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Abstract 

Prediction intervals have many applications in economics, business, 
health studies, engineering, science and social science. In this article, 
we study confidence intervals for prediction intervals of the future 
value of a random variable based on quantile estimations. There are 
theoretical difficulties in this problem with few methods in the 
literature. We propose three methods based on weight functions 
combined with bootstrapping. The results of Monte Carlo simulations 
confirm that the proposed methods improve the efficiencies in mean 
square error and probability coverage relative to the existing methods. 
We also study a real world example which shows the improved 
efficiencies of the proposed methods. 
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1. Introduction 

A quantile estimator from a random sample is usually used to estimate 
the corresponding population quantile. It also plays a role in estimating the 
end points of an interval for predicting the value of another, independent, 
random variable drawn from the sampled population. Formally, we consider 
a random variable X with c.d.f. ( ) ,, ℜ∈xxF  which is continuous and 

unknown. Thus we are interested in a future value of X being within an 
interval [ ]dc,  with probability ( ) .10,1 <γ<γ−  

Definition 1.1. An interval [ ]dc,  (constants ), ℜ∈dc  is a true 

( ) %1001 γ−  prediction interval of a real random variable X if 

 ( ) .10,1 <γ<γ−=≤≤ dXcP  (1.1) 

A simple prediction interval can be created by using the 1q th and 

( )21 q− th population quantiles 21 1, qq xx −  for the end points c and d, 

respectively, so that 

( ) 10,121 1 <γ<γ−=≤≤ −qq xXxP  

where .2,1,0,,, 211 21 =γ<<γ=+== − iqqqxdxc iqq  

It is important to estimate the prediction interval given a random sample. 
By letting ,221 γ== qq  we can estimate the true ( ) %1001 γ−  prediction 

interval by using point estimators 2ˆγx  and 21ˆ γ−x  of the population quantiles 

2γx  and 21 γ−x  from a random sample nXXX ...,,, 21  of size n from ( ).xF  

Then [ ]212 ˆ,ˆ γ−γ xx  is a point estimator for the true prediction interval. 

There are a number of different approaches on the study of prediction 
intervals in the literatures. For example, exact nonparametric prediction 
intervals for the future value of a random variable were given in David and 
Nagaraja [2], Volterman and Balakrishnan [21]. Hall and Maiti [7] 
constructed bias-corrected estimators of mean squared error for computing 
prediction regions. Kim et al. [12] also used the bias-corrected bootstrap for 
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interval forecasting on time series. Nolan and Ravishanker [14] proposed a 
method using simultaneous prediction intervals for time series. A number of 
authors studied the applications of prediction intervals. For example, Brodin 
and Rootzėn [1] used univariate and bivariate generalized Pareto distribution 
models to predict extreme wind storm losses. Vidoni [20] used a predictive 
likelihood method to predict future River Nidd annual maxima. 

In this article, we are further interested in obtaining a confidence interval 
for the true prediction interval. For example, based on the current sample, we 
would like to be 95% ( )( )%1001 α−  certain to predict that the quality of 

products by a manufacturer will be 90% ( )( )%1001 γ−  within standard 

limits. This notion can be applied to science, social science, engineering, 
economics, health studies and business. The example in Section 5 of this 
paper concludes statistically that we are 90% certain to predict that 80% of 
the IQ scores of children of age five whose mothers are in a non-depressed 
state in the UK are between 86.5 and 137.5. Formally, we define a 
confidence interval for a true prediction interval as follows. 

Definition 1.2. An interval estimator [ ]ba,  (random variables ), ℜ∈ba  

is a ( ) %1001 α−  confidence interval for the ( ) %1001 γ−  true prediction 

interval of a random variable X if 

 ( ) .10,10,1& 212 <α<<γ<α−=≤≤ γ−γ bxxaP  (1.2) 

Our goal is to find a good estimator [ ]ba,  given a random sample. This 

problem is obviously related to computing confidence intervals for quantiles. 
Some existing methods for quantile estimations have been reviewed by 
Hutson and Ernst [11], Ernst and Hutson [6], and Wilcox [18]. While these 
methods perform reasonably well, they cannot be directly applied to 
relatively extreme quantiles, which is our main interest, due to some 
theoretical difficulties. In fact, the discussions about the formation of 
confidence intervals in the literature mostly use normal approximations for 
the sampling distributions of the estimates. This approximation, however, 
does not work well when the sample size is relatively small. On the other 
hand, if we make the additional assumption that F is known, there are various 
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semi-parametric bias-reduction methods that provide estimations with good 
asymptotic properties. For some recent work in this direction, see e.g., 
Diebolt et al. [3], where the asymptotic normality of the extreme quantile of a 
Weibull tail-distribution was established and El Methni et al. [5], where 
similar results for Pareto-type and Weibull tail-distributions were derived. 

There are few methods in the literature on confidence intervals for 
prediction intervals, which were first considered in Wilcox [19], where 
method L was introduced to derive such confidence intervals. The approach 
is based on taking a simple variation of (1.2) by choosing 

,ˆˆ 212 σ−= α−γ zxa  

,ˆˆ 2121 σ+= α−γ− zxb  (1.3) 

where 2ˆγx  and 21ˆ γ−x  are point estimators of 2γx  and ,21 γ−x  respectively, 

σ̂  is an estimator of the standard error of the quantile estimator ,ˆ 2γx  and 

21 α−z  is the ( )21 α− th quantile of the standard normal distribution. 

Clearly, the success of this approach depends on the choices of the estimators 
for the quantiles and their standard errors, and how well the normality 
assumption holds. 

The main objective of this article is to improve method L by considering 
other choices of the two types of estimators in (1.3). First, we attempt to 
improve the quantile estimation. Let ( ) ( ) ( )nXXX ≤≤≤ 21  denote the 

order statistics of a random sample nXXX ...,,, 21  from ( ).xF  It is well 

known that the simplest pth quantile estimator is the pth sample quantile. 

Definition 1.3. The pth sample quantile is given by 

 [ ]( ) ,10,5.0 <<= + pXSQ npp  (1.4) 

where [ ]5.0+np  denotes the integer part of ( ).5.0+np  

Examples of sample quantiles include the median and quartiles. Based on 
(1.4), the interquartile range (IQR) can be written as 

 .25.075.0 SQSQIQR −=  (1.5) 
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The IQR is a statistic that measures the spread of the distribution about the 
median. The variability of individual order statistics is a weakness of the 
sample quantiles in (1.4). To reduce this variability, we consider using                
L-statistics which are linear combinations of the order statistics, instead of 
the sample quantile .pSQ  We also consider weighted methods which can 

improve the estimations of extreme quantiles. 

Second, we attempt to improve the estimation of the standard error of the 
quantile estimators. Method L in Wilcox [19] is based on an adaptive kernel 
density estimator for estimating the standard error of the quantile estimator. It 
is a useful method that provides satisfactory estimates, even when the sample 
size is small. The main weakness of this approach is that there are still 
theoretical difficulties for relatively extreme quantiles, in which case the 
probability coverages perform poorly. To address this problem, we consider 
the application of Huang and Brill [10]’s level crossing empirical distribution 
function (e.d.f.), and the corresponding weighted kernel density estimator. 
This estimator is shown to be more efficient on the tail of the distribution 
relative to the regular kernel density estimator and it is particularly efficient 
in the small sample case. We also use bootstrapping methods to estimate the 
standard errors for L-statistics quantile estimators. Based on these ideas, we 
propose weighted estimation methods combined with bootstrapping to 
improve the estimation of the standard error of quantile estimators. 

In Section 2, we review method L for confidence intervals for prediction 
intervals. In Section 3, we list some quantile estimation methods, review the 
weighted level crossing kernel density estimator, and propose three new 
estimation methods for obtaining confidence intervals for prediction 
intervals. In Section 4, we describe the Monte Carlo simulation methods, and 
show the numerical results of the simulation efficiencies of these methods. 
The simulation results show that the efficiencies of our proposed methods 
relative to method L are greater than one in most situations. Finally, in 
Section 5, we apply these methods to a real world example, in which we 
analyze a data set from the IQ scores of children from non-depressed 
mothers. We found that the new methods give better predictions than method 
L. 
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2. Review of Method L 

Typical approaches for computing confidence intervals of the form (1.2) 
break down when extreme quantiles are involved. For example, if we 
consider ( ( ) ( ) )ji XX ,  as a confidence interval for the pth quantile, it is well 

known that the exact probability coverage of this interval is unlikely to reach 
a level close to α−1  even for ,05.0=α  unless the sample size is very 
large. To address this issue, Wilcox proposed method L, a simple approach 
that is based on (1.4) with the choice of sample quantiles as the estimators         
for the true quantiles, i.e., 22ˆ γγ = SQx  and .ˆ 2121 γ−γ− = SQx  More 

importantly, the confidence interval involves estimating the standard error of 
the sample quantiles and the use of a normal approximation. This extra 
flexibility allows one to form a confidence interval with high enough 
probability coverages. 

To estimate the corresponding standard error ,σ̂  we consider a classic 
expression (see e.g. Wilcox [18]) for the asymptotic squared standard error of 
the sample quantile ,pSQ  given by 

 ( )
[ ( )]

,10,1
2

2 <<−≈σ p
xfn
pp

p
p  (2.1) 

where ( )pxf  is the p.d.f. of X at the true quantile .px  An estimator of ( )pxf  

was derived based on an adaptive kernel density estimator (Silverman [17]) 
of the form 

 ( ) { ( )}∑
=

−− −λ
λ

=
n

i
ii

i
XthKhntf

1

11 ,11ˆ  (2.2) 

where K is the Epanechnikov kernel. The bandwidth is given by 

 ( ),34.1,min06.1
51 IQRs

n
h =  (2.3) 

where IQR is given in (1.5), s is the sample standard deviation of 
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,...,,1 nXX  and nλλ ...,,1  are some adaptive constants (see Wilcox [19] for 

details). This leads to the following ( ) %1001 α−  confidence interval of the 

( ) %1001 γ−  prediction interval of a random variable X, ,10 <γ<  

:10 <α<  

 ( ),, 2121212 LL szSQszSQ α−γ−α−γ +−  (2.4) 

where pSQ  is defined in (1.4), and 

 
( )

2 2
2 2

2

12 2 .Ls
n f SQ

γ
γ

γ γ⎛ ⎞−⎜ ⎟
⎝ ⎠= σ =  (2.5) 

Wilcox [19] compared method L with two other proposed methods and 
indicated that method L is the only satisfactory method when the sample size 
is 30. Clearly, the efficiency of the method depends heavily on the choice of 
the quantile estimators and methods of estimating their standard errors. We 
will investigate whether other estimation methods will improve the efficiency 
of this approach. 

3. New Estimation Methods 

In this section, we propose three new methods to improve method L, 
based on the applications of other quantile estimators and estimation methods 
of standard errors. 

3.1. Method weighted L 

Our first approach to improve method L is to consider another weighted 
kernel density estimator instead of the adaptive kernel density estimator in 
(2.2). Since the performance of method L is only satisfactory for relatively 
extreme quantiles, we consider the application of level crossing kernel 
density estimators (Huang and Brill [10]). Formally, we first define the level 
crossing e.d.f. as 

 ( )( ) ( )( ( ) )∑
=

∞−=
n

i
niixWn wXIxF

1
,, ,  (3.1) 
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where AI  is the indicator function of set A and 

( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

−
−−

−=
−

=
.,1when,

1
212

1

,1...,,3,2when,
1

1

,
ni

nn
n

ni
nn

w ni  (3.2) 

Note that the level crossing e.d.f. puts less weight on the smallest and largest 
data points. Huang and Brill [10] showed that this estimator has better 
efficiency than the classical e.d.f., especially in the tail of the distribution 
when the sample size is small. This motivates the use of the level crossing 
kernel density estimator with a normal kernel, defined as 

 ( ) ( )
,

1

1 ,
n

i
W i n

i

x X
f x wh h

=

−⎛ ⎞
= φ⎜ ⎟

⎝ ⎠
∑  (3.3) 

where niw ,  is given in (3.2), φ is the density of a standard normal distribution 

and we choose the bandwidth h as in (2.3) for simplicity. Combining with 
(2.1), we use the following estimator for the squared standard error: 

 ( )
( )

2
2

2

12 2 .L W
W

s
n f SQγ

γ γ⎛ ⎞−⎜ ⎟
⎝ ⎠=  (3.4) 

These results in the following ( ) %1001 α−  confidence interval for the 

( ) %1001 γ−  prediction interval of a random variable X, ,10 <γ<  

:10 <α<  

 ( ( ) ( ) ),, 2121212 WLWL szSQszSQ α−γ−α−γ +−  (3.5) 

where pSQ  is given in (1.4). 

3.2. Method HD-boot 

Our second approach is based on the use of another quantile estimator 
instead of the sample quantile pSQ  in (1.4). Due to the variability of 
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individual order statistics, it is not surprising that method L, which depends 
heavily on the sample quantiles, does not perform very well when the sample 
size is small. An alternative approach is to consider L-statistics of the form 

 ( )∑
=

=
n

i
iin XcT

1
,  (3.6) 

for some constants ....,,1 ncc  In particular, we consider a non-kernel based 

L-quantile estimator introduced by Harrell and Davis [8]. 

Definition 3.1. The pHD  estimator for px  is defined as 

( ) ( )( )
( ) ( )( )

( ) ( )∑ ∫
= −

−+−+
⎥⎦
⎤

⎢⎣
⎡ −

++β
=

n

i
i

ni

ni
qnpn

p XdyyyqnpnHD
1 1

1111 ,11,1
1  

 (3.7) 

where ,10 << p  ,1 pq −=  and ( )ts,β  is the beta function with parameters 

s, t. 

Sheather and Marron [16] indicated that pHD  performs as well as other 

L-quantile estimators when the sample size is large, with good asymptotic 
properties. Furthermore, it avoids the problem of selections of kernels or 
bandwidths in other kernel based estimators, e.g., Parzen [15]. In this 
approach, we use pHD  as the quantile estimator. 

Due to the complexity of ,pHD  it is not straightforward to obtain a 

close-form estimate for the standard error of .pHD  Instead, we will estimate 

the standard error using the bootstrap method (Efron and Tibshirani [4]). 

Definition 3.2. Let ∗∗
nXX ...,,1  be a bootstrap sample obtained by 

resampling with replacement from n observations ....,,1 nXX  Let px
∗

 be 

the estimate of the pth quantile based on this bootstrap sample. Repeat this 

procedure B times, yielding estimates 1 , ..., .p pBx x
∗ ∗

 Then a bootstrap 
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estimate of the squared standard error of px  is 

 ( )22

1

1 , 0 1,1

B

boot pi p
i

s x x pB
∗ ∗

=

= − < <
− ∑  (3.8) 

where 1
1 .B

p piix xB
∗∗

== ∑  

The resulting ( ) %1001 α−  confidence interval for the ( ) %1001 γ−  

prediction interval of a random variable X, ,10,10 <γ<<α<  based on 

pHD  in (3.7) is given by 

 ( ( ) ( ) ),, 2121212 HDbootHDboot szHDszHD α−γ−α−γ +−  (3.9) 

where 

 ( ) ( )22

1

1 , 2,1 HD HD

B

pi pboot HD
i

s x x pB
∗ ∗

=

= − = γ
− ∑  (3.10) 

is the estimate of the squared standard error of pHD  in (3.7). 

3.3. Method weighted HD-boot 

Our third approach is to combine the first two approaches by using the 
weighted e.d.f. in (3.1) and pHD  in (3.7). The key observation is that pHD  

can be written as 

( ) ( )( ) ( ) ( ) ( )( )∫ −+−+− −×
++β

=
1

0
11111 ,11,1

1 dyyyyFqnpnHD qnpn
np  

 (3.11) 
where 

( ) ( ]( )∑
=

∞− ℜ∈=
n

i
ixn xXInxF

1
, ,,1  

is the classical e.d.f.. While the classical e.d.f. puts equal weights on the ith 
order statistic ( ),iX  the form of (3.11) allows us to easily generalize pHD  to 
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a wider class of estimators by using weighted e.d.f. in place of .nF  We 

follow the approach in Huang [9] by replacing nF  with the level crossing 

e.d.f. ( )WnF  defined in (3.1), which leads to the following level crossing pth 

quantile estimator: 

( ) ( ) ( ){ } ( )( ) ( ) ( )( )∫ −+++− −
++β

=
1

0
11111 11,1

1 dyyyyFqnpnHD qnpn
WnWp  

 
( ) ( )( )

( ) ( ){ } ( )∑ ∫
=

−+++

⎥
⎦

⎤
⎢
⎣

⎡
++β

−=
−

n

i
i

p

p

qnpn
Xdyqnpn

yyni

ni1

1111
,1,1

1,

,1
 (3.12) 

where ∑
=

==<<
i

j
njni niwpp

1
,, ,...,,1,,10  njw ,  is given in (3.1), and 

.0,0 ≡np  In that work, it was also shown that from both the theoretical and 

computational point of view, ( )WpHD  is more efficient than pHD  in (3.7) in 

many cases. As in method HD-boot, we estimate the standard error of 

( )WpHD  by the bootstrap method. The resulting ( ) %1001 α−  confidence 

interval for the ( ) %1001 γ−  prediction interval of a random variable X, 

,10,10 <γ<<α<  is given by 

( ( ) ( ) ( ) ( ) ( ) ),, 2121212 WW HDbootWHDbootW szHDszHD α−γ−α−γ +−  (3.13) 

where 

( ) ( ( ) ( ) )
22

1

1 , 2,1 HD W HD WW

B

pi pboot HD
i

s x x pB
∗ ∗

=

= − = γ
− ∑  (3.14) 

is the squared standard error of ( )WpHD  in (3.12). 

4. Simulation Studies 

4.1. Simulation efficiencies of the new estimators 

The simulation of estimating the confidence intervals for prediction 
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intervals is based on four cases of g-and-h distributions, which were 
considered in Wilcox [19]: 

Definition 4.1. A random variable X has the g-and-h distribution if 

 
( ) ( )

( )⎪⎩

⎪
⎨

⎧

=

>−

=

,0,2exp

;0,2exp1exp

2

2

ghZZ

ghZg
gZ

X  (4.1) 

where Z is a standard normal random variable and g, h are nonnegative 
parameters that determine the first four moments. 

We choose g and h to have some characteristics of interest: 

  (i) The standard normal distribution ( );0== hg  

 (ii) A symmetric heavy-tailed distributions ( );0,2.0 == gh  

(iii) An asymmetric distribution with relatively light tails ( ,0=h  

);2.0=g  

(iv) An asymmetric distribution with heavy tails ( ).2.0== hg  

For each of the above distributions, we simulate 1000=m  random 
samples of size ,30=n  and use them to compute ( ) %1001 α−  confidence 

intervals for ( ) %1001 γ−  prediction intervals using the four estimation 

methods: L, weighted L, HD-boot, weighted HD-boot, where we choose 
05.0=γ=α  (so that ).025.0=p  For method HD-boot and method 

weighted HD-boot, we choose 100=B  as the number of resampling in 
calculating the bootstrap standard error. For each method, we calculate the 
simulation mean square error (SMSE), which is defined by 

 ( ) ( )∑
=

=
m

i
iestest smsSMSE

1

22 ,1  (4.2) 

where ( )iests  is the standard error of the estimator for the ith sample, 

....,,1 mi =  The root simulation efficiency of SMSE for the proposed 
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methods relative to method L is defined by 

 ( ) ( )
( )

,2

2

proposed

L
proposed

sSMSE
sSMSEsRSEFF =  (4.3) 

where ( )2
proposedsSMSE  and ( )2

LsSMSE  are defined in (4.2). 

We also study the performance of the probability coverages ( )α̂  of the 

confidence intervals based on the bias from the true level ( ).05.0=α  The 

simulation value of the bias of an estimation method is defined by 

 ( ) [ ( ) ]∑
=

α−α=α
m

i
imSBias

1

2,ˆ1ˆ  (4.4) 

where ( )iα̂  is the value for the ith sample, ,...,,1 mi =  and ( )05.0=α  is the 

true value. The simulation efficiency of probability coverages for proposedα̂  

relative to method L is defined by 

 ( ) ( )
( ) .ˆ

ˆˆ
proposed

L
proposed SBias

SBiasSEFF
α

α
=α  (4.5) 

4.2. Simulation results 

The simulation results are shown in Figure A1, Figure A2 and Table A1 
in Appendix A. Figure A1 shows the box-plots of the standard errors of the 
estimators. We can see that method weighted HD-boot has the smallest 
standard error in the four cases while method HD-boot and method weighted 
L also outperform method L. Figure A2 shows the box-plots of .α̂  Again, all 
three proposed methods have smaller biases in probability coverage than the 
method L, with method weighted HD-boot achieving the highest simulation 
efficiency. Table A1 shows the results of the simulation efficiencies defined 
in formulas (4.3) and (4.5) in Section 4.1. All three proposed methods have 
100% (24 out of 24 cases) efficiency greater than 1 relative to method L. 
Overall, the method weighted HD-boot is the most efficient method. All the 
results are computed using C++ programs. 
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5. An Example 

Table 5.1. IQ scores of children of age five whose mothers are in non- 
depressed state 

obs. IQ score obs. IQ score obs. IQ score obs. IQ score 
1 103 11 117 21 123 31 103 
2 124 12 89 22 118 32 118 
3 124 13 125 23 117 33 117 
4 104 14 127 24 141 34 115 
5 92 15 112 25 124 35 119 
6 124 16 48 26 110 36 117 
7 99 17 139 27 98 37 92 
8 92 18 118 28 109 38 101 
9 116 19 106 29 120 39 119 

10 99 20 117 30 127 40 144 

In the real world, there is a wide range of applications of the confidence 
intervals for prediction intervals in science, social science, economics and 
business. A good estimation method gives more accuracy in predicting the 
performance of random variables in the future. We consider a data set listed 
in Table 5.1 from health studies provided by Dr. Channi Kumar, Department 
of Psychiatry, Institute of Psychiatry, London, UK (Kumar [13]). It consists 
of the IQ scores of 40 randomly selected children of age five, whose mothers 
are in a non-depressed state. 

We compare the performance of 90% confidence intervals [ ]( )ba,  for 

the 80% prediction interval for the IQ score, of the four methods. We study 
two different types of efficiencies of the estimation methods relative to 
method L. The first efficiency is based on the estimated standard errors: 

 ( ) .
proposed

L
proposed s

ssEFF =  (5.1) 

The second efficiency is based on the ratio of the lengths of the confidence 
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intervals: 

 ( ) ,∗∗ −

−
=

proposedproposed

LL
proposed

ab
abCIEFF  (5.2) 

where ∗∗ ba ,  are the values based on the proposed new estimation methods. 

The results are summarized in Table 5.2. 

Table 5.2. Efficiencies of the estimation methods for the IQ scores 

Method s EFF(s) Confidence Interval (C.I.) EFF(CI) 

L 5.2505 1 (83.3656, 135.6344) 1 

Weighted L 4.5368 1.1573 (84.5393, 134.4607) 1.0469 

HD-boot, B = 100 4.6924 1.1189 (85.0936, 138.7569) 0.9739 

Weighted HD-boot, B = 100 4.3137 1.2171 (86.5262, 137.5550) 1.0243 

In Table 5.2, all three proposed methods give smaller estimated standard 
errors than that of method L. In terms of the lengths of the confidence 
intervals, both method weighted L and method weighted HD-boot are more 
efficient than method L. In particular, method weighted HD-boot gives the 
smallest standard error and the second shortest confidence interval. The 
corresponding efficiencies of method weighted HD-boot relative to method L 
are ( )( ) 2171.1=− sEFF WbootHD  and ( )( ) .0243.1=− CIEFF WbootHD  

Finally, Figure 5.1 plots the values of the data set and the confidence 
intervals from both method L and method weighted HD-boot. The 90% 
confidence interval for 80% prediction interval from method HD-boot is 
(86.5262, 137.5550). Note that it is both shorter and fits the majority of the 
data better than that from method L. 
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Figure 5.1. The 90% confidence interval for the 80% prediction interval for 
the IQ scores based on 40 children of age five. Blue dash: method L; Red 
solid: method weighted HD-boot; Brown dot: median. 

6. Conclusions 

We proposed three methods of deriving confidence intervals for 
prediction intervals. From the results of the simulation studies all three 
methods show improvements of efficiencies on MSE and probability 
coverages. In the example, we demonstrate that our methods provide shorter 
confidence intervals relative to method L. The idea of using ,pHD  weighted 

e.d.f. and bootstrapping provides more efficient estimation methods to this 
field. 
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Appendix A. Simulation Efficiencies 

 
(a) 0,0 == hg  

 
(b) 2.0,0 == hg  

 
(c) 0,2.0 == hg  

 
(d) 2.0,2.0 == hg  

Figure A1. Box-plot of the standard error for estimating the quantiles 
,, 212 γ−γ xx  ,05.0=γ=α  sample size ;30=n  generated 000,1=m  

times; bootstrapping .100=B  
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(a) 0,0 == hg  

 
(b) 2.0,0 == hg  

 
(c) 0,2.0 == hg  

 
(d) 2.0,2.0 == hg  

Figure A2. Box-plot of estimating α of confidence interval for predict 
interval, ,05.0=γ=α  sample size ;30=n  generated 000,1=m  times; 

bootstrapping .100=B  
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Table A1. Simulation efficiencies of estimating α and standard error of 
confidence interval for predict interval, ,05.0=γ=α  sample size ;30=n  

generated 1000=m  times; bootstrapping 100=B  

True 
Distribution 

g h 

Estimator 
and 

Efficiency 
L 

Weighted
L 

HD-bootstrap
Weighted 

HD-bootstrap 

α̂  0.02186 0.02682 0.04351 0.04547 
α̂  

SEFF ( )α̂  1 1.1864 4.3359 6.2119∗ 

SRMSE 0.66064 0.45691 0.26549 0.26307 
0 0 

Ls  
SEFF 1 1.4459 2.4884 2.5113∗ 

α̂  0.02611 0.03343 0.04484 0.04653 
α̂  

SEFF ( )α̂  1 1.4418 4.6299 6.8847∗ 

SRMSE 1.72593 0.92465 0.64434 0.63007 
0 0.2 

Ls  
SEFF 1 1.8666 2.6786 2.7393∗ 

α̂  0.03466 0.04005 0.05132 0.05364 
α̂  

SEFF ( )α̂  1 1.5417 11.6212∗ 4.2143 

SRMSE 0.37738 0.29159 0.18569 0.18416 
0.2 0 

Ls  
SEFF 1 1.2942 2.0323 2.0492∗ 

α̂  0.03235 0.04006 0.04937 0.05108 
α̂  

SEFF ( )α̂  1 1.7757 28.0159∗ 16.3426 

SRMSE 1.42897 0.76046 0.49012 0.48093 
0.2 0.2 

Ls  
SEFF 1 1.8791 2.9156 2.9713∗ 

Note: (1) SEFF in bold is greater than 1: Proposed methods have 100% (24 out of 24 cases). 

(2) ( ) ( )
( ) ,ˆ

ˆˆ
proposed

L
proposed SBias

SBiasSEFF
α

α
=α  ( ) ( )

( )
.2

2

proposed

L
proposed

sSMSE
sSMSEsSREFF =  

(3) Weighted HD-bootstrap has best efficiencies with “*”: 75% (6 out of 8 cases). 


