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Abstract 

In this paper, we investigate the oscillation of first-order impulsive 
advanced differential equations with integral jump condition of the 
form 
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given constants. 
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1. Introduction 

Many evolution processes in real world phenomena and applications are 
characterized by the fact that at certain moments of time they experience an 
abrupt change of state. Often these short-term perturbations are treated as 
having acted instantaneously or in the form of impulses. Impulsive 
differential equations and impulsive functional differential equations have 
been developed for mathematical modeling of impulsive problems in physics, 
medicine, population dynamics, biotechnology, control theory, etc. see [1-5]. 

The theory of oscillation of impulsive functional differential equations 
has been studied by a number of authors; see, for example, [6-13] and 
references therein. However, there are only a few papers that consider the 
oscillatory behavior of impulsive differential equations with advanced 
argument, see [14-17]. 

In this paper, we investigate sufficient conditions for oscillation of all 
solutions of the first-order impulsive advanced differential equation with 
integral jump condition of the form 
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 (1.1) 

Together with equation (1.1), we consider the first-order impulsive advanced 
differential inequalities with integral jump condition 
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and 
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under the following hypotheses: 

( )1H  <<<<<≤ ktttt 2100  are fixed points with kk t∞→lim  
;∞=  

( )2H  Function [ )( ) { [ ) ( )tpRtpRtPCp |→∞=∞∈ ,:,, 00  is continuous 

for [ ),,0 ∞∈ tt  ktt ≠  and ( ),+
ktp  ( )−ktp  exist with ( ) ( ),kk tptp =−  =k  

};...,2,1  

( )3H  Constants 0>τ  and ,0≥kc  ,kσ  kθ  are satisfied kk θ≤σ≤0  

,1−−≤ kk tt  for ....,2,1=k  

A function [ )( )RtPCx ,,0 ∞∈  is said to be a solution of equation (1.1) 

on [ )∞,0t  if the following conditions are satisfied: 

 (i) ( )tx  satisfies ( ) ( ) ( )τ+=′ txtptx  for [ )∞∈ ,0tt  and ;ktt ≠  

(ii) ( ) ( ) ( ) ( )∫
σ−

θ−
−+ =−=Δ kk

kk

t
tkkkk dssxctxtxtx  for each ,kt  and ( )tx  and 

( )tx′  are left continuous for each ....,2,1, =ktk  

The solution ( )tx  of inequality (1.2) is said to be eventually positive if 

there exists 0tT >  such that ( ) 0>tx  for .Tt ≥  Analogously, the solution 

( )tx  of inequality (1.3) is said to be eventually negative if there exists 0tT >  

such that ( ) 0<tx  for .Tt ≥  

Definition 1.1. A nontrivial solution of equation (1.1) is said to be 
nonoscillatory if the solution is eventually positive or eventually negative. 
Otherwise, it is said to be oscillatory. Equation (1.1) is said to be oscillatory 
if all solutions are oscillatory. 

Denote { }....,2,1,:max =≥= ktttt kkl  The following lemma will be 

used in our main results. 

Lemma 1.2. Let ( )1H  hold. Assume that [ )( )RtPCq ,,0 ∞∈  and ≤0  

...,,2,1,0,1 =≥−≤θ≤σ − kctt kkkkk  are constants. If 
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then for ,0tt ≥  
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Proof. See [18]. 

2. Main Results 

Theorem 2.1. Let ( ) ( )31 H-H  hold. Assume that there exists a sequence 

of disjoint intervals ( ),, nnnJ ηξ=  Nn ∈  such that τ=ξ−η 2nn  and 

,njj Jt ∈θ−  where { }.:min nkkj Jttt ∈=  In addition, suppose that the 

following conditions hold: 

( )1M  For each nJtNn ∈∈ ,  and ,nk Jt ∈  

 ( ) ....,2,1,0,0 =≥≥ kctp k  (2.1) 
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Then: 

( )1D  Inequality (1.2) has no eventually positive solutions. 

( )2D  Inequality (1.3) has no eventually negative solutions. 

( )3D  Every solution of equation (1.1) is oscillatory. 

Proof. Firstly, we prove that inequality (1.2) has no eventually positive 
solution. Suppose, to the contrary, that there exists a solution ( )tx  of (1.2) 

such that ( ) 0>tx  for .Tt ≥  Since ∞→ξn  as ,∞→n  there exists 00 >ν  

such that for 0ν≥n  we have .Tn >ξ  From (1.2) and (2.1), it follows that 

( ) 0≥′ tx  and ( ) ( )∫
σ−

θ−
≥=Δ kk

kk

t
tkk dssxctx 0  for ,, nk Jtt ∈  i.e., ( )tx  is a 

nondecreasing in ., 0ν≥∈ nJt n  

Let { }10,max νν=ν  and .ν≥n  By using Lemma 1.2, we get 
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If ( ),, τ+ξξ∈ nnt  then ( ) ( )., nnt ητ−η∈τ+  From ( )tx  is a nondecreasing 

function in ( ),, nn ητ−η  it follows that 
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From (2.5) for ,ν≥n  we have that 
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which contradicts (2.2). In order to prove that (1.3) has no eventually 
negative solution it suffices to note that if ( )tx  is a solution of (1.3), then 

( )tx−  is a solution of (1.2). From ( )1M  and ( ),M2  it follows that equation 

(1.1) has neither an eventually positive nor an eventually negative solution. 
Therefore, from Definition 1.1 the solution of (1.1) is oscillatory. The proof 
is complete. ~ 

Theorem 2.2. Let ( ) ( )31 H-H  hold. Assume that there exists a sequence 

of disjoint intervals ( ),, nnnJ ηξ=  Nn ∈  such that τ≥ξ−η 2nn  and 

,njj Jt ∈θ−  where { }.:min nkkj Jttt ∈=  In addition, suppose that the 

following conditions hold: 

( )3M  For any nJtNn ∈∈ ,  and ,nk Jt ∈  

 ( ) ....,2,1,0,0 =≥≥ kctp k  (2.7) 

( )4M  There exists a constant K and integer 01 >ν  such that for any 

1ν≥n  and ( ),, τ−ηξ∈ nnt  
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is valid, where 

 { ( ) }.1:min0 >φ∈= meKNmm  (2.11) 

Then: 

( )4D  Inequality (1.2) has no eventually positive solutions. 

( )5D  Inequality (1.3) has no eventually negative solutions. 

( )6D  Every solution of equation (1.1) is oscillatory. 

Proof. Suppose, to the contrary, that the inequality (1.2) has a solution 
( )tx  such that for T large enough we have ( ) ,0>tx  .Tt ≥  Since ∞→ξn  

as ,∞→n  there exists 00 >ν  such that ...,2,1,, 0 =ν≥>ξ knTn  and 

then from (1.2) and (2.7) it follows that ( )tx  is a nondecreasing function in 

., 0ν≥nJn  

Now, we set ( ).,,,max 3210 νννν=ν  Then for any ν≥n  the solution 

( )tx  is a nondecreasing function in .nJ  From (1.2) and Lemma 1.2, we have 

that 
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for ν≥n  and ( )., τ−ηξ∈ nnt  Since, ( ) 11 ≥σ−θ+ kkkc  and ( ) ≥τ+sx  
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Consequently, for each ν≥n  and ( ),, τ−ηξ∈ nnt  

( )
( ) .eKetx

tx K ≥≥τ+  

Repeating the above argument, we get to 

 ( )
( ) ( ) ,0meKtx

tx ≥τ+  (2.15) 

for any ν≥n  and ( )., 0τ−ηξ∈ mt nn  

Since ,0τ−η<τ+ξ mnn  (2.15) is valid for any ν≥n  and ∈= ∗
ntt  

[ ],, τ+ξξ nn  i.e., 

 ( )
( )

( ) .0m

n

n eK
tx

tx
≥

τ+
+∗

+∗
 (2.16) 

Then from (2.14) and (2.16), we get 

( ) 01 meK≥
φ

 

which contradicts (2.11). 

The proof of assertions ( )5D  and ( )6D  is carried out as in Theorem 2.1. 
 ~ 
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