F "W, Far East Journal of Applied Mathematics
Volume 74, Number 2, 2013, Pages 115-124
q- Published Online: March 2013

: LR " Available online at http://pphmj.com/journals/fjam.htm
Published by Pushpa Publishing House, Allahabad, INDIA

v

LIST SCHEDULING FOR JOBS WITH ARBITRARY
RELEASE TIMES AND UNIT-PROCESSING TIME

Jihuan Ding

College of Management Science
Qufu Normal University

P. R. China

e-mail: dingjihuan@hotmail.com

Abstract

We investigate the problem of on-line scheduling for jobs with
arbitrary release times on m identical parallel machines. The goal is to
minimize the makespan. For a special case that all the jobs have unit-
processing time, we prove that algorithm LS has a tight bound of 3/2

for general m machines.
1. Introduction

On-line scheduling has received great attention in decades. The most
basic model is the classical on-line scheduling problem on m identical
parallel machines which was proposed by Graham [3]. In the classical on-line
scheduling problem, jobs arrive one by one (or over a job list), we do not
know any information about the job list in advance, whenever a job arrives, it
must be scheduled immediately on one of the machines without knowledge

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 90B35.

Keywords and phrases: on-line scheduling, makespan, competitive ratio, identical parallel
machines.

Communicated by K. K. Azad

Received December 23, 2012

116 Jihuan Ding

of any future jobs. Only after the current job is scheduled, the next job
appears. The objective is to minimize the makespan. It is well known that the
first on-line algorithm in scheduling theory, namely List Scheduling (LS)
algorithm, for the problem was proposed by Graham [3].

Note that in the above model all jobs in the job list have release times
zero. A more general version of the classical on-line scheduling problem on
m identical parallel machines was given by Li and Huang [1]. In the general
version, all jobs appear in form of orders at time zero. When a job appears,
the scheduler is informed of the release time and processing time of the job.
The problem can be formally defined as follows. A list of jobs is to be
scheduled on m identical parallel machines, My, Mo, ..., My,. We assume

that all jobs appear on-line in a job list. Whenever a job J; with release time
rj and processing time p; appears, the scheduler has to assign a machine
and a processing slot for J; irrevocably without knowledge of any future

jobs. The goal is to minimize the makespan. In this general on-line situation,
the jobs’ release times are assumed arbitrary, whereas in the existing
literature the jobs’ release times are normally non-decreasing. That is to say,
although a job may appear first in the job sequence, but its release time may
be greater than the release time of the job which appears later in the job
sequence. It is obvious that the above model is just the classical on-line
scheduling problem on m identical parallel machines if all the jobs have
release time zero. The problem is called on-line scheduling problem for jobs
with arbitrary release times [2].

The quality of an on-line algorithm A is usually measured by its
competitive ratio

R(m, A) = sup_ h ,
Cmax(l—)

where Chu (L) and Cl. (L) denote the makespans of the schedule

produced by algorithm A and an optimal off-line algorithm, respectively.

List Scheduling for Jobs with Arbitrary Release Times ... 117

Li and Huang considered the on-line scheduling problem for jobs with
arbitrary release times first. For the general model of the problem where job
processing times are arbitrary, Li and Huang [1] gave a lower bound of 2,
and then showed an algorithm LS with tight bound of 3 —1/m. A modified
algorithm MLS is also proposed which is better than LS for any m > 2, and
the competitive ratio of MLS is bounded by 2.9392 for any m > 2. For the
special model where the job length is in [p, rp] (r > 1), the performance of

algorithm LS is analyzed in [2]. They first gave an upper bound of

3_%_%' I’Zmnll
R(m, LS) = Lo +(m—l)r l<ro M
1+2r ml+2r)" =7 m-1

for general m and showed that the tight bound for m =1 is 1+ ﬁ When

m = 2, they presented a tight bound of the competitive ratio 1+ %

for r > 4. For r < 4, they gave a lower bound and showed that 2 provides
an upper bound for the competitive ratio.

Our results. In this paper, we consider the on-line scheduling problem
for jobs with arbitrary release times. For a special model that all the jobs
have unit-processing time, we prove that algorithm LS has a tight bound of
3/2 for general m machines.

2. LS Algorithm for Jobs with Unit-processing Time

In this part, we give a tight bound of Algorithm LS for a special case that
all the jobs have unit-processing time. In the following we will describe
algorithm LS which is defined in Li and Huang [1]. Essentially, the
algorithm assigns a job to be processed as early as possible when its order
arrives.

Definition 2.1. Suppose that J; is the current job with release time r;

and processing time p;. We say that machine M; has an idle time interval

118 Jihuan Ding

for job J;, if there exists a time interval [T1, To] satisfying the following

conditions:

1. Machine M; is currently idle in interval [T, T,] and a job has been
assigned on M to start processing at T».
2. Ty —max{Ty, rj} > 1.

Algorithm LS

1. Assume that Lj is the scheduled completion time of machine
M;(i =1, 2, ..., m). Reorder machines so that Ly <L, <--- < L,
and let J,, be a new job given to the algorithm with release time r,

and running time p, = 1. Let t = max{r,, Ly}.

2. If there exist some machines which have idle intervals for job J,,
select a machine M; which has an idle interval [T;, T,] for job J,
with minimal T;. Then we start job J, on machine M; at time
max{Ty, r,} in the idle interval. Otherwise, we assign job J,, to

machine M, to start the processing at time t.

In order to give the proof of the result, we first give some explanation of
symbols. [s]: the integral part of s; (s): the fractional part of s;[s]: the

smallest integer that is not smaller than s.

The following lemma gives an estimate of the number of jobs completed
in time interval [0, T] on one machine in schedule of algorithm LS on the

assumption that there is no idle time interval with length equal to or greater
than 1.

Lemma 2.1. Let N denote the number of jobs completed on one machine
in time interval [0, T]. If the length of all the idle intervals in schedule of

algorithm LS is smaller than 1, then we have (1) N ZTE if T is even; (2)

NZT_]'

if T is odd and there is one job with start time smaller than T

List Scheduling for Jobs with Arbitrary Release Times ... 119

T+1 if T is odd and there is no

which is completed after time T. (3) N >
job with start time smaller than T which is completed after time T.

Proof. At most N +1 idle intervals are generated by the process of N
jobs in [0, T] on one machine. Then the total length of these idle intervals is

smaller than N +1. So we have (N +1)+ N > T —1. From the inequality

Ll ;2. Therefore N > % if T is even:

we can get N >

If T is odd and there is one job with start time smaller than T which is
completed after time T. Then we also have (N +1)+ N > T —1. So we can

T-1
>
get k > 5

If T is odd and there is no job with start time smaller than T which
is completed after time T. Then we have (N +1)+ N >T, namely,

T+1

NZZ.

Theorem 2.1. The competitive ratio of LS is R g = 3/2.

Proof. We assume L ={Jy, Jo, ..., J,} is an arbitrary job list. Let

C,';%X(L) and Cpax(L) denote the makespans of the schedule produced by
algorithm LS and an optimal schedule, respectively. Without loss of
generality, we assume J,, is the last job completed in schedule of algorithm
LS and J,, is the only job with completion time Cr';,gx(L). Let s, be the
start time of job J,, in schedule of algorithm LS. If s, =r,, then it is
obvious that R g <3/2. If s, >r,, then job J, must be assigned on
machine M; to start at time s, = Ly by the algorithm. In schedule of

algorithm LS, let s be the least time point from which all the m machines are
busy to Lj, and let k be the number of jobs (including job J,,) completed

after time s on machine Mj. Then it is obvious that at least (k —1) jobs are
completed after time s on each of the other m —1 machines. So at least

120 Jihuan Ding

m(k —1) +1 jobs in total are completed after time s in schedule of algorithm
LS. We have C,';%X(L) <s+k and Cpay(L) > s +1, because at least one
job has release time s by the algorithm.

We first consider the case that all the idle intervals in schedule of
algorithm LS have length smaller than 1.

Case 1. [s] is even. By Lemma 2.1, it is easy to know the optimal

schedule completes at most m % more jobs before time [s] than the

schedule of algorithm LS does.
Case 1.1. If 2k < s + 3, then we have:

C#EIX(L)S s+k < 25+s+3:§.
Crax(L) s+1 2(s +1) 2

Case 1.2. If 2k >s+3=[s]+2+1+(s), namely, 2k > s+ 4. Then
at least m(k —1) +1-m % jobs are processed after time [s] in optimal
schedule. So we have

Chax() 2 [s]+[& [mk -1+ 1-m-]]

Therefore:

Cn"anX(L)< s+k _2s+[s]+4
Chax(L) %[S]+ - 2s1+2)

~ 3([s]+2)+2(s) -2
2([s]+2)

IA
N w

List Scheduling for Jobs with Arbitrary Release Times ... 121
Case 2. [s] is odd.
Case 2.1. If 2k < s + 3, then

Cr';]s’ax(L)S s+k < 25+s+3:§.
C:nax(l-) s+1 2(s +1) 2

Case 2.2. If 2k >s+3=[s]+2+1+(s), namely, 2k >s+5. By

Lemma 2.1, one machine in optimal schedule completes at most &;1

more jobs before [s] than it does in schedule of algorithm LS, and at least one
machine in optimal schedule (the machine is idle immediately before s)

completes at most [S]T_l more jobs before [s] than it does in schedule of
algorithm LS. So at least [m(k —1)+1] - [(m - 1)L2+1 + Lz_lJ jobs

must be processed after time [s] in optimal schedule. Hence, we can derive

[m(k —1)+1]—[(m—1)[S]T+1+[S]T‘1}

Crax(L) > [s]+

m
“[s)+ (-1~ Bl
=%[s]+k—%.

Case 2.2.1. If (s) < % then

Chax(L) . s+k
Crax(L) 1 _1
max (L) 2[S]+k 5

<_2s+[s]+5
~[s]+[s]+5-1

_3([s]+2)+2(s—[s] -1
B 2(s]+ 2)

IA
N w

122 Jihuan Ding

Case 2.2.2. (s) > % In this case we need to estimate the number of jobs

completed after time s in schedule of algorithm LS more carefully.
Case 2.2.2.a. The time point s appears exactly on machine My, namely,
M, is idle immediately before time s, and p jobs with start time smaller than

[s] are completed after time s in schedule of algorithm LS. For the p
machines that process such p jobs, k jobs are completed after time s on each
of them in schedule of algorithm LS. By Lemma 2.1, each of the p machines
in optimal schedule completes at most &;1 more jobs before time [s] than

it does in schedule of algorithm LS and each of the other m — p machines in

optimal schedule completes at most [s]-1 more jobs before time [s] than it

2
does in schedule of algorithm LS. So we have

C:nax(l-) > [s]+ {%{[m(k -1+ p+1]- [p [S]T’Ll +(m-— p)%}-’

=[s]+(k—1)—[s]T_1+1

1 1
—E[S]+k+§.

Therefore
Chax(L) . s+k _2s+[s]+5

Crax(L) - %[5]4. k +% ~2([s]+3)

_ 3]+ +2As—[s) -4
2(s]+ 3)

<

N w

Case 2.2.2.b. The time point s does not appear on machine M; and the
start time of the first completed job after time s on machine My is not greater

than [s]. Then we have

CLS (L) <k +s].

List Scheduling for Jobs with Arbitrary Release Times ...

Hence

Crax(L) . [s]+k
Crax(L) L _1
max (L) 2[S]+k >

< 2[s]+[s]+5
~[s]+[s]+5-1

_3(s]+2)-1
— 2([s]+2)

IA
N| w

123

Case 2.2.2.c. The time point s does not appear on machine My, and p

jobs with start time smaller than [s] are completed after time s in schedule of
algorithm LS, and the start time of the first completed job after time s on
machine M; is greater than [s]. Similar to the analysis in Case 2.2.2.a, we

have

Cha(L) 2 8]+ | - {ImGc =)+ p+ 1] p- 5L o m - py L2

2

S5+ (-1 - B

1 1
—E[S]+k+§.

So

Chax(L) . s+k _2s+[s]+5
Chax(L) %[s]+ T 2([s]+3)

_3(s]+3)+2(s—[s])—-4
h 2([s] + 3)

<3
2

124 Jihuan Ding

Secondly, if there exist idle time intervals with length not smaller than 1
in schedule of algorithm LS, then we select such idle time interval with latest
over time, say b, and choose a time point a such that b —a =1. By the
algorithm LS, all the jobs with start time greater than a must have release
time greater than a also. So similar to the analysis in the first part of the

proof, we can get R g < %

Finally, the following instance shows that the bound of algorithm LS is
tight. The instance consists 2m jobs in total, the first m jobs have release time
1-¢ and the last m jobs have release time zero. It is easy to know the
makespan of algorithm LS for the instance is 3 — ¢, but the optimal makespan

3-¢
2

i52.S0 R g = , let e tend to zero, we get the bound is tight.

3. Final Remarks

We consider the problem of scheduling for jobs with arbitrary release
times on m identical parallel machines. For a special model where all the jobs
have processing time 1, we derived that algorithm LS has a tight bound of
3/2. Furthermore, some other special models of the problem are also worth

to consider in future.
References

[1] R. Liand H. C. Huang, On-line scheduling for jobs with arbitrary release times,
Computing 73 (2004), 79-97.

[2] R. Liand H. C. Huang, List scheduling for jobs with arbitrary release times and
similar lengths, J. Sched. 10 (2007), 365-373.

[3] R.L.Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math.
17 (1969), 416-429.

