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Abstract
In this paper, we investigate the oscillation of first-order impulsive

advanced differential equations with integral jump condition of the
form

X(t) = pl)x(t +1), t=t,telt, o),
t, —

() = o[ K x(s)ds, t=t, k=12 ..,
tx =6k

where 0 <oy <O <t —tq, ¢ 20, k=12, .., and t >0 are

given constants.
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1. Introduction

Many evolution processes in real world phenomena and applications are
characterized by the fact that at certain moments of time they experience an
abrupt change of state. Often these short-term perturbations are treated as
having acted instantaneously or in the form of impulses. Impulsive
differential equations and impulsive functional differential equations have
been developed for mathematical modeling of impulsive problems in physics,
medicine, population dynamics, biotechnology, control theory, etc. see [1-5].

The theory of oscillation of impulsive functional differential equations
has been studied by a number of authors; see, for example, [6-13] and
references therein. However, there are only a few papers that consider the
oscillatory behavior of impulsive differential equations with advanced
argument, see [14-17].

In this paper, we investigate sufficient conditions for oscillation of all
solutions of the first-order impulsive advanced differential equation with
integral jump condition of the form

X'(t) = p(t)x(t + 1), t#t,telt, ),

ty —ok (11)
AX(ty) = ij x(s)ds, t=t, k=12 ..

tk =0k
Together with equation (1.1), we consider the first-order impulsive advanced
differential inequalities with integral jump condition

X'(t) = p(t)x(t + 1), t#t,telt, »),
. 1.2
AX(ty) > ckj:kk_e: x(s)ds, t=t, k=12, ., (42
and
X'(t) < p(t)x(t + 1), t#t,telt, »),
(1.3)

ty —ok
AX(ty) < ckI x(s)ds, t=t, k=12 ..,
ty =0y
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under the following hypotheses:

(H)) 0<ty <ty <ty <---<tg <--- are fixed points with limy_, ty

= 00!

(H,) Function p € PC([tg, ), R) = {p :[tg, ) = R| p(t) is continuous
for t e [ty, ©), t=t, and p(ty), p(t) exist with p(ty) = p(ty), k =
1,2, ..}

(H3) Constants T >0 and ¢, >0, o), 0, are satisfied 0 < 5, < 6
< tk _tk—lv for k = 1, 2,

A function x € PC([tg, ), R) is said to be a solution of equation (1.1)

on [tg, o) if the following conditions are satisfied:

(i) x(t) satisfies x'(t) = p(t)x(t + t) for t € [tg, o) and t = t;;

(i) Ax(te) = x(t¢) — x(t ) = ¢ Ittk _gkx(s)ds for each t,, and x(t) and
k— Ok
x'(t) are left continuous for each t,, k =1, 2, ....

The solution x(t) of inequality (1.2) is said to be eventually positive if
there exists T > t; such that x(t) > 0 for t > T. Analogously, the solution
x(t) of inequality (1.3) is said to be eventually negative if there exists T > t,
such that x(t) <0 fort > T.

Definition 1.1. A nontrivial solution of equation (1.1) is said to be
nonoscillatory if the solution is eventually positive or eventually negative.
Otherwise, it is said to be oscillatory. Equation (1.1) is said to be oscillatory
if all solutions are oscillatory.

Denote t; = max{ty :t>t,, k =1, 2, ...}. The following lemma will be
used in our main results.

Lemma 1.2. Let (H;) hold. Assume that q € PC([tg, «), R) and 0 <

o <O <t —teq, ¢ 20, k=1 2 .., are constants. If
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x'(t) > q(t), t#1t,telty, ©),

ty —ok (14)
AX(ty ) > ijt . x(s)ds, t=ty, t €[ty ®),
k —Yk

then for t > tg,

x(t)ZX(IO)[ H[1+Ck(6k0k)]]+ > [T@+ci0;-0)

to <ty <t to<ty <t| tg <tj <t

[ e ol o

tx —ok
+ J [1+ ¢y (ty —ox —s)]a(s)ds
ty —Ok

+ L:(k_ck q(s)dsj] + J: q(s)ds. (1.5)

Proof. See [18].

2. Main Results

Theorem 2.1. Let (Hq)-(H3) hold. Assume that there exists a sequence
of disjoint intervals J, = (§,, n,), ne N such that n, - &, =2t and
tj =0 € Jy, where t; = min{ty :t, € Jy}. In addition, suppose that the

following conditions hold:

(M) Foreachne N,te J, and t, € J,,
p(t)>0, ¢, >0, k=12 ... (2.1)
(M5) There exists v; > 0 such that for n > vy,

H (L+cj(0) - o] ))[(1 +Cy (B — ok ))Ltkk__lek p(s)ds

En<tu<€n+tity <tj<€p+t
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ty —ok ty
+ -[tk—ek p(s)(L+ ¢ (ty — o —s))ds + Lk o p(s)ds}

EntT
+ LI p(s)ds > 1. (2.2)

Then:

(Dy) Inequality (1.2) has no eventually positive solutions.
(D5) Inequality (1.3) has no eventually negative solutions.
(D3) Every solution of equation (1.1) is oscillatory.

Proof. Firstly, we prove that inequality (1.2) has no eventually positive
solution. Suppose, to the contrary, that there exists a solution x(t) of (1.2)

such that x(t) > 0 for t > T. Since &, — o as n — o, there exists vy > 0
such that for n > vg we have &, > T. From (1.2) and (2.1), it follows that

t — : :

X'(t) >0 and Ax(t) = ckj'tk ;kx(s)ds >0 for t, t, € J,, ie, x(t) isa
k =k

nondecreasing in t € J,,, N > vg.

Let v = max{vg, v1} and n > v. By using Lemma 1.2, we get

XEn + 1) 2 X&) []@+ Bk - o))

En<tg<€p+t

+ Z H(1+CJ(GJ—GJ))

En<ty<€n+t tk<tj<§n+r
t =0k
x [(1+ (O~ o] ps)x(s + D)0
k-1

+ J‘ttkk_—;(k @+ cy (ty — o — ) p(s)X(s + 1)ds
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t
+ J. “ p(s)x(s + r)dsj] + jgnﬂ p(s)x(s + t)ds.  (2.3)
ty —ok f

Ifte(&,, & + 1), then (t+ 1) e (n, — 1, ny)- From x(t) is a nondecreasing

function in (n,, — 1, ), it follows that

@ +0)2xE) [ @+ —ox))

En<ty<&n+t

+X(<‘:‘:n +’E){ Z [ H (1+cj(9j—0j))

En<ty<&n+t| tg <tj <En+1
t —Ok
o @s oo -of! " peras
k-1

t, —
7 @ ot - on - 5) pls)ds
t —0k

+ Lik_ok p(s)dsj] + J jnH p(S)dS}- (2.4)

Therefore,

02> x(&p) H(1+Ck(9k - oy))

En<ty<€n+t

+x(§n+r){ Z H(1+cj(9j—0j))

En<ty<€p+t [tk <tj<€p+t

x ((1 +Cy (B — o ))J:__lek p(s)ds

t, —
[ @ et - o - 9) pls)ds
t —Ok
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[ s ||+ [ psyas -1, @25)
ty —ok 4

From (2.5) for n > v, we have that

Z H (L+cj0j -o; ))[(1 + ¢ (B — o ))Ltkk;ek p(s)ds

En<tk<En+t\ty<tj<gr+t

~ tk —ok ty
+ p(s)(L+ ¢ (ty — o —s))ds + j p(s)ds}
o tk —Sk tk —Gk
FEntT
+ ], p(s)ds <1, (2.6)
!

which contradicts (2.2). In order to prove that (1.3) has no eventually
negative solution it suffices to note that if x(t) is a solution of (1.3), then

—x(t) is a solution of (1.2). From (M) and (M,), it follows that equation

(1.1) has neither an eventually positive nor an eventually negative solution.
Therefore, from Definition 1.1 the solution of (1.1) is oscillatory. The proof
is complete. O

Theorem 2.2. Let (Hy)-(H3) hold. Assume that there exists a sequence
of disjoint intervals J,, = (&4, np), ne N such that n, — &, > 2t and
tj =0 € J,, where t; = min{t, :t, € J,}. In addition, suppose that the

following conditions hold:
(M3) Forany ne N, te J, and t, € J,,
p(t)>0, ¢, >0, k=12, ... (2.7)

(M4) There exists a constant K and integer v; > 0 such that for any
n>vqyandte (g, n, - 1),
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Z H L+cj®j -0; ))((1 + (B — oy ))L:(k_lek p(s)ds

<t <t+t| ty Stj <t+rt

ty —ok ty
+ Lk_ek p(s)(X + ¢, (ty — o —S))ds + J.tk o p(s)dsj

.[t-H: 1
+ t p(s)ds > K >e™. (2.8)
|

(Ms) There exist a constant ¢ > 0 and an integer v, > 0 such that for

any n > v, there exists t, € [£,, &, + 1] such that

An () By (tn) = 6, (2.9)

where

An(t) = Z {H(“Cj(@j—cj))
£ <t <t

tkStht

x ((1 +Cy (B — o ))J:__lek p(s)ds

ty —ok
+ j p(s)(1 + ¢y (ty — ok —S))ds
t —0Oy

+ _[:_ck p(s)dsj] + J.:I p(s)ds,

and

Bn(t) = [T@+ci®;-0))

<ty <gp+t [tk Stj S&n +1

x ((1 +Cy (B — o ))Ltkk_lek p(s)ds
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ty —ok
+J. p(S)(1+ Ck(tk — ok —S))dS
ty =0y

tk Entt
d ds.
+'[tk_5k p(s) sj +LI p(s)ds

(Mg) There exists vz > 0 such that for any n > v3 the inequality
Nn —&n > (Mg + 1)1, (2.10)
is valid, where
mg = min{m e N : ¢(eK)™ > 1}. (2.11)
Then:
(D4) Inequality (1.2) has no eventually positive solutions.
(Ds) Inequality (1.3) has no eventually negative solutions.
(Dg) Every solution of equation (1.1) is oscillatory.

Proof. Suppose, to the contrary, that the inequality (1.2) has a solution
X(t) such that for T large enough we have x(t) >0, t > T. Since &, — o

as n — oo, there exists vg > 0 such that &, >T,n>vg, k=12, .. and
then from (1.2) and (2.7) it follows that x(t) is a nondecreasing function in

Jn, n= vo-

Now, we set v = max(vg, vy, Vo, v3). Then for any n > v the solution
x(t) is a nondecreasing function in J,,. From (1.2) and Lemma 1.2, we have
that

Xt )2 x@) [ @+b(® - o))

&n <tk <t:]c

+ > | [a+v505-05)

En<tc<ty | te<tj<ty
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t —Ok
X ((1 + by (6 — Gk))J.tkl p(s)x(s + t)ds

+ I:__;:( 1+ by (t, — o — ) p(S)X(s + T)ds

t t
+J “ p(s)x(s + r)ds) +J‘ " p(s)x(s + )ds.
ty —ok t
Since x(t + 1) is nondecreasing in (&, t;) and x(&,) > 0,

X(th) 2 Xy + 1)) D) H L+cj(0; —o5j))

En <<ty | te<tj<ty
=6k
[ @ oo -af, ™ ploye
k-1

’[ —
+I K=ok L+ b (ty — ok —s))p(s)ds
tk—ek

+ J.:_Gk p(s)dsj + J.j p(s)ds .

That is
X(th ") = X(Ep + ) Ag(tn). (2.12)

Similarly, we have

G+t zxt") J] @+ -on)

ty <ty <€p+1

+ Z H (1+bJ(9J—GJ))

th <t <€+t Ik <tj<Entt
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t —0k
x [(1+ o (0 - 51))| L PEX(s s

+ J.tt:__;(k 1+ ¢y (t — o) —5)) p(s)x(s + 1)ds

+ J:_Gk p(s)x(s + r)dsj + J.fnﬂ p(s)x(s + t)ds.

Then, we obtain
X(&n + 1) > x(ty + ) B, (th). (2.13)

Hence, from (2.12) and (2.13), it follows that

X(ty + 1) < 1
X(th")  An(ty)Bn(ts)
< % n>v. (2.14)

From (1.2) and Lemma 1.2, we have that

xt+t)zxt) ] @+c®—oy)

t<ty <t+t
+ > [T @+cjo;-0))
I<ty <t+1| f <tj<t+t

x [(1 + C (B — o ))I:__lek p(s)x(s + t)ds

+ J.tik__;k (L + ¢y (t — o —s))p(s)x(s + t)ds

- J‘:_Gk p(s)x(s + r)dsj + j:th p(s)x(s + 1)ds,

forn>v and t € (§,, n, — 1). Since, 1+ ¢, (0 — oK) =1 and x(s+ 1) >
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x(t + ") for s e (t, t + 1), we have

x(t+t)2x(t)+x(t+r){ > [ [T @+cjo;-05)

t<ty <t+7| f <tj<t+rt
tk =0k
(@ oo - of " poes
k-1
tk —ok
+[ 1 @ ot - ok — ) p(s)ds
t =0k

+ I::_Gk p(s)dsﬂ + J:H p(s)ds}.

Thus,

x(t)<x(t+r){l—[ Z [ H d+cj(®; -0j))

i<ty <t+7| f <tj<t+rt
t =0y
(@ oo - of " s
k-1

t, —
[ @ oty - oy - ) p(s)ds
t —0x

+ J.:_Gk p(s)de] + J't:h p(s)ds}}.

Using the fact that 1 — x < e X x e R, we obtain

x(t)<x(t+r)exp{—[ Z [ H (1+bj0j -c;))

i<ty <t+7| f <tj<t+rt

x ((1 + by (B — o ))J':kk__lek p(s)ds
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t —
+J. K=ok L+ b (ty — ok —5))p(s)ds
tk—ek

+ J‘:_Gk p(s)ds} + J.:T p(s)ds

Consequently, foreach n > v and t € (§,, n, — 1),

X(t + 1)

x(t)

Repeating the above argument, we get to

ZeK > eK.

X(t + 1)

X(t)

forany n > v and t € (§,, n, — MgT).

> (eK)Mo, (2.15)

Since &, + 1 <m, —Mpt, (2.15) is valid forany n>v and t =t,
[En, En + 1], i€,
* +
X(t”—:r) > (eK)™, (2.16)
X(tn ")
Then from (2.14) and (2.16), we get

% > (eK)™o

which contradicts (2.11).

The proof of assertions (Dg) and (Dg) is carried out as in Theorem 2.1.
O
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