1}$, $\forall n \in \mathbb{N}$.

Let $d_n(u) = ||x_n - x_{n+1}, u|| = ||T^n(x) - T^{n+1}(x), u||$ for each $n \in \mathbb{N}$, $u \in X$.

By (i),

$$\psi(d_n(u)) \le \psi M(x_{n-1}, x_n) - \phi M(x_{n-1}, x_n),$$

$$\psi(d_n(u)) \le \psi M(x_{n-1}, x_n) \text{ since } M(x_{n-1}, x_n) \ge 0,$$

that is, $d_n(u) \le M(x_{n-1}, x_n)$.

Now,

$$M(x_{n-1}, x_n) = M(T^{n-1}(x), T^n(x))$$

$$= \max \left\{ \| T^{n-1}(x) - T^n(x), u \|, \\ \| T^{n-1}(x) - T^n(x), u \|, \| T^n(x) - T^{n+1}(x), u \|, \\ \frac{\| T^{n-1}(x) - T^{n+1}(x), u \| + \| T^n(x) - T^n(x), u \|}{2} \right\}$$

$$= \max \left\{ \| T^{n-1}(x) - T^n(x), u \|, \| T^n(x) - T^{n+1}(x), u \|, \\ \frac{\| T^{n-1}(x) - T^{n+1}(x), u \|}{2} \right\}.$$

Note that

$$||T^{n-1}(x) - T^{n+1}(x), u|| \le ||T^{n-1}(x) - T^n(x), u|| + ||T^n(x) - T^{n+1}(x), u||$$
 and therefore,

$$\frac{\parallel T^{n-1}(x) - T^{n+1}(x), u \parallel}{2}$$

$$\leq \max\{\parallel T^{n-1}(x) - T^{n}(x), u \parallel, \parallel T^{n}(x) - T^{n+1}(x), u \parallel\}.$$

Therefore,

$$M(x_{n-1}, x_n) \le \max\{ ||T^{n-1}(x) - T^n(x), u||, ||T^n(x) - T^{n+1}(x), u|| \}.$$

Suppose

$$\max\{\|T^{n-1}(x) - T^n(x), u\|, \|T^n(x) - T^{n+1}(x), u\|\}$$

$$= \|T^n(x) - T^{n+1}(x), u\| = d_n(u).$$

Then, from (i), $\psi(d_n(u)) \le \psi(d_n(u)) - \phi(d_n(u))$.

It is a contradiction to (iii) since $\phi(d_n(u)) > 0$.

That is,
$$M(x_{n-1}, x_n) = d_{n-1}(u)$$
.

Therefore,
$$d_n(u) \le M(x_{n-1}, x_n) = d_{n-1}(u)$$
 for all $n \in \mathbb{N}$.

Hence, $\{d_n(u)\}\$ is a non-increasing sequence and each $d_n(u) \ge 0$.

Therefore,

$$\lim_{n\to\infty} d_n(u) = l \ge 0.$$

Next, we show that l = 0 suppose, l > 0.

If there exists an n such that $d_{n-1}(u) = l$, then $l = d_n(u) \le M(d_{n-1}(u))$ = l,

$$\psi(d_n(u)) \le \psi(M(x_{n-1}, x_n)) - \phi(M(x_{n-1}, x_n)),
\psi(l) \le \psi(l) - \phi(l).$$

It is a contradiction. Suppose $d_n(u) > l$ for all $n \ge 1$. Then

$$\psi(d_n(u)) \le \psi(M(x_{n-1}, x_n)) - \phi(M(x_{n-1}, x_n)),$$

$$\psi(l+) \le \psi(l+) - \liminf_{n \to \infty} \phi(M(x_{n-1}, x_n)).$$

Again, it is a contradiction to (iii).

Therefore,

$$\lim_{n\to\infty} d_n(u) = 0.$$

Next, we show that $\{x_n\}$ is a Cauchy sequence. Suppose not, then there exists an $\varepsilon > 0$, for which we can find subsequences $\{x_{n_k}\}$ and $\{x_{m_k}\}$ with n_k is the smallest index such that $n_k > m_k > k > 1$, $\|x_{m_k} - x_{n_k}, u\| \ge \varepsilon$ and $\|x_{m_k} - x_{n_k-1}\| < \varepsilon$ for all $u \in X$.

Now,

$$\begin{split} \varepsilon & \leq \| \; x_{m_k} \, - x_{n_k} \, , \, u \; \| \\ & \leq \| \; x_{m_k} \, - x_{n_k-1} \, , \, u \; \| + \| \; x_{n_k-1} \, - x_{n_k} \, , \, u \; \| \\ & < \| \; x_{m_k} \, - x_{n_k-1} \, , \, u \; \| + d_{n_k-1}(u) . \end{split}$$

Letting *k* tends to infinity, we get

$$\varepsilon \leq \lim_{k \to \infty} \| x_{m_k} - x_{n_k}, u \| < \varepsilon + 0.$$

That is,

$$\lim_{k\to\infty} \|x_{m_k} - x_{n_k}, u\| = \varepsilon.$$

Again,

$$||x_{m_k} - x_{n_k-1}, u|| \le ||x_{m_k} - x_{n_k}, u|| + ||x_{n_k} - x_{n_k-1}, u||,$$
 (2)

$$||x_{m_k} - x_{n_k}, u|| \le ||x_{m_k} - x_{n_k-1}, u|| + ||x_{n_k-1} - x_{n_k}, u||.$$
 (3)

That is,

$$\| \| x_{m_k} - x_{n_k}, u \| - \| x_{m_k} - x_{n_k-1}, u \| \| \le \| x_{n_k-1} - x_{n_k}, u \|.$$
 (4)

Letting $k \to \infty$, we get

$$\lim_{k\to\infty} \|x_{m_k} - x_{n_k-1}, u\| = \varepsilon.$$

Similarly, we can prove that

$$\lim_{k\to\infty} \|x_{m_k-1}-x_{n_k}, u\| = \lim_{k\to\infty} \|x_{m_k-1}-x_{n_k-1}, u\| = \varepsilon,$$

$$\lim_{k\to\infty} \|x_{m_k}-x_{n_k+1}, u\| = \varepsilon.$$

Now,

Letting $k \to \infty$, we get

$$\lim_{k\to\infty} M(x_{m_k-1}, x_{n_k-1}) = \varepsilon.$$

If there is a subsequence $\{k(p)\}\$ of $\{k\}$ such that

$$\varepsilon < \| x_{m(k(p))} - x_{n(k(p))}, u \|,$$

then from (1), we get

$$\begin{split} & \psi(\parallel x_{m(k(p))} - x_{n(k(p))}, u \parallel) \\ & \leq \psi(M(x_{m(k(p))-1}, x_{n(k(p))-1})) - \phi(M(x_{m(k(p))-1}, x_{n(k(p))-1})). \end{split}$$

Letting $p \to \infty$, we get

$$\psi(\epsilon+) \le \psi(\epsilon+) - \liminf_{p \to \epsilon} \phi(\epsilon)$$

which is a contradiction to (iii). Repeat the discussion for if there is a subsequence $\{k(p)\}$ of $\{k\}$ such that

$$\varepsilon < \|x_{m(k(p))+1} - x_{n(k(p))}, u\|$$

and if there is a subsequence $\{k(p)\}\$ of $\{k\}$ such that

$$\varepsilon < ||x_{m(k(p))} - x_{n(k(p))+1}, u||,$$

then we arrive at a contradiction to (iii). Therefore, we can suppose that there exists a k_1 such that

$$|| x_{m(k(p))} - x_{n(k(p))}, u || = \varepsilon;$$

$$|| x_{m(k(p))} - x_{n(k(p))+1}, u || = \varepsilon; || x_{m(k(p))+1} - x_{n(k(p))}, u || \le \varepsilon$$

for all $k \ge k_1$. Then $M(x_{m(k)}, x_{n(k)}) = \varepsilon$ for $k \ge k_3$, where $k_3 = \max\{k_1, k_2\}$ is such that $\|x_n - x_{n+1}, u\| < \varepsilon$ for all $k \ge k_2$. Substituting $x = x_{m(k)}$ and $y = x_{n(k)}$ in (i), we have

$$\psi(\parallel x_{m+1} - x_{n+1}, u \parallel) \leq \psi(\varepsilon) - \phi(\varepsilon)$$

for any $k \ge k_3$. Letting $k \to \infty$, we obtain $\psi(\varepsilon -) \le \psi(\varepsilon) - \phi(\varepsilon)$. Again, it is a contradiction to (iii). Hence $\{x_n\}$ is a Cauchy sequence. Since X is a Banach space, there exists a $z \in X$ such that $x_n \to z$ as $n \to \infty$.

Next, we will show that z is the fixed point of T.

By (1),

$$\psi(||x_{n+1}(x) - Tz, u||) \le \psi(M(x_n, z)) - \phi(M(x_n, z)),$$

where

$$M(x_n, z) = \max \left\{ \|x_n - z, u\|, \|x_n - x_{n+1}, u\|, \|z - Tz, u\|, \frac{\|x - Tz, u\| + \|z - x_{n+1}, u\|}{2} \right\}.$$

Suppose $z \neq Tz$. Then ||z - Tz, u|| > 0 for some $u \in X$,

$$\lim_{n\to\infty} M(x_n, z) = \lim_{n\to\infty} \max\left\{ \|x_n - z, u\|, \frac{\|x_n - x_{n+1}, u\| + \|z - Tz, u\|}{2}, \right.$$

$$\frac{\|x_{n} - Tz, u\| + \|z - x_{n+1}, u\|}{2}$$

$$= \frac{\|z - Tz, u\|}{2} > 0.$$

That is, we have

$$\lim_{n \to \infty} M(x_n, z) = \frac{\|z - Tz, u\|}{2} > 0$$

using this and letting $n \to \infty$ in [3],

$$\lim_{n\to\infty} \psi(\|x_{n+1} - Tz, u\|) \le \lim_{n\to\infty} \psi(M(x_n, z)) - \liminf_{n\to\infty} \phi(M(x_n, z)).$$

That is,

$$\psi(\parallel z - Tz, u \parallel) \le \psi\left(\frac{\parallel z - Tz, u \parallel}{2}\right) - \liminf_{n \to \infty} \phi\left(\frac{\parallel z - Tz, u \parallel}{2}\right),$$

that is,

$$\psi(\parallel z - Tz, u \parallel) \le \psi\left(\frac{\parallel z - Tz, u \parallel}{2}\right) \text{ since } \lim\inf_{n \to \infty} \phi\left(\frac{\parallel z - Tz, u \parallel}{2}\right) > 0.$$

It is a contradiction to ψ is nondecreasing. Hence z = Tz. Next, we show that z is unique. Suppose there is a $y \in X$ such that y = Ty. Then we have

$$M(y, z) = \max \left\{ \| y - z, u \|, \| y - Ty, u \|, \| z - Tz, u \|, \frac{\| y - Tz, u \| + \| z - Ty, u \|}{2} \right\}$$

$$= \| v - z, u \|.$$

Then from (1),

$$\psi(||y-z, u||) \le \psi(||y-z, u||) - \phi(||y-z, u||).$$

It is a contradiction. Hence z is a unique fixed point for T.

Corollary 3.1. Let X be a 2-Banach space and let $T: X \to X$ be a self-mapping satisfying the condition $||Tx - Ty, u|| \le M(x, y) - \phi(M(x, y))$ for all $x, y, u \in X$ and where ϕ is non-decreasing function from \mathbb{R}^+ into itself such that $\phi(t) < t$ for each t > 0. Then T has a unique fixed point in X.

Proof. In the previous theorem, taking $\psi(t) = t$ and $\phi(t) = \frac{t}{2}$, we get the result.

Corollary 3.2. Let X be a 2-Banach space and let $T: X \to X$ be a self-mapping satisfying the condition $||Tx - Ty, u|| \le \phi(M(x, y))$ for all $x, y, u \in X$ and where ϕ is non-decreasing function from \mathbb{R}^+ into itself such that $\phi(t) < t$ for each t > 0. Then T has a unique fixed point in X.

Proof. In the previous corollary, taking
$$\phi(t) = \frac{t}{2}$$
, we get the result. \Box

As a particular case of this corollary, we get the main results of Gangopadhyay et al. appeared in [4].

Corollary 3.3. Let X be a 2-Banach space and let $T: X \to X$ be a self-mapping satisfying the condition $||Tx - Ty, u|| \le \phi(N(x, y))$ for all $x, y, u \in X$ and where ϕ is upper semicontinuous from \mathbb{R}^+ into itself such that $\phi(t) < t$ for each t > 0. Then T has a unique fixed point in X, where

$$N(x, y) = \max \left\{ \|x - y, u\|, \frac{\|x - Tx, u\| + \|y - Ty, u\|}{2}, \frac{\|x - Ty, u\| + \|y - Tx, u\|}{2} \right\}.$$

Proof. Note the fact for all $x, y, u \in X$,

$$N(x, y) \le M(x, y),$$

$$\phi(N(x, y)) \le \phi(M(x, y)),$$

$$||Tx - Ty, u|| \le \phi(N(x, y)) \le \phi(M(x, y)),$$

then by Corollary 3.2, T has a unique fixed point.

Remark 3.2. Note that if ψ and ϕ are continuous montone nondecreasing functions satisfying the condition in (1), then they satisfy the condition in (iii) of the main theorem.

Theorem 3.3. Let X be a linear 2-Banach space. Let $\{T_n\}$ be a sequence of self-mapping defined on X satisfying

$$\psi(||T_n x - T_n y, u||) \le \psi(M_n(x, y)) - \phi(M_n(x, y)),$$

where

(i) $\psi:[0,\infty)\to[0,\infty)$ is a continuous monotone nondecreasing function with $\psi(t)=0$ if and only if t=0.

(ii) $\phi:[0,\infty)\to[0,\infty)$ is a continuous function with $\phi(t)=0$ if and only if t=0 and

$$M_n(x, y) = \max \left\{ \|x - y, u\|, \|x - T_n x, u\|, \|y - T_n y, u\|, \frac{\|x - T_n y, u\| + \|y - T_n x, u\|}{2} \right\}.$$

And if $T = \lim_{n \to \infty} T_n$, then T has a unique fixed point z such that $\lim_{n \to \infty} z_n = z$.

Proof. Since ψ and 2-norm are continuous and T_n is convergent to T, we have for all $x, y, u \in X$,

$$\lim_{n\to\infty} \|T_nx-T_ny, u\| = \|\lim_{n\to\infty} (T_nx-T_ny), u\| = \|Tx-Ty, u\|$$

and

$$\lim_{n\to\infty} M_n(x, y) = \lim_{n\to\infty} \max \Big\{ \|x - y, u\|, \|x - T_n x, u\|, \|y - T_n y, u\|, \|x - T_n x, u\|, \|y - T_n y, u\|,$$

$$\frac{\|x - T_n y, u\| + \|y - T_n x, u\|}{2}$$

$$= \max \left\{ \|x - y, u\|, \|x - Tx, u\|, \|y - Ty, u\|, \frac{\|x - Ty, u\| + \|y - Tx, u\|}{2} \right\}$$

$$= M(x, y).$$

Therefore,

$$\psi(\parallel Tx - Ty, u \parallel) = \lim_{n \to \infty} \psi(\parallel T_n x - T_n y, u \parallel)$$

$$\leq \lim_{n \to \infty} \psi(M_n(x, y)) - \phi(M_n(x, y))$$

$$= \psi(M(x, y)) - \phi(M(x, y)).$$

That is, *T* satisfies the required conditions of Theorem 3.1.

Therefore, T has a unique fixed point $z \in X$.

We show that $z_n \to z$.

Suppose $||z - z_n, u|| > 0$ for all $n \in \mathbb{N}$.

Consider

$$||z-z_n, u|| = ||Tz-T_nz_n, u|| \le ||Tz-T_nz, u|| + ||T_nz-T_nz_n, u||,$$

that is,

$$|||z-z_n, u|| - ||Tz-T_nz, u|| \le ||T_nz-T_nz_n, u||$$

and ψ is a nondecreasing function, we have

$$\psi(|\|z-z_n, u\|-\|Tz-T_nz, u\||) \le \psi(\|T_nz-T_nz_n, u\|)$$

$$\le \psi(M_n(z, z_n)) - \phi(M_n(z, z_n))$$

taking limit as $n \to \infty$, we get

$$\psi(||z-z_n, u||) \le \psi(M_n(z, z_n)) - \phi(M_n(z, z_n))$$

$$= \psi(||z-z_n, u||) - \phi(||z-z_n, u||),$$

it is a contradiction, therefore we conclude that $z_n \to z$.

Theorem 3.4. Let X be a linear 2-Banach space. Let $\{T_n\}$ be a sequence of self-mappings defined on X satisfying

$$\psi(||T_i x - T_i y, u||) \le \psi(M(x, y)) - \phi(M(x, y))$$

for all i, j and $i \neq j$,

$$=\max \left\{ \left\|\, x-y,u\,\right\|,\left\|\, x-T_{i}x,u\,\right\|,\left\|\, y-T_{j}y,u\,\right\|,\frac{\left\|\, x-T_{j}y,u\,\right\|+\left\|\, y-T_{i}x,u\,\right\|}{2}\right\},$$

where

- (i) $\psi:[0,\infty)\to[0,\infty)$ is a continuous monotone nondecreasing function with $\psi(t)=0$ if and only if t=0.
- (ii) $\phi:[0,\infty)\to[0,\infty)$ is a continuous function with $\phi(t)=0$ if and only if t=0.

Then T_n has a unique common fixed point.

Proof. Let x be any element in X and let $x_n = T_n(x_{n-1})$. Substituting i = n and j = n + 1, we get

$$\begin{split} & \psi(\parallel x_n - x_{n+1}, u \parallel) \\ &= \psi(\parallel T_n(x_{n-1}) - T_{n+1}(x_n), u \parallel) \\ &\leq \psi\bigg(\max\bigg\{\parallel x_{n-1} - x_n, u \parallel, \parallel x_{n-1} - T_n(x_{n-1}), u \parallel, \parallel x_n - T_{n+1}(x_n), u \parallel, \\ & \frac{\parallel x_{n-1} - T_{n+1}x_n, u \parallel + \parallel x_n - T_n(x_{n-1}), u \parallel}{2}\bigg\}\bigg) \end{split}$$

$$- \phi \left(\max \left\{ \| x_{n-1} - x_n, u \|, \| x_{n-1} - T_n(x_{n-1}), u \|, \| x_n - T_{n+1}(x_n), u \|, \frac{\| x_{n-1} - T_{n+1}x_n, u \| + \| x_n - T_n(x_{n-1}), u \|}{2} \right\} \right)$$

$$\leq \psi \left(\max \left\{ \| x_{n-1} - x_n, u \|, \| x_n - x_{n+1}, u \|, \frac{\| x_{n-1} - x_{n+1}, u \|}{2} \right\} \right)$$

$$\leq \psi \left(\max \left\{ \| x_{n-1} - x_n, u \|, \| x_n - x_{n+1}, u \| \right\} \right).$$

Suppose

$$\max\{\|x_{n-1}-x_n, u\|, \|x_n-x_{n+1}, u\|\} = \|x_n-x_{n+1}, u\|.$$

Then $\psi(\|x_n - x_{n+1}, u\|) \le \psi(\|x_n - x_{n+1}, u\|) - \phi(\|x_n - x_{n+1}, u\|)$. It is a contradiction since ϕ is nondecreasing and $\|x_n - x_{n+1}, u\| > 0$.

Therefore, $\max\{\|x_{n-1} - x_n, u\|, \|x_n - x_{n+1}, u\|\} = \|x_{n-1} - x_n, u\|$ and $\{\|x_{n-1} - x_n, u\|\}$ is a decreasing and bounded below sequence in X.

Therefore, it converges to some $l \ge 0$ but we can prove that l = 0. As in the theorem, we can prove that $\{x_n\}$ is a Cauchy sequence in X. Since X is a 2-Banach space, $\{x_n\}$ converges to a point $z \in X$. We will show that z is the common fixed point of T_m for each m. Suppose z is not the common fixed point. Then $||T_m(z) - z, u|| > 0$. Consider

$$\psi(\|T_m z - x_{n+1}, u\|) = \psi(\|T_m z - T_{n+1}(x_n), u\|)$$

$$\leq \psi(M(z, x_n)) - \phi(M(z, x_n)),$$

where

$$M(z, x_n) = \max \left\{ \|x_n - z, u\|, \|x_n - T_{n+1}(x_n), u\|, \|z - T_m(z), u\| \right\}$$

$$\frac{\|x_n - T_m z, u\| + \|z - T_{n+1}(x_n), u\|}{2} \right\}$$

$$= \max \left\{ \|x_n - z, u\|, \|x_n - x_{n+1}, u\|, \|z - T_m(z), u\|, \frac{\|x_n - T_m z, u\| + \|z - x_{n+1}, u\|}{2} \right\}.$$

Taking limit as $n \to \infty$, we get

$$\lim_{n \to \infty} M(z, x_n) = ||z - T_m(z), u||,$$

$$\psi(||z - T_m z, u||) \le \psi(||z - T_m z, u||) - \phi(||z - T_m z, u||),$$
(5)

it is a contradiction, therefore $T_m z = z$ for all m.

Acknowledgements

The first author is supported by teacher fellowship under faculty development program of university grants commission New Delhi.

References

- [1] R. W. Freese and Y. J. Cho, Geometry of Linear 2-normed Spaces, Nova Science Publishers, Hauppauge, NY, USA, 2001.
- [2] K. I'seki, Fixed point theorems in Banach spaces, Math. Seminar Notes, Kobe University, 1976, pp. 11-13.
- [3] M. S. Khan and M. D. Khan, Involutions with fixed points in 2-Banach spaces, Int. J. Math. Math. Sci. 16 (1993), 429-434.
- [4] Mukti Gangopadhyay, Mantu Saha and A. P. Baisnab, Fixed point theorem for a class of mappings in a 2-Banach space, Int. J. Math. Anal. 3(27) (2009), 1339-1347.
- [5] Ovidiu Popescu, Fixed points for (ϕ, ψ) weak contractions, Appl. Math. Lett. 24 (2011), 1-4.
- [6] D. Doric, Common fixed point for generalized (φ, ψ) weak contractions, Appl. Math. Lett. 22 (2009), 1896-1900.
- [7] M. Eshaghi Gordji, M. B. Ghaemi, Y. J. Cho and H. Majani, A general system of Euler-Lagrange-type quadratic functional equations in Menger probabilistic non-Archimedean 2-normed spaces, Abstr. Appl. Anal. Volume 2011, Art. ID 208163, 21 pp.