

Far East Journal of Applied Mathematics
Volume 74, Number 2, 2013, Pages 115-124
Published Online: March 2013
Available online at http://pphmj.com/journals/fjam.htm
Published by Pushpa Publishing House, Allahabad, INDIA

HousePublishingPushpa2013©

2010 Mathematics Subject Classification: 90B35.
 Keywords and phrases: on-line scheduling, makespan, competitive ratio, identical parallel

machines.
Communicated by K. K. Azad
Received December 23, 2012

LIST SCHEDULING FOR JOBS WITH ARBITRARY
RELEASE TIMES AND UNIT-PROCESSING TIME

Jihuan Ding

College of Management Science
Qufu Normal University
P. R. China
e-mail: dingjihuan@hotmail.com

Abstract

We investigate the problem of on-line scheduling for jobs with
arbitrary release times on m identical parallel machines. The goal is to
minimize the makespan. For a special case that all the jobs have unit-
processing time, we prove that algorithm LS has a tight bound of 23

for general m machines.

1. Introduction

On-line scheduling has received great attention in decades. The most
basic model is the classical on-line scheduling problem on m identical
parallel machines which was proposed by Graham [3]. In the classical on-line
scheduling problem, jobs arrive one by one (or over a job list), we do not
know any information about the job list in advance, whenever a job arrives, it
must be scheduled immediately on one of the machines without knowledge

Jihuan Ding 116

of any future jobs. Only after the current job is scheduled, the next job
appears. The objective is to minimize the makespan. It is well known that the
first on-line algorithm in scheduling theory, namely List Scheduling (LS)
algorithm, for the problem was proposed by Graham [3].

Note that in the above model all jobs in the job list have release times
zero. A more general version of the classical on-line scheduling problem on
m identical parallel machines was given by Li and Huang [1]. In the general
version, all jobs appear in form of orders at time zero. When a job appears,
the scheduler is informed of the release time and processing time of the job.
The problem can be formally defined as follows. A list of jobs is to be
scheduled on m identical parallel machines,,,, 21 mMMM We assume

that all jobs appear on-line in a job list. Whenever a job jJ with release time

jr and processing time jp appears, the scheduler has to assign a machine

and a processing slot for jJ irrevocably without knowledge of any future

jobs. The goal is to minimize the makespan. In this general on-line situation,
the jobs’ release times are assumed arbitrary, whereas in the existing
literature the jobs’ release times are normally non-decreasing. That is to say,
although a job may appear first in the job sequence, but its release time may
be greater than the release time of the job which appears later in the job
sequence. It is obvious that the above model is just the classical on-line
scheduling problem on m identical parallel machines if all the jobs have
release time zero. The problem is called on-line scheduling problem for jobs
with arbitrary release times [2].

The quality of an on-line algorithm A is usually measured by its
competitive ratio

() ()
()

,sup,
max

max
LC
LCAmR

A
L ∗=

where ()LC A
max and ()LC∗

max denote the makespans of the schedule

produced by algorithm A and an optimal off-line algorithm, respectively.

List Scheduling for Jobs with Arbitrary Release Times … 117

Li and Huang considered the on-line scheduling problem for jobs with
arbitrary release times first. For the general model of the problem where job
processing times are arbitrary, Li and Huang [1] gave a lower bound of 2,
and then showed an algorithm LS with tight bound of .13 m− A modified

algorithm MLS is also proposed which is better than LS for any ,2≥m and
the competitive ratio of MLS is bounded by 2.9392 for any .2≥m For the
special model where the job length is in [] (),1, ≥rrpp the performance of

algorithm LS is analyzed in [2]. They first gave an upper bound of

() ()
()⎪

⎩

⎪
⎨

⎧

−
<≤

+
−+

+
+

−
≥−−

=

11,21
1

21
21

1,113
,

m
mrrm

rm
r

r
m

mrrmLSmR

for general m and showed that the tight bound for 1=m is .11 r
r
+

+ When

,2=m they presented a tight bound of the competitive ratio ()22
451

+
++ r

r

for .4≥r For ,4<r they gave a lower bound and showed that 2 provides
an upper bound for the competitive ratio.

Our results. In this paper, we consider the on-line scheduling problem
for jobs with arbitrary release times. For a special model that all the jobs
have unit-processing time, we prove that algorithm LS has a tight bound of

23 for general m machines.

2. LS Algorithm for Jobs with Unit-processing Time

In this part, we give a tight bound of Algorithm LS for a special case that
all the jobs have unit-processing time. In the following we will describe
algorithm LS which is defined in Li and Huang [1]. Essentially, the
algorithm assigns a job to be processed as early as possible when its order
arrives.

Definition 2.1. Suppose that jJ is the current job with release time jr

and processing time .jp We say that machine iM has an idle time interval

Jihuan Ding 118

for job ,jJ if there exists a time interval []21, TT satisfying the following

conditions:

1. Machine iM is currently idle in interval []21, TT and a job has been

assigned on iM to start processing at .2T

2. { } .1,max 12 ≥− jrTT

Algorithm LS

1. Assume that iL is the scheduled completion time of machine

()....,,2,1 miMi = Reorder machines so that mLLL ≤≤≤ 21

and let nJ be a new job given to the algorithm with release time nr

and running time .1=np Let { }.,max 1Lrt n=

2. If there exist some machines which have idle intervals for job ,nJ

select a machine iM which has an idle interval []21, TT for job nJ

with minimal .1T Then we start job nJ on machine iM at time

{ }nrT ,max 1 in the idle interval. Otherwise, we assign job nJ to

machine 1M to start the processing at time t.

In order to give the proof of the result, we first give some explanation of
symbols. []:s the integral part of s; (s): the fractional part of ⎡ ⎤ :; ss the

smallest integer that is not smaller than s.

The following lemma gives an estimate of the number of jobs completed
in time interval []T,0 on one machine in schedule of algorithm LS on the

assumption that there is no idle time interval with length equal to or greater
than 1.

Lemma 2.1. Let N denote the number of jobs completed on one machine
in time interval [].,0 T If the length of all the idle intervals in schedule of

algorithm LS is smaller than 1, then we have (1) 2
TN ≥ if T is even; (2)

2
1−≥ TN if T is odd and there is one job with start time smaller than T

List Scheduling for Jobs with Arbitrary Release Times … 119

which is completed after time T. (3) 2
1+≥ TN if T is odd and there is no

job with start time smaller than T which is completed after time T.

Proof. At most 1+N idle intervals are generated by the process of N
jobs in []T,0 on one machine. Then the total length of these idle intervals is

smaller than .1+N So we have () .11 −>++ TNN From the inequality

we can get .2
2−> TN Therefore 2

TN ≥ if T is even;

If T is odd and there is one job with start time smaller than T which is
completed after time T. Then we also have () .11 −>++ TNN So we can

get .2
1−≥ Tk

If T is odd and there is no job with start time smaller than T which
is completed after time T. Then we have () ,1 TNN >++ namely,

.2
1+≥ TN

Theorem 2.1. The competitive ratio of LS is .23=LSR

Proof. We assume { }nJJJL ...,,, 21= is an arbitrary job list. Let

()LC LS
max and ()LC∗

max denote the makespans of the schedule produced by

algorithm LS and an optimal schedule, respectively. Without loss of
generality, we assume nJ is the last job completed in schedule of algorithm

LS and nJ is the only job with completion time ().max LC LS Let ns be the

start time of job nJ in schedule of algorithm LS. If ,nn rs = then it is

obvious that .23≤LSR If ,nn rs > then job nJ must be assigned on

machine 1M to start at time 1Lsn = by the algorithm. In schedule of

algorithm LS, let s be the least time point from which all the m machines are
busy to ,1L and let k be the number of jobs (including job)nJ completed

after time s on machine .1M Then it is obvious that at least ()1−k jobs are

completed after time s on each of the other 1−m machines. So at least

Jihuan Ding 120

() 11 +−km jobs in total are completed after time s in schedule of algorithm

LS. We have () ksLC LS +≤max and () ,1max +≥∗ sLC because at least one

job has release time s by the algorithm.

We first consider the case that all the idle intervals in schedule of
algorithm LS have length smaller than 1.

Case 1. [s] is even. By Lemma 2.1, it is easy to know the optimal

schedule completes at most []
2
sm ⋅ more jobs before time [s] than the

schedule of algorithm LS does.

Case 1.1. If ,32 +≤ sk then we have:

()
() () .2

3
12

32
1

max

max =
+
++≤

+
+≤∗ s

ss
s

ks
LC
LC LS

Case 1.2. If [] (),1232 sssk +++=+≥ namely, .42 +≥ sk Then

at least () []
211 smkm ⋅−+− jobs are processed after time [s] in optimal

schedule. So we have

() [] () []
⎥⎥
⎤

⎢⎢
⎡

⎥⎦
⎤

⎢⎣
⎡ ⋅−+−+≥∗

2111
max

smkmmsLC

[] .2
1 ks +=

Therefore:

()
() []

[]
[]()22

42

2
1

max

max
+
++≤

+

+≤∗ s
ss

ks

ks
LC
LC LS

[]() ()
[]()22

2223
+

−++= s
ss

.2
3≤

List Scheduling for Jobs with Arbitrary Release Times … 121

Case 2. [s] is odd.

Case 2.1. If ,32 +≤ sk then

()
() () .2

3
12

32
1

max

max =
+
++≤

+
+≤∗ s

ss
s

ks
LC
LC LS

Case 2.2. If [] (),1232 sssk +++=+> namely, .52 +≥ sk By

Lemma 2.1, one machine in optimal schedule completes at most []2
1+s

more jobs before [s] than it does in schedule of algorithm LS, and at least one
machine in optimal schedule (the machine is idle immediately before s)

completes at most []2
1−s more jobs before [s] than it does in schedule of

algorithm LS. So at least ()[] () [] []
⎥⎦
⎤

⎢⎣
⎡ −++−−+− 2

1
2

1111 ssmkm jobs

must be processed after time [s] in optimal schedule. Hence, we can derive

() []
()[] () [] []

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡
⎥⎦
⎤

⎢⎣
⎡ −++−−+−

+≥∗
m

ssmkm
sLC 2

1
2

1111
max

[] () [] 12
11 ++−−+= sks

[] .2
1

2
1 −+= ks

Case 2.2.1. If () ,2
1≤s then

()
() [] 2

1
2
1

max

max

−+

+≤∗
ks

ks
LC
LC LS

[]
[] [] 15

52
−++

++≤ ss
ss

[]() []()
[]()22

1223
+

−−++= s
sss

.2
3≤

Jihuan Ding 122

Case 2.2.2. () .
2
1

>s In this case we need to estimate the number of jobs

completed after time s in schedule of algorithm LS more carefully.

Case 2.2.2.a. The time point s appears exactly on machine ,1M namely,

1M is idle immediately before time s, and p jobs with start time smaller than
[s] are completed after time s in schedule of algorithm LS. For the p
machines that process such p jobs, k jobs are completed after time s on each
of them in schedule of algorithm LS. By Lemma 2.1, each of the p machines

in optimal schedule completes at most []2
1+s more jobs before time [s] than

it does in schedule of algorithm LS and each of the other pm − machines in

optimal schedule completes at most []2
1−s more jobs before time [s] than it

does in schedule of algorithm LS. So we have

() [] ()[] [] () [] ⎥⎥
⎤

⎢⎢
⎡

⎭⎬
⎫

⎩⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−++⋅−++−+≥∗

2
1

2
1111

max
spmsppkmmsLC

[] () [] 12
11 +−−−+= sks

[] .2
1

2
1 ++= ks

Therefore
()
() []

[]
[]()32

52

2
1

2
1

max

max
+
++≤

++

+≤∗ s
ss

ks

ks
LC
LC LS

[]() []()
[]()32

4233
+

−−++= s
sss

.2
3≤

Case 2.2.2.b. The time point s does not appear on machine 1M and the

start time of the first completed job after time s on machine 1M is not greater

than [s]. Then we have

() [].max skLC LS +≤

List Scheduling for Jobs with Arbitrary Release Times … 123

Hence

()
()

[]

[] 2
1

2
1

max

max

−+

+≤∗
ks

ks
LC
LC LS

[] []
[] [] 15

52
−++

++≤ ss
ss

[]()
[]()22

123
+

−+= s
s

.2
3≤

Case 2.2.2.c. The time point s does not appear on machine ,1M and p

jobs with start time smaller than [s] are completed after time s in schedule of
algorithm LS, and the start time of the first completed job after time s on
machine 1M is greater than [s]. Similar to the analysis in Case 2.2.2.a, we

have

() [] ()[] [] () [] ⎥⎥
⎤

⎢⎢
⎡

⎭⎬
⎫

⎩⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−++⋅−++−+≥∗

2
1

2
1111

max
spmsppkmmsLC

[] () [] 12
11 +−−−+= sks

[] .2
1

2
1 ++= ks

So

()
() []

[]
[]()32

52

2
1

2
1

max

max
+
++≤

++

+≤∗ s
ss

ks

ks
LC
LC LS

[]() []()
[]()32

4233
+

−−++= s
sss

.2
3≤

Jihuan Ding 124

Secondly, if there exist idle time intervals with length not smaller than 1
in schedule of algorithm LS, then we select such idle time interval with latest
over time, say b, and choose a time point a such that .1=− ab By the
algorithm LS, all the jobs with start time greater than a must have release
time greater than a also. So similar to the analysis in the first part of the

proof, we can get .2
3≤LSR

Finally, the following instance shows that the bound of algorithm LS is
tight. The instance consists 2m jobs in total, the first m jobs have release time

ε−1 and the last m jobs have release time zero. It is easy to know the
makespan of algorithm LS for the instance is ,3 ε− but the optimal makespan

is 2. So ,2
3 ε−≥LSR let ε tend to zero, we get the bound is tight.

3. Final Remarks

We consider the problem of scheduling for jobs with arbitrary release
times on m identical parallel machines. For a special model where all the jobs
have processing time 1, we derived that algorithm LS has a tight bound of

.23 Furthermore, some other special models of the problem are also worth

to consider in future.

References

 [1] R. Li and H. C. Huang, On-line scheduling for jobs with arbitrary release times,
Computing 73 (2004), 79-97.

 [2] R. Li and H. C. Huang, List scheduling for jobs with arbitrary release times and
similar lengths, J. Sched. 10 (2007), 365-373.

 [3] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math.
17 (1969), 416-429.

