EXPLICIT DETERMINANTS OF THE FIBONACCI RFPLR CIRCULANT AND LUCAS RFPLR CIRCULANT MATRIX

Juan Li*, Zhaolin Jiang and Nuo Shen

Department of Mathematics
Linyi University
Linyi 276005, P. R. China
and
School of Mathematical Sciences
Shandong Normal University
Jinan 250014, P. R. China
e-mail: zxc123pollijuan@163.com; jzh1208@sina.com
shennuo2007@yahoo.cn

Abstract

Let A be a row first-plus-last right circulant matrix and C be a row first-plus-last left circulant matrix whose first rows are $(F_1, F_2, ..., F_n)$ and $(L_1, L_2, ..., L_n)$, respectively, where F_n is the Fibonacci number and L_n is the Lucas number. In this paper, by using the inverse factorization of polynomial of degree n, the explicit

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 15A15, 11B39, 11C20.

Keywords and phrases: determinant, Fibonacci, Lucas, RFPLR circulant matrix, FRPLL circulant matrix.

This project is supported by NSFC (Grant No. 11201212) and the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (Grant No. BS 2012DX004).

Communicated by K. K. Azad Received September 19, 2012

^{*}Corresponding author

determinants of matrices A and C are expressed by utilizing only the Fibonacci and Lucas numbers.

1. Introduction

The Fibonacci and Lucas sequences [12] are defined by the following recurrence relations, respectively,

$$F_{n+1} = F_n + F_{n-1}$$
, where $F_0 = 0$, $F_1 = 1$, $L_{n+1} = L_n + L_{n-1}$, where $L_0 = 2$, $L_1 = 1$.

The first few values of the sequences are given by the following table $(n \ge 0)$:

The sequences $\{F_n\}$, $\{L_n\}$ are given by the Binet formulae

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

and

$$L_n = \alpha^n + \beta^n,$$

where α and β are the roots of the characteristic equation $x^2 - x - 1 = 0$.

Definition 1 [4]. A row first-plus-last right (RFPLR) circulant matrix with the first row $(a_1, a_2, ..., a_n)$, denoted by RFPLRcircfr $(a_1, a_2, ..., a_n)$, is meant a square matrix of the form

$$M := \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & a_n \\ a_n & a_1 + a_n & a_2 & \cdots & a_{n-1} \\ \vdots & a_n + a_{n-1} & a_1 & \ddots & \vdots \\ a_3 & \vdots & \ddots & \ddots & a_2 \\ a_2 & a_3 + a_2 & \cdots & a_n + a_{n-1} & a_1 + a_n \end{pmatrix}_{n \times n}$$

If the first row of a RFPLR circulant matrix is $(F_1, F_2, ..., F_n)$, then the matrix is called *Fibonacci RFPLR circulant matrix*. Similarly, if the first row of a RFPLR circulant matrix is $(L_1, L_2, ..., L_n)$, then the matrix is called *Lucas RFPLR circulant matrix*.

Note that the RFPLR circulant matrix is an $x^n - x - 1$ circulant matrix [2], and that is neither the extension of circulant matrix [6] nor its special case and they are two different kinds of special matrices. Moreover, it is a FLS *r*-circulant matrix [4] when r = 1, and is a ULS *r*-circulant matrix [14] when r = 1.

We define $\Theta_{(1,1)}$ as the basic RFPLR circulant matrix, that is,

$$\Theta_{(1,1)} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 \end{pmatrix}_{n \times n} = RFPLRcircfr(0, 1, 0, ..., 0).$$

It is easily verified that $g(x) = x^n - x - 1$ has no repeated roots in its splitting field and $g(x) = x^n - x - 1$ is both the minimal polynomial and the characteristic polynomial of the matrix $\Theta_{(1,1)}$. In addition, $\Theta_{(1,1)}$ is nonderogatory and satisfies $\Theta_{(1,1)}^j = \text{RFPLRcircfr}(\underbrace{0, ..., 0}_{i}, \underbrace{1, 0, ..., 0}_{n-i-1})$ and

 $\Theta_{(1,1)}^n = I_n + \Theta_{(1,1)}$. Then a matrix A can be written in the form

$$A = f(\Theta_{(1,1)}) = \sum_{i=1}^{n} a_i \Theta_{(1,1)}^{i-1}$$
 (1)

if and only if A is a RFPLR circulant matrix, where the polynomial $f(x) = \sum_{i=1}^{n} a_i x^{i-1}$ is called the *representer* of the RFPLR circulant matrix A.

Definition 2 [4]. A row first-plus-last left (RFPLL) circulant matrix with the first row $(a_1, a_2, ..., a_n)$, denoted by RFPLLcircfr $(a_1, a_2, ..., a_n)$, is meant a square matrix of the form

$$N := \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & a_n \\ a_2 & a_3 & \cdots & a_1 + a_n & a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & a_1 + a_n & \cdots & a_{n-2} + a_{n-3} & a_{n-2} \\ a_1 + a_n & a_2 + a_1 & \cdots & a_{n-1} + a_{n-2} & a_{n-1} \end{pmatrix}_{n \times n}$$

If the first row of a RFPLL circulant matrix is $(F_1, F_2, ..., F_n)$, then the matrix is called *Fibonacci RFPLL circulant matrix*. Similarly, if the first row of a RFPLL circulant matrix is $(L_1, L_2, ..., L_n)$, then the matrix is called *Lucas RFPLL circulant matrix*.

Lemma 1 [14]. Let $A = RFPLRcircfr(a_1, a_2, ..., a_n)$. Then we have

$$\lambda_i = f(\varepsilon_i) = \sum_{i=1}^n a_i \varepsilon_i^{j-1}$$

and

$$\det A = \prod_{i=1}^{n} \sum_{j=1}^{n} a_j \varepsilon_i^{j-1},$$

where ε_i (i = 1, 2, ..., n) are the roots of the equation

$$x^n - x - 1 = 0. (2)$$

Recently, there are many interests in properties and generalization of some special matrices with famous numbers. Jaiswal evaluated some determinants of circulant whose elements are the generalized Fibonacci numbers [3]. Lin gave the determinant of the Fibonacci-Lucas quasi-cyclic matrices [8]. Lind presented the determinants of circulant and skew-circulant involving Fibonacci numbers in [9]. Shen et al. [12] discussed the determinant of circulant matrix involving Fibonacci and Lucas numbers. Akbulak and Bozkurt [1] gave the norms of Toeplitz involving Fibonacci and

Lucas numbers. The authors [7, 11] discussed some properties of Fibonacci and Lucas matrices. Melham [10] gave some formulae involving Fibonacci and Pell numbers. Stanimirović et al. gave generalized Fibonacci and Lucas matrix in [13]. Zhang and Zhang [15] investigated the Lucas matrix and some combinatorial identities. In this paper, we define matrices of forms: $A = \text{RFPLRcircfr}(a_1, a_2, ..., a_n)$ and $C = \text{RFPLLcircfr}(a_1, a_2, ..., a_n)$ are $n \times n$ matrices whose first rows are $(F_1, F_2, ..., F_n)$ and $(L_1, L_2, ..., L_n)$, respectively, by using the inverse factorization of polynomial of degree n, the explicit determinants of these matrices are given only by the Fibonacci and Lucas numbers.

2. Determinant of the Fibonacci RFPLR Circulant and Fibonacci RFPLL Circulant Matrix

Lemma 2.

$$\prod_{i=1}^{n} (y - \varepsilon_i z + \varepsilon_i^2 x) = y^n + x^{n-1} (y + z) - y[(ax)^{n-1} + (bx)^{n-1}]$$
$$- [(ax)^n + (bx)^n] + x^n,$$

where

$$a = \frac{z + \sqrt{z^2 - 4xy}}{2x},$$
$$b = \frac{z - \sqrt{z^2 - 4xy}}{2x},$$

and ε_i (i = 1, 2, ..., n) satisfy equation (2), $x, y, z \in \mathbf{R}$, $x \neq 0$.

Proof.

$$\prod_{i=1}^{n} (y - \varepsilon_i z + \varepsilon_i^2 x) = x^n \prod_{i=1}^{n} \left(\varepsilon_i^2 - \frac{z}{x} \varepsilon_i + \frac{y}{x} \right) = x^n \prod_{i=1}^{n} (\varepsilon_i - a) (\varepsilon_i - b)$$

$$= x^n \prod_{i=1}^{n} (a - \varepsilon_i) (b - \varepsilon_i),$$

where

$$a + b = \frac{z}{x}, \quad ab = \frac{y}{x},$$

$$a = \frac{z + \sqrt{z^2 - 4xy}}{2x}, \quad b = \frac{z - \sqrt{z^2 - 4xy}}{2x}.$$

By the ε_i (i = 1, 2, ..., n) satisfy equation (2), we have

$$x^{n} - x - 1 = \prod_{i=1}^{n} (x - \varepsilon_{i}).$$

So

$$\prod_{i=1}^{n} (y - \varepsilon_{i}z + \varepsilon_{i}^{2}x)$$

$$= x^{n}(a^{n} - a - 1)(b^{n} - b - 1)$$

$$= x^{n}[(ab)^{n} + ab - ab(a^{n-1} + b^{n-1}) + (a + b) - (a^{n} + b^{n}) + 1]$$

$$= x^{n}\left[\left(\frac{y}{x}\right)^{n} + \frac{y}{x} + \frac{z}{x} - \frac{y}{x}(a^{n-1} + b^{n-1}) - (a^{n} + b^{n}) + 1\right]$$

$$= y^{n} + x^{n-1}(y + z) - y[(ax)^{n-1} + (bx)^{n-1}] - [(ax)^{n} + (bx)^{n}] + x^{n}.$$

Theorem 1. Let $A = RFPLRcircfr(F_1, F_2, ..., F_n)$. Then

$$\det A = \frac{(1 - F_{n+1})^n + (F_{n+1} - 1)(g_1^{n-1} + h_1^{n-1}) - (g_1^n + h_1^n) + (-F_n)^{n-1}}{1 - L_{n+1} + (-1)^{n-1}},$$

where

$$g_1 = \frac{F_{n+2} + \sqrt{F_{n-1}^2 + 4F_n}}{2},$$

$$h_1 = \frac{F_{n+2} - \sqrt{F_{n-1}^2 + 4F_n}}{2}.$$

Proof. From Lemma 1, the determinant of A is

$$\det A = \prod_{i=1}^{n} \left(F_1 + F_2 \varepsilon_i + \dots + F_n \varepsilon_i^{n-1} \right)$$

$$= \prod_{i=1}^{n} \left(\frac{\alpha - \beta}{\alpha - \beta} + \frac{\alpha^2 - \beta^2}{\alpha - \beta} \varepsilon_i + \dots + \frac{\alpha^n - \beta^n}{\alpha - \beta} \varepsilon_i^{n-1} \right)$$

$$= \prod_{i=1}^{n} \frac{(F_1 - F_{n+1}) - \varepsilon_i (F_{n+1} + F_n) + \varepsilon_i^2 (-F_n)}{1 - \varepsilon_i - \varepsilon_i^2}.$$

According to Lemma 2, we can get

$$\det A = \frac{(1 - F_{n+1})^n + (-F_n)^{n-1}(1 + F_n) - (1 - F_{n+1})(g_1^{n-1} + h_1^{n-1})}{1 - L_{n+1} + (-1)^{n-1}}$$

$$= \frac{(1 - F_{n+1})^n + (F_{n+1} - 1)(g_1^{n-1} + h_1^{n-1}) - (g_1^n + h_1^n) + (-F_n)^{n-1}}{1 - L_{n+1} + (-1)^{n-1}}.$$

Using the method in Theorem 1 similarly, we also have

Theorem 2. Let $B = RFPLRcircfr(F_n, F_{n-1}, ..., F_1)$. Then

$$\det B = \frac{(-F_n)^n + F_n(g_2^{n-1} + h_2^{n-1}) - (g_2^n + h_2^n) + F_{n-1}}{(-1)^n - L_{n-2} + 1},$$

where

$$g_2 = \frac{F_{n+1} - 1 + \sqrt{(F_{n+1} - 1)^2 + 4F_n}}{2},$$

$$h_2 = \frac{F_{n+1} - 1 - \sqrt{(F_{n+1} - 1)^2 + 4F_n}}{2}$$

Theorem 3. Let $C = RFPLLcircfr(F_1, F_2, ..., F_n)$. Then

$$\det C = \frac{(-F_n)^n + F_n(g_2^{n-1} + h_2^{n-1}) - (g_2^n + h_2^n) + F_{n-1}}{(-1)^n - L_{n-2} + 1} (-1)^{\frac{n(n-1)}{2}},$$

where

$$g_2 = \frac{F_{n+1} - 1 + \sqrt{(F_{n+1} - 1)^2 + 4F_n}}{2},$$

$$h_2 = \frac{F_{n+1} - 1 - \sqrt{(F_{n+1} - 1)^2 + 4F_n}}{2}.$$

Proof. The matrix *C* can be written as

$$C = \begin{pmatrix} F_1 & F_2 & \cdots & F_{n-1} & F_n \\ F_2 & F_3 & \cdots & F_1 + F_n & F_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ F_{n-1} & F_1 + F_n & \cdots & F_{n-2} + F_{n-3} & F_{n-2} \\ F_1 + F_n & F_2 + F_1 & \cdots & F_{n-1} + F_{n-2} & F_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} F_n & F_{n-1} & \cdots & F_2 & F_1 \\ F_1 & F_n + F_1 & \cdots & F_3 & F_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ F_{n-2} & F_{n-3} + F_{n-2} & \cdots & F_n + F_1 & F_{n-1} \\ F_{n-1} & F_{n-2} + F_{n-1} & \cdots & F_1 + F_2 & F_n + F_1 \end{pmatrix} \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$= B\Gamma.$$

Hence, we have

$$\det C = \det B \det \Gamma$$
,

where $B = \text{RFPLRcircfr}(F_n, F_{n-1}, ..., F_1)$, and its determinant is obtained from Theorem 2,

$$\det B = \frac{(-F_n)^n + F_n(g_2^{n-1} + h_2^{n-1}) - (g_2^n + h_2^n) + F_{n-1}}{(-1)^n - L_{n-2} + 1},$$

where

$$g_2 = \frac{F_{n+1} - 1 + \sqrt{(F_{n+1} - 1)^2 + 4F_n}}{2}, h_2 = \frac{F_{n+1} - 1 - \sqrt{(F_{n+1} - 1)^2 + 4F_n}}{2}.$$

In addition,

$$\det \Gamma = (-1)^{\frac{n(n-1)}{2}}.$$

So

$$\det C = \frac{(-F_n)^n + F_n(g_2^{n-1} + h_2^{n-1}) - (g_2^n + h_2^n) + F_{n-1}}{(-1)^n - L_{n-2} + 1} (-1)^{\frac{n(n-1)}{2}}.$$

3. Determinant of the Lucas RFPLR Circulant and Lucas RFPLL Circulant Matrix

Theorem 4. Let $A = RFPLRcircfr(L_1, L_2, ..., L_n)$. Then

$$\det A = \frac{(1 - L_{n+1})^n + (L_{n+1} - 1)(g_3^{n-1} + h_3^{n-1}) - (g_3^n + h_3^n)}{1 - L_{n+1} + (-1)^{n-1}},$$

where

$$g_3 = \frac{L_{n+2} + 2 + \sqrt{(L_{n+2} + 2)^2 - 4L_n(L_{n+1} - 1)}}{-2L_n},$$

$$h_3 = \frac{L_{n+2} + 2 - \sqrt{(L_{n+2} + 2)^2 - 4L_n(L_{n+1} - 1)}}{-2L_n}.$$

Proof. From Lemma 1, we have

$$\det A = \prod_{i=1}^{n} (L_1 + L_2 \varepsilon_i + \dots + L_n \varepsilon_i^{n-1})$$

$$= \prod_{i=1}^{n} [(\alpha + \beta) + (\alpha^2 + \beta^2) \varepsilon_i + \dots + (\alpha^n + \beta^n) \varepsilon_i^{n-1}]$$

$$= \prod_{i=1}^{n} \frac{(1 - L_{n+1}) - (L_{n+2} + 2) \varepsilon_i - L_n \varepsilon_i^2}{1 - \varepsilon_i - \varepsilon_i^2}.$$

According Lemma 2, we get

$$\det A = \frac{(1 - L_{n+1})^n + (L_{n+1} - 1)(g_3^{n-1} + h_3^{n-1}) - (g_3^n + h_3^n)}{1 - L_{n+1} + (-L_n)^{n-1} + (-L_n)^n}$$

$$= \frac{(1 - L_{n+1})^n + (L_{n+1} - 1)(g_3^{n-1} + h_3^{n-1}) - (g_3^n + h_3^n)}{1 - L_{n+1} + (-1)^{n-1}}$$

$$= \frac{+3(-L_n)^{n-1} + 2(-L_n)^n}{1 - L_{n+1} + (-1)^{n-1}},$$

where

$$g_3 = \frac{L_{n+2} + 2 + \sqrt{(L_{n+2} + 2)^2 - 4L_n(L_{n+1} - 1)}}{-2L_n},$$

$$h_3 = \frac{L_{n+2} + 2 - \sqrt{(L_{n+2} + 2)^2 - 4L_n(L_{n+1} - 1)}}{-2L_n}.$$

Using the method in Theorem 4 similarly, we also have

Theorem 5. Let $B = RFPLRcircfr(L_n, L_{n-1}, ..., L_1)$. Then

$$\det B = \frac{(2 - L_n)^n + (L_n - 2)(g_4^{n-1} + h_4^{n-1}) - (g_4^n + h_4^n) + L_{n-1}}{(-1)^n - L_{n-2} + 1},$$

where

$$g_4 = \frac{L_{n+1} - 3 + \sqrt{(L_{n+1} - 3)^2 + 4(L_n - 2)}}{2},$$

$$h_4 = \frac{L_{n+1} - 3 - \sqrt{(L_{n+1} - 3)^2 + 4(L_n - 2)}}{2}.$$

Theorem 6. Let $C = RFPLLcircfr(L_1, L_2, ..., L_n)$. Then

$$\det C = \frac{\left(2 - L_n\right)^n + \left(L_n - 2\right)\left(g_4^{n-1} + h_4^{n-1}\right) - \left(g_4^n + h_4^n\right) + L_{n-1}}{\left(-1\right)^n - L_{n-2} + 1} \left(-1\right)^{\frac{n(n-1)}{2}},$$

where

$$g_4 = \frac{L_{n+1} - 3 + \sqrt{(L_{n+1} - 3)^2 + 4(L_n - 2)}}{2},$$

$$h_4 = \frac{L_{n+1} - 3 - \sqrt{(L_{n+1} - 3)^2 + 4(L_n - 2)}}{2}.$$

Proof. The matrix C can be written as

$$C = \begin{pmatrix} L_1 & L_2 & \cdots & L_{n-1} & L_n \\ L_2 & L_3 & \cdots & L_1 + L_n & L_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ L_{n-1} & L_1 + L_n & \cdots & L_{n-2} + L_{n-3} & L_{n-2} \\ L_1 + L_n & L_2 + L_1 & \cdots & L_{n-1} + L_{n-2} & L_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} L_n & L_{n-1} & \cdots & L_2 & L_1 \\ L_1 & L_n + L_1 & \cdots & L_3 & L_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ L_{n-2} & L_{n-3} + L_{n-2} & \cdots & L_n + L_1 & L_{n-1} \\ L_{n-1} & L_{n-2} + L_{n-1} & \cdots & L_1 + L_2 & L_n + L_1 \end{pmatrix} \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$= B\Gamma.$$

Thus, we have

$$\det C = \det B \det \Gamma$$
,

which matrix $B = \text{RFPLRcircfr}(L_n, L_{n-1}, ..., L_1)$ and its determinant can be obtained from Theorem 5,

$$\det B = \frac{(2 - L_n)^n + (L_n - 2)(g_4^{n-1} + h_4^{n-1}) - (g_4^n + h_4^n) + L_{n-1}}{(-1)^n - L_{n-2} + 1},$$

where

$$g_4 = \frac{L_{n+1} - 3 + \sqrt{(L_{n+1} - 3)^2 + 4(L_n - 2)}}{2},$$

$$h_4 = \frac{L_{n+1} - 3 - \sqrt{(L_{n+1} - 3)^2 + 4(L_n - 2)}}{2}.$$

In addition,

$$\det \Gamma = (-1)^{\frac{n(n-1)}{2}}.$$

So the determinant of matrix *C* is

 $\det C = \det B \det \Gamma$

$$=\frac{(2-L_n)^n+(L_n-2)(g_4^{n-1}+h_4^{n-1})-(g_4^n+h_4^n)+L_{n-1}}{(-1)^n-L_{n-2}+1}(-1)^{\frac{n(n-1)}{2}}.$$

References

- [1] M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 37(2) (2008), 89-95.
- [2] C. David, Regular representations of semisimple algebras, separable field extensions, group characters, generalized circulants, and generalized cyclic codes, Linear Algebra and its Appl. 218 (1995), 147-183.
- [3] D. Jaiswal, On determinants involving generalized Fibonacci numbers, Fibonacci Quart. 7 (1969), 319-330.
- [4] Z. L. Jiang and Z. B. Xu, Efficient algorithm for finding the inverse and group inverse of FLS *r*-circulant matrix, J. Appl. Math. Comput. 18 (2005), 45-57.
- [5] Z. L. Jiang and Z. W. Jiang, On the norms of RFPLR circulant matrices with the Fibonacci and Lucas numbers, SECT2012, (to appear).
- [6] Z. L. Jiang and Z. X. Zhou, Circulant Matrices, Chengdu Technology University Publishing Company, Chengdu, 1999.
- [7] G. Y. Lee, J. S. Kim and S. G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 40 (2002), 203-211.
- [8] D. Lin, Fibonacci-Lucas quasi-cyclic matrices, Fibonacci Quart. 40 (2002), 280-286.
- [9] D. Lind, A Fibonacci circulant, Fibonacci Quart. 8 (1970), 449-455.
- [10] R. Melham, Sums involving Fibonacci and Pell numbers, Port. Math. 56 (1999), 309-317.
- [11] M. Miladinović and P. Stanimirović, Singular case of generalized Fibonacci and Lucas matrices, J. Korean Math. Soc. 48 (2011), 33-48.

- [12] S. Shen, J. Cen and Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput. 217 (2011), 9790-9797.
- [13] P. Stanimirović, J. Nikolov and I. Stanimiroviá, A generalization of Fibonacci and Lucas matrices, Discrete Appl. Math. 156 (2008), 2606-2619.
- [14] Z. P. Tian, Fast algorithms for solving the inverse problem of Ax = b in the class of the ULS *r*-circulant (retrocirculant) matrices, Int. J. Algebra 5 (2011), 9403-9411.
- [15] Z. Zhang and Y. Zhang, The Lucas matrix and some combinatorial identities, Indian J. Pure Appl. Math. 38 (2007), 457-465.