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Abstract 

We investigate the problem of on-line scheduling for jobs with 
arbitrary release times on m identical parallel machines. The goal is to 
minimize the makespan. For a special case that all the jobs have unit- 
processing time, we prove that algorithm LS has a tight bound of 23  

for general m machines. 

1. Introduction 

On-line scheduling has received great attention in decades. The most 
basic model is the classical on-line scheduling problem on m identical 
parallel machines which was proposed by Graham [3]. In the classical on-line 
scheduling problem, jobs arrive one by one (or over a job list), we do not 
know any information about the job list in advance, whenever a job arrives, it 
must be scheduled immediately on one of the machines without knowledge 
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of any future jobs. Only after the current job is scheduled, the next job 
appears. The objective is to minimize the makespan. It is well known that the 
first on-line algorithm in scheduling theory, namely List Scheduling (LS) 
algorithm, for the problem was proposed by Graham [3]. 

Note that in the above model all jobs in the job list have release times 
zero. A more general version of the classical on-line scheduling problem on 
m identical parallel machines was given by Li and Huang [1]. In the general 
version, all jobs appear in form of orders at time zero. When a job appears, 
the scheduler is informed of the release time and processing time of the job. 
The problem can be formally defined as follows. A list of jobs is to be 
scheduled on m identical parallel machines, ....,,, 21 mMMM  We assume 

that all jobs appear on-line in a job list. Whenever a job jJ  with release time 

jr  and processing time jp  appears, the scheduler has to assign a machine 

and a processing slot for jJ  irrevocably without knowledge of any future 

jobs. The goal is to minimize the makespan. In this general on-line situation, 
the jobs’ release times are assumed arbitrary, whereas in the existing 
literature the jobs’ release times are normally non-decreasing. That is to say, 
although a job may appear first in the job sequence, but its release time may 
be greater than the release time of the job which appears later in the job 
sequence. It is obvious that the above model is just the classical on-line 
scheduling problem on m identical parallel machines if all the jobs have 
release time zero. The problem is called on-line scheduling problem for jobs 
with arbitrary release times [2]. 

The quality of an on-line algorithm A is usually measured by its 
competitive ratio 

( ) ( )
( )

,sup,
max

max
LC
LCAmR

A
L ∗=  

where ( )LC A
max  and ( )LC∗

max  denote the makespans of the schedule 

produced by algorithm A and an optimal off-line algorithm, respectively. 
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Li and Huang considered the on-line scheduling problem for jobs with 
arbitrary release times first. For the general model of the problem where job 
processing times are arbitrary, Li and Huang [1] gave a lower bound of 2, 
and then showed an algorithm LS with tight bound of .13 m−  A modified 

algorithm MLS is also proposed which is better than LS for any ,2≥m  and 
the competitive ratio of MLS is bounded by 2.9392 for any .2≥m  For the 
special model where the job length is in [ ] ( ),1, ≥rrpp  the performance of 

algorithm LS is analyzed in [2]. They first gave an upper bound of 

( ) ( )
( )⎪

⎩

⎪
⎨

⎧

−
<≤

+
−+

+
+

−
≥−−

=

11,21
1

21
21

1,113
,

m
mrrm

rm
r

r
m

mrrmLSmR  

for general m and showed that the tight bound for 1=m  is .11 r
r
+

+  When 

,2=m  they presented a tight bound of the competitive ratio ( )22
451

+
++ r

r  

for .4≥r  For ,4<r  they gave a lower bound and showed that 2 provides 
an upper bound for the competitive ratio. 

Our results. In this paper, we consider the on-line scheduling problem 
for jobs with arbitrary release times. For a special model that all the jobs 
have unit-processing time, we prove that algorithm LS has a tight bound of 

23  for general m machines. 

2. LS Algorithm for Jobs with Unit-processing Time 

In this part, we give a tight bound of Algorithm LS for a special case that 
all the jobs have unit-processing time. In the following we will describe 
algorithm LS which is defined in Li and Huang [1]. Essentially, the 
algorithm assigns a job to be processed as early as possible when its order 
arrives. 

Definition 2.1. Suppose that jJ  is the current job with release time jr  

and processing time .jp  We say that machine iM  has an idle time interval 
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for job ,jJ  if there exists a time interval [ ]21, TT  satisfying the following 

conditions: 

1. Machine iM  is currently idle in interval [ ]21, TT  and a job has been 

assigned on iM  to start processing at .2T  

2. { } .1,max 12 ≥− jrTT  

Algorithm LS 

1. Assume that iL  is the scheduled completion time of machine 

( )....,,2,1 miMi =  Reorder machines so that mLLL ≤≤≤ 21  

and let nJ  be a new job given to the algorithm with release time nr  

and running time .1=np  Let { }.,max 1Lrt n=  

2. If there exist some machines which have idle intervals for job ,nJ  

select a machine iM  which has an idle interval [ ]21, TT  for job nJ  

with minimal .1T  Then we start job nJ  on machine iM  at time 

{ }nrT ,max 1  in the idle interval. Otherwise, we assign job nJ  to 

machine 1M  to start the processing at time t. 

In order to give the proof of the result, we first give some explanation of 
symbols. [ ]:s  the integral part of s; (s): the fractional part of ⎡ ⎤ :; ss  the 

smallest integer that is not smaller than s. 

The following lemma gives an estimate of the number of jobs completed 
in time interval [ ]T,0  on one machine in schedule of algorithm LS on the 

assumption that there is no idle time interval with length equal to or greater 
than 1. 

Lemma 2.1. Let N denote the number of jobs completed on one machine 
in time interval [ ].,0 T  If the length of all the idle intervals in schedule of 

algorithm LS is smaller than 1, then we have (1) 2
TN ≥  if T is even; (2) 

2
1−≥ TN  if T is odd and there is one job with start time smaller than T 
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which is completed after time T. (3) 2
1+≥ TN  if T is odd and there is no 

job with start time smaller than T which is completed after time T. 

Proof. At most 1+N  idle intervals are generated by the process of N 
jobs in [ ]T,0  on one machine. Then the total length of these idle intervals is 

smaller than .1+N  So we have ( ) .11 −>++ TNN  From the inequality 

we can get .2
2−> TN  Therefore 2

TN ≥  if T is even; 

If T is odd and there is one job with start time smaller than T which is 
completed after time T. Then we also have ( ) .11 −>++ TNN  So we can 

get .2
1−≥ Tk  

If T is odd and there is no job with start time smaller than T which 
is   completed after time T. Then we have ( ) ,1 TNN >++  namely, 

.2
1+≥ TN  

Theorem 2.1. The competitive ratio of LS is .23=LSR  

Proof. We assume { }nJJJL ...,,, 21=  is an arbitrary job list. Let 

( )LC LS
max  and ( )LC∗

max  denote the makespans of the schedule produced by 

algorithm LS and an optimal schedule, respectively. Without loss of 
generality, we assume nJ  is the last job completed in schedule of algorithm 

LS and nJ  is the only job with completion time ( ).max LC LS  Let ns  be the 

start time of job nJ  in schedule of algorithm LS. If ,nn rs =  then it is 

obvious that .23≤LSR  If ,nn rs >  then job nJ  must be assigned on 

machine 1M  to start at time 1Lsn =  by the algorithm. In schedule of 

algorithm LS, let s be the least time point from which all the m machines are 
busy to ,1L  and let k be the number of jobs (including job )nJ  completed 

after time s on machine .1M  Then it is obvious that at least ( )1−k  jobs are 

completed after time s on each of the other 1−m  machines. So at least 
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( ) 11 +−km  jobs in total are completed after time s in schedule of algorithm 

LS. We have ( ) ksLC LS +≤max  and ( ) ,1max +≥∗ sLC  because at least one 

job has release time s by the algorithm. 

We first consider the case that all the idle intervals in schedule of 
algorithm LS have length smaller than 1. 

Case 1. [s] is even. By Lemma 2.1, it is easy to know the optimal 

schedule completes at most [ ]
2
sm ⋅  more jobs before time [s] than the 

schedule of algorithm LS does. 

Case 1.1. If ,32 +≤ sk  then we have: 

( )
( ) ( ) .2

3
12

32
1

max

max =
+
++≤

+
+≤∗ s

ss
s

ks
LC
LC LS

 

Case 1.2. If [ ] ( ),1232 sssk +++=+≥  namely, .42 +≥ sk  Then 

at least ( ) [ ]
211 smkm ⋅−+−  jobs are processed after time [s] in optimal 

schedule. So we have 

( ) [ ] ( ) [ ]
⎥⎥
⎤

⎢⎢
⎡

⎥⎦
⎤

⎢⎣
⎡ ⋅−+−+≥∗

2111
max

smkmmsLC  

[ ] .2
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Therefore: 
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Case 2. [s] is odd. 

Case 2.1. If ,32 +≤ sk  then 

( )
( ) ( ) .2

3
12

32
1

max

max =
+
++≤

+
+≤∗ s

ss
s

ks
LC
LC LS

 

Case 2.2. If [ ] ( ),1232 sssk +++=+>  namely, .52 +≥ sk  By 

Lemma 2.1, one machine in optimal schedule completes at most [ ]2
1+s  

more jobs before [s] than it does in schedule of algorithm LS, and at least one 
machine in optimal schedule (the machine is idle immediately before s) 

completes at most [ ]2
1−s  more jobs before [s] than it does in schedule of 

algorithm LS. So at least ( )[ ] ( ) [ ] [ ]
⎥⎦
⎤

⎢⎣
⎡ −++−−+− 2

1
2

1111 ssmkm  jobs 

must be processed after time [s] in optimal schedule. Hence, we can derive 

( ) [ ]
( )[ ] ( ) [ ] [ ]
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1
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1111
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[ ] ( ) [ ] 12
11 ++−−+= sks  

[ ] .2
1

2
1 −+= ks  

Case 2.2.1. If ( ) ,2
1≤s  then 

( )
( ) [ ] 2

1
2
1
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Case 2.2.2. ( ) .
2
1

>s  In this case we need to estimate the number of jobs 

completed after time s in schedule of algorithm LS more carefully. 

Case 2.2.2.a. The time point s appears exactly on machine ,1M  namely, 

1M  is idle immediately before time s, and p jobs with start time smaller than 
[s] are completed after time s in schedule of algorithm LS. For the p 
machines that process such p jobs, k jobs are completed after time s on each 
of them in schedule of algorithm LS. By Lemma 2.1, each of the p machines 

in optimal schedule completes at most [ ]2
1+s  more jobs before time [s] than 

it does in schedule of algorithm LS and each of the other pm −  machines in 

optimal schedule completes at most [ ]2
1−s  more jobs before time [s] than it 

does in schedule of algorithm LS. So we have 

( ) [ ] ( )[ ] [ ] ( ) [ ] ⎥⎥
⎤

⎢⎢
⎡

⎭⎬
⎫
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⎧
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( )
( ) [ ]

[ ]
[ ]( )32

52

2
1

2
1

max

max
+
++≤

++

+≤∗ s
ss

ks

ks
LC
LC LS

 

[ ]( ) [ ]( )
[ ]( )32

4233
+

−−++= s
sss  

.2
3≤  

Case 2.2.2.b. The time point s does not appear on machine 1M  and the 

start time of the first completed job after time s on machine 1M  is not greater 

than [s]. Then we have 

( ) [ ].max skLC LS +≤  
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Hence 
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Case 2.2.2.c. The time point s does not appear on machine ,1M  and p 

jobs with start time smaller than [s] are completed after time s in schedule of 
algorithm LS, and the start time of the first completed job after time s on 
machine 1M  is greater than [s]. Similar to the analysis in Case 2.2.2.a, we 

have 

( ) [ ] ( )[ ] [ ] ( ) [ ] ⎥⎥
⎤

⎢⎢
⎡
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Secondly, if there exist idle time intervals with length not smaller than 1 
in schedule of algorithm LS, then we select such idle time interval with latest 
over time, say b, and choose a time point a such that .1=− ab  By the 
algorithm LS, all the jobs with start time greater than a must have release 
time greater than a also. So similar to the analysis in the first part of the 

proof, we can get .2
3≤LSR  

Finally, the following instance shows that the bound of algorithm LS is 
tight. The instance consists 2m jobs in total, the first m jobs have release time 

ε−1  and the last m jobs have release time zero. It is easy to know the 
makespan of algorithm LS for the instance is ,3 ε−  but the optimal makespan 

is 2. So ,2
3 ε−≥LSR  let ε tend to zero, we get the bound is tight. 

3. Final Remarks 

We consider the problem of scheduling for jobs with arbitrary release 
times on m identical parallel machines. For a special model where all the jobs 
have processing time 1, we derived that algorithm LS has a tight bound of 

.23  Furthermore, some other special models of the problem are also worth 

to consider in future. 
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