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Abstract 

The discussion of convergence is important to justify the validity of 
the ensemble Kalman filter (EnKF) method. In linear system, it is well 
known theoretically that for the very big number of the ensemble 
sizes, the state in EnKF hardly differs with the state in Kalman filter. 
In this paper, we explore numerically such convergence by means of 
the statistical quality control chart methodology. If the random 
samples of the average of the forecast step and the update step in 
EnKF are viewed as production outputs of a process with specific 
characteristics, namely, the forecast step and the update step in 
Kalman filter, we can observe their behaviors around these 
characteristics using x  control chart. We propose the control limits as 
a function of the ensemble size which is calculated based on the 
Chebyshev’s inequality. Simulation study shows that, as the ensemble 
size increases, the band of control limits will be tighter and the 
average of state in the forecast step and the update step of the EnKF 
will be closed to the same Kalman filter quantities. This simulation 
confirms theoretically the convergence of EnKF to Kalman filter. 

Introduction 

The EnKF is a popular sequentially data assimilation technique, since it 
was first introduced by Evensen [3]. EnKF is a Monte Carlo implementation 
of Kalman filter for nonlinear dynamical system where initial state is 
generated using sample, called as ensemble, and the error covariance matrix 
is approximated using empirical covariance matrix. To justify the validity of 
EnKF, it is important to investigate the convergence in probability of the 
EnKF. Asymptotic convergence of the EnKF for a linear dynamic system has 
been discussed by researchers. Butala et al. [1] represented that, for a large 
ensemble, EnKF estimate converge in probability to an optimal linear 
estimation minimum mean square error (LMMSE) is given by Kalman filter 
estimate. The similar results are shown by Tan [11]. If the element of the 
ensembles are viewed as a population of particle filter with additive Gaussian 
white noise and Gaussian initial condition, the probability distribution of 
random samples of the average of the forecast step and the update step will 
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coincide with the Gaussian distributions associated with the Kalman 
predictor and with the Kalman filter [6]. And if the states are viewed as an 

exchangeable random variables bounded in [ ),,1, ∞∈pLp  Mandel et al. [8] 

proved that EnKF converges to the Kalman filter by means of weak 

convergence and pL  convergence. 

Let Nf
kX ,  and Na

kX ,  be the averages of the state in the forecast step 

and the update step in EnKF for kth cycle with ensemble size N, respectively. 

Similar to this, Nf
kP ,  and Na

kP ,  denote the covariance matrices in the 

forecast and the update step in EnKF. Now, let the corresponding quantities 

for these variables in Kalman filter be given by a
k

f
k

f
k XPX ,,  and :a

kP  

f
k

pNf
k XX ⎯⎯ →⎯,    and    ,, f

k
pNf

k PP ⎯⎯ →⎯  (1) 

a
k

pNa
k XX ⎯⎯ →⎯,    and    ., a

k
pNa

k PP ⎯⎯ →⎯  (2) 

The convergence of (1) and (2) in EnKF by means of numerical errors update 
has been discussed in Li and Xiu [7], for a nonlinear operator state, the local 
truncation error was bounded by statistical errors and numerical error of the 
algorithm for the forecast model. 

Many researchers developed methodologies to understand the 
convergence concepts. Bryce et al. [2] advised more work on computer 
methods to explain the convergence concepts in statistics. A visual-minded 
and graphical simulation-based approach was proposed by Lafaye De 
Micheaux and Liquet [5] to describe the concept of convergence in 
probability, convergence almost surely, convergence in law, and convergence 
in rth mean and to explain the convergence in law and Marasinghe et al. [9] 
combined the multiple simulations and high resolution dynamic graphics to 
describe the convergence in law. In this paper, we aim to improve the 
understanding of convergence in probability of the EnKF. We will explore 
this convergence by means of the statistical quality control chart 
methodology. If the random samples of the average of the forecast step and 



N. Fitriyati, S. Darwis, A. Y. Gunawan and A. K. Permadi 154 

the update step in EnKF are viewed as production outputs of a process with 
specific characteristics, namely, the forecast step and the update step in 
Kalman filter, we can analyze their behavior around these characteristics 
using x  control chart. We propose the control limits as a function of the 
ensemble size which is calculated based on the Chebyshev’s inequality. 

Methodology 

In this paper, we consider a linear dynamical system where the state-
space are represented by 

( ) ( )

( ) ( )⎪⎩
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where F and H are state and measurement operators, respectively, kη  and 

kε  are model error and measurement error, respectively. Assume that kη  

and kε  are independent at all lags. Let ∅=0D  and { }00
2

0
1 ...,,, kk YYYD =  

be the set of all measurements that are available until time k and 

( )000 DXEX a |=  is given initial state where error covariance matrix is 

(( ) ( ) ).00000
Taaa XXXXEP −−=  The basic equations in the Kalman filter 

are 

1. In the forecast step 

State: a
k

f
k FXX 1−=  

Covariance matrix: .1 k
Ta

k
f

k QFFPP += −  (4) 

2. In the update step 

State: ( ) ( )f
kkk

f
kkk

a
k HXYKXDXEX −+=|=  

Covariance matrix: ( ) ,f
kk

a
k PHKIP −=  (5) 

where ( ) 1−+= k
Tf

k
Tf

kk RHHPHPK  is the Kalman gain matrix. 



Exploring EnKF Convergence for Linear Dynamical System 155 

The EnKF is a Monte-Carlo implementation of Kalman filter where 
initial ensemble is generated by adding a sequence of independent identically 

distributed (iid) of error models to .0
aX  Let N be the ensemble size. The 

initial state is generated by ,,00,0 i
aa

i XX η+=  ,...,,2,1 Ni =  where 

( ).,0~ 00
aPNη  The ensembles in the forecast step are ,,1,

a
ik

f
ik FXX −=  

the empirical mean vector is Na
k

Nf
k XFX ,

1
,

−=  and the empirical covariance 

matrix is 
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The ensembles in the update step are ( )f
ikkk

f
ik

a
ik HXYKXX ,,, −+=  and 

the empirical mean vector is ( ),,,, Nf
kkk

Nf
k

Na
k XHYKXX −+=  where 

( ) 1,, −+= k
TNf

k
TNf

kk RHPHHPK  is the Kalman gain matrix and =kY  

( ).,0~,0
kkkk RNY εε+  

Without loss of generality, we consider visualizing the convergence of 
the scalar system of F and H in the EnKF. Let M be the replications of 

sampling of size N and Nf
Mk

Nf
k

Nf
k XXX ,

,
,
2,

,
1, ...,,  be the iid random vectors of 

the empirical means of the forecast step in EnKF for kth cycle. From 

equation (1), we have ( ) ,0lim ,
, =ε>−

∞→

f
k
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XXP  for 0,0 >>ε∀ k  

and Mj ...,,2,1=  or equivalent to ( ) .0,
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We use the Frequentist approach (Fisher [4]) to approximate the probability 
f
Np  by the proportion 

{ } ,# ,
, Mxxp f
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jk

f
N ε>−=  
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where { }ε>− f
k

Nf
jk xx ,

,#  are the numbers of successful events that 

.,
, ε>− f

k
Nf
jk xx  Choose ,0>=ε NPc f

k  where c is a multiplier of 

standard deviation of Chebyshev’s inequality. The probability bound of these 
iid random vectors follows the Chebyshev’s inequality: 

( ) .,1
2

,
, R∈<>− c

c
NPcXXP f

k
f

k
Nf
jk  (6) 

Using the same quantity above, in the update step, we have the 
probability bound follows Chebyshev’s inequality: 

( ) R∈<>− c
c

NPcXXP a
k

a
k

Na
jk ,1

2
,
,  (7) 

and the proportion { } .# ,
, Mxxp a

k
Na
jk

a
N ε>−=  Using equation (7), we 

can determine the ensemble size N as a function of ε, i.e., .22 ε= a
kPcN  

Here, we consider the visualization of the convergence of the EnKF 
using statistical quality control charts methodology. The x  control chart is 
widely used to monitor mean of variables that consists of three limits: upper 
line (UL), centre line (CL), and lower line (LL) where ULCLLL <<  [10]. 
We use this chart to visualize the iid random vectors of the average of the 
forecast step and the update step in the EnKF methodology and investigate 
behaviors of these iid random vectors around the corresponding quantity in 
Kalman filter when the ensemble size increases. Based on equations (6) and 

(7), for the control limits in the forecast step, we choose += f
kXUL  

,, f
k

f
k XCLNPc =  and ,NPcXLL f

k
f

k −=  and for the update step, 

we choose ,, a
k

a
k

a
k XCLNPcXUL =+=  and .NPcXLL a

k
a
k −=  

From these control limits, we observe that the band between UL and LL will 
be tighter when the ensemble size increases. Therefore, this visualization 
improves the understanding of the convergence of EnKF. 
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Results and Discussions 

The simulation is purposed to improve the understanding of the 
convergence in probability of EnKF for the forecast step and the update step. 
Consider state space in the random walks model as: 
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 For illustration, we take 10,1 00 == aa PX  and .20
1 =Y  Using Kalman 

filter algorithm, equations (4) to (5), we have ,13
11,11 11 == KP f ,13

24
1 =aX  

.13
22

1 =aP  Consider N initial ensembles in the EnKF algorithm which are 

generated from ( ) ....,,2,1,,~ 00,0 NiPXNX aaa
i =  For fix replications M 

and multiplier of Chebyshev’s inequality c, we vary the size of ensemble N. 
Here, we take 2,100 == cM  and ensemble sizes 100, 500 and 1000. The 

x  chart is shown in Figures 1A (forecast step) and 1B (update step). From 
these figures, we observe that, from 100=M  replications, less than 25% of 
the forecast step and the update step layout of the control limits. Increasing 
the ensemble size N, we find that the band of control limits becomes narrow. 

From these figures, we can also observe that the value of NPc a
k=ε  

will be smaller when the ensemble size increases. The various numbers of the 
ensemble sizes as a function of ε are shown in Table 1. This table shows that 
as ,0→ε  the .∞→N  

Table 1. The ensemble sizes for the various value of ε 

ε 0.1 0.075 0.05 0.01 0.001 

N 677 1.203 2.708 67.692 6.769.231 
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Figure 1. The x  chart for A. The average of the forecast step and B. The 
average of the update step in the 1st cycle in EnKF with three ensemble 
sizes, 100 (upper), 500 (middle), and 1000 (lower). 
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A                                                                 B 

Figure 2. A. The pattern of f
k

Nf
k

f
k XXY −= ,  for the ensemble size 

1=N  to 5000, B. The proportion of f
Np  in [ ] [ ]08.0,08.0, −=εε−  toward 

to 0 as the ensemble size increases. 

     

A                                                              B 

Figure 3. A. The pattern of a
k

Na
k

a
k XXY −= ,  for the ensemble size 1=N  

to 5000, B. The proportion of a
Np  in [ ] [ ]08.0,08.0, −=εε−  toward to 0 as 

the ensemble size increases. 

 Let f
k

Nf
k

Nf
k XXY −= ,,  and a

k
Na

k
Na

k XXY −= ,,  be the difference 

between EnKF and Kalman filter for the forecast step and the update step, 

respectively. Figures 2A and 3A show the pattern of f
kY  and ,a

kY  

respectively. As the ensemble size increases, the difference between EnKF 
and Kalman filter for average of the forecast step and the update step will 
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close to zero. Therefore, the average of forecast step and the update step of 
the EnKF will be closed to the same Kalman filter quantity. The evolution of 

f
np̂  and a

np̂  are shown in Figures 2B and 3B. From these figures, we observe 

that f
np̂  and a

np̂  toward zero when the ensemble size increases. These figures 

confirm the convergence in probability of the forecast step and the update 
step in EnKF as shown in equations (1) and (2), theoretically. 

Conclusions 

Investigation of convergence is important to justify the validity of EnKF 
method. In this paper, we visualize the convergence in probability of the 
EnKF by means of the statistical quality control chart methodology. We 
propose the x  control limits as a function of the ensemble size which is 
calculated based on the Chebyshev’s inequality. Simulation study of random 
walk case showed that the band of control limits becomes narrow when the 
ensemble size increases and the difference between EnKF and Kalman filter 
for average of the forecast step and the update step will close to zero when 
the ensemble size is very big. This visualization improves understanding of 
EnKF convergence. 

References 

 [1] M. D. Butala, J. Yun, Y. Chen, R. A. Frazin and F. Kamalabadi, Asymptotic 
convergence of the ensemble Kalman filter, 15th IEEE International Conference 
on Image Processing, 2008. 

 [2] G. R. Bryce, R. Gould, W. Notz and R. Peck, Curriculum guidelines for bachelor 
of science degrees in statistical science, Amer. Statist. 55 (2001), 7-13. 

 [3] G. Evensen, Sequential data assimilation with nonlinear quasi-geostrophic model 
using Monte Carlo methods to forecast error statistics, Journal of Geophysical 
Research 99(C5) (1994), 10143-10162. 

 [4] R. A. Fisher, Statistical Methods and Scientific Inference, Oliver & Boyd, 
Edinburgh, 1956. 

 [5] Pierre Lafaye De Micheaux and Benoit Liquet, Understanding convergence 
concepts: a visual-minded and graphical simulation-based approach, Amer. Statist. 
63(2) (2009), 173-178. 



N. Fitriyati, S. Darwis, A. Y. Gunawan and A. K. Permadi 162 

 [6] Francois Le Gland, M. Valerie and V. D. Tran, Large sample asymptotics for 
ensemble Kalman filter, Institut National De Recherche En Informatique En 
Automatique, 2009. 

 [7] J. Li and Dongbin Xiu, On numerical properties of the ensemble Kalman filter for 
data assimilation, Comput. Methods Appl. Mech. Engrg. 197 (2008), 3574-3583. 

 [8] J. Mandel, L. Cobb and J. D. Beezley, On the convergence of the ensemble 
Kalman filter, University of Colorado Denver CCM Report 278, January 2009. 
http://www.arXiv.org/abs/0901.2951. 

 [9] M. G. Marasinghe, W. Q. Meeker, D. Cook and T. Shin, Using graphics and 
simulation to teach statistical concepts, Amer. Statist. 50 (1996), 342-351. 

 [10] D. C. Montgomery, Statistical Quality Control, A Modern Introduction, 6th 
Edition, John Wiley & Sons, Inc., 2009. 

 [11] M. Tan, Mathematical properties of ensemble Kalman filter, Dissertation of 
Faculty of The USC Graduate School University of California, 2011. 


