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Abstract

Let Lg denote the Bousfield localization functor with respect to the
second Johnson-Wilson spectrum E(2). A spectrum LoX is called
invertible if there is a spectrum Y such that LoX AY = LQSO. Then
Hovey and Sadofsky showed that every invertible spectrum is a

suspension of the sphere spectrum LZSO if the prime p is greater than

three. At the prime three, Kamiya and the second author constructed an

invertible spectrum P other than a suspension of L2SO, and showed a

possibility of existence of another invertible spectrum @ such that every
invertible spectrum has a form Zk PP A Q" for integers ke Z

and p,qe Z/3, where X AX AX = LZSO for X =P,Q. In this

paper, we consider the homotopy groups of the invertible spectrum @

under the assumption that @ exists, and determine the homotopy
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groups 7.(Q@"? A V(1)) and m (PP A @Y A V(1)) for the Smith-Toda
spectrum V(1). The results make the authors conjecture that @ does not

exist.

1. Introduction

Let S,, for a prime number p and £,, for an integer n > 0 denote the
category of p-local spectra and its full subcategory of E(n)-local spectra,
respectively, and L, : S, — L, be the Bousfield localization functor with

respect to E(n), where E(n) denotes the Johnson-Wilson spectrum with
the homotopy groups m.(E(n)) = E(n), = Z,)[v;, .., ;.15 vil]. We call a
spectrum X € £, invertible if there exists a spectrum Y € £, such that
X AY = L,S°. Hopkins introduced the Picard group Pic(,) = Pic(£,,)
consisting of isomorphism classes of invertible spectra in £, with

multiplication defined by the smash product. Then in [5] (cf. [4]), it is
shown by Hovey and Sadofsky that Pic(y) is a well defined abelian group,
that Pic(,) =Z if n?+n<2p-2 and that Picq) =2 ©® Z/2 at the

prime 2. Note that suspensions Zk LnS0 of the sphere spectrum for

k € Z form a subgroup of PiC(n) isomorphic to Z.

Let E>!'(X) denote the E,-term of the Adams-Novikov spectral
sequence converging to m.(L,X). Then Kamiya and the second author [8]

constructed a monomorphism

¢ : Pic,)/Z ¢ @ E]"71(S%) = T. (1.1)

r>2

2+n<2p—2 and

In particular, it is well known that T =0 if n
T = ES’Z(SO) =7Z/2 if n =1 and p = 2, which imply the above results
of Hovey and Sadofsky’s. At the prime 3, T = E§’4(SO) =7Z/3®7Z/3 by

[13] (cf. [14]). In [6], we determined the structure of the homotopy groups
. (Li@M A V(0)), where V(0) denotes the mod 2 Moore spectrum, and

the question mark complex QM = S0 Ug e Uy, 3 represents the
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generator of Z/2 in Pic(l) at the prime two. In this paper, we study

homotopy groups of an invertible spectrum in L5 at the prime three. Let

a and B denote the generators of E’55’4(SO) =7Z/3®Z/3. In [8], it is

shown that o is pulled back to an invertible spectrum P under the

monomorphism ¢ of (1.1). We determined the homotopy groups
7. (P"P A V(1)) for an integer p € Z/3 in [6]. Here V(1) denotes the first

Smith-Toda spectrum, and X"" denotes the n-fold smash product of X.
In [7], we also determined m.(P"?) for p € Z/3. We further, in this
paper, assume the existence of an invertible spectrum @ such that

¢(@) = B. Then Pic(y) = Z ® Z/3 ® Z/3. Note that @ A @ A @ = LyS° by
the definition corresponding 3B = 0. Since Ey (PP A Q"7 A V(1)) =
E;*(V(1)) for integers p, g € Z/3, we can compute the homotopy groups
(PP A Q" A V(1)) by studying the differentials d5(g, ,) and dg(9, ,)

on the generator g, , € ES’O(PAP AQ" AV (1)) of the E, -term.

We recall [11] (cf. [3], [10]) that the Ey-term E, *(V(1)) is isomorphic,
as K(2), -module, to the tensor product of K(2),[b;9] and the direct sum of

F = K(Z)*{l, th’ hll’ bll},
FCy = K(2),{%, Molas G bila}s

F* = K(2),{& v, 1, b &}

and
F'Cy = K (2), {83, wols, wils, b1188s )
Here K(2), = Z/ 3[v§1] and the bidegrees of generators are given as

[ve | =(0,16), [hol=(@4), |h]=@012), [by]=(2 12),

[or [ =(2.36), |&]=(28). |wol=(316) and [y [=(3 24).
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In order to describe the homotopy groups of the invertible spectrum Q"¢

for q € Z/3, we introduce some modules:

Hy = Zj$0,1,5 9) GZ{U%_zhll} ® G3{Ué+3h10},
Hate = stéo 15 (9) G vy *hinGa} ® Gy o) hiola},
Hy = Zj$0,1,5 02 {0118} @ G5 {vf g}

stso,l,E) © Go{v] by 1800} ® G3{v)™PECs}  for ¢ = 0
Halo =10 0 102308 10ntte} @ Z/3 (0] Pey) (1.2)
O s (o) C2d 01} @ GalofPelp) for g = 1,2

and
J Jj+3 -
- 2ot 003 @G b} forg =0,
a Jp2 V~ (;,J+3 N _
ijo,l,s © G3{(v3bi0), (v3"b1byg) } for ¢ =1, 2,
_ _ e
1,69 = sto,m (9)G5{U§C2}@ G404 °b11Cs ),

1|

* Jj+2 j+6
q¢= sto,1,5 (9)G4{Uz Vol @ Gslvg yy}

I,Co = Zj50,1,5 ©) G4{U£+2W0C2}@ G5{U§+6\V1C2}, (1.3)

in which G, = Z/3[b,o]/(bf%). Note that an element of the form (xbyy)”
is not divisible by b;¢. Put

F,=H,®1,, F,Cs

q H,Co ® 1,85,

Then m,.(Q"? A V(1)) for ¢ = 0, which is m,(LyV(1)), is shown in [11] (cf.
[3], [1]) to be the direct sum of the four subgroups F_O, FyCse, Fy, and

FyCs.
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Theorem 1. At the prime three, the homotopy groups m.(Q"? A V(1))

for q € Z/3 are isomorphic to the direct sum of the subgroups Fq, F,Co,

F, and FyCy.

Note that this theorem shows an isomorphism m,(Q"} A V(1)) =

(@2 A V(1)) while m,(Q"° A V(1)) £ (@' A V(1)). This is the reason

why the authors are skeptical about the existence of @, though the
authors of [2] seem to believe the existence.

Recall [6] the equivalence v% shown by determining the homotopy

groups of P"P A V(1).
Theorem II [6]. There exists a homotopy equivalence vg’ Y48 LoV (1)
= p oA v(Q).

Theorems I and II give rise to the homotopy groups of an invertible
spectrum in the E(2)-local category L9 smashing with the Smith-Toda

spectrum V(1) at the prime 3. Indeed, each invertible spectrum has the
form 3F PP A @9 for integers k € Z and p, q € Z/3.

Corollary III. The homotopy groups m.(P"? A Q" AV(1)) for
D, q € Z/3 are isomorphic to vgpn*(QAq A V(1))

In Sections 2 and 3, we compute the differentials d5 and dg, which
give us the Eg- and Ej3-terms of the Adams-Novikov spectral sequence

converging to the homotopy groups of @7 A V(1), respectively, and show
the Theorem I.

2. The Adams-Novikov Eg-term for the Invertible Spectrum Q"¢

Let E>"(X) denote the E,-term of the Adams-Novikov spectral

sequence for m,(LyX). Then Ey*(X) is an E;’*(SO)-module with the

action induced from the pairing X A S% 5 X. Let @ be an invertible

spectrum such that ¢(Q) = p = vg1Ebjoly € E55’4(SO) for ¢ in (1.1). Then



262

IPPEI ICHIGI and KATSUMI SHIMOMURA

Ey"(@"7) is isomorphic to E;’*(SO) as an E;’*(SO)-module on the

generator g, = gp 4 € ES’O(QAQ) and d5(9,) = qB9, € E§’4(Q’\q) by the

definition of ¢ [8]. We determine the FEg-term converging to the

homotopy groups m.(Q@"? A V(1)) for the Smith-Toda spectrum V(1) and
an integer g =1, 2 by computing d5(gq) with help of the relations of

Ey" @™ AV(Q) = Ey

*(V(1)) given in [11, Proposition 5.9]:

hiohi1 =0, hp€ =0, h1€ =0,

vshiobig = hiibiy, vghiibig = —hiobry,

-1
b11€ = vahyoy1 = Vel 1Yo, b1o€ = —Movo = Vg A1y,

3,9 2 1 -2
vabip = —bi1, bow1 = —va by and by = v bV .

For conveniences,

we write down the chart of the

2.1)

E, -term

E;"(@" AV(1) = E;"(V(1)), which is drawn up to multiple of vy. In

other words, E;"(V(1)) = K(2),® (the chart) for K(2),
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Here each little circle denotes Z/3 generated by the indicated element,
and the dot on the upper left of a circle is Z/3 whose generator is the

multiplication of the element and 5.

Lemma 2.2. The differential ds of the Adams-Novikov spectral

sequence converging to m.(Q@"? A V(1)) acts trivially except for
ds(vyXg,) = v} Vg, if j =3k 3k+1,3k+5 (9),

where the elements X and Yy, for k € Z/3 are given in the following table:

X Y, Y, Y,
1 q&bioCs — v hy1bf + qEbioGe vy 1B + qEbioGe
G 0 — vz "Iy 1boGe vy T 1bfoGe
b | vahuobio + gbi1EbiGe qb118b10G2 — vahuobiy + qby1Eb10Ge
b1 vph1obioGa 0 — UahobinGs
AL 0 — by1Ebfy br1&bio
A 0 — bi1&bioGs br1EbfoGe
¥ — &by Ebi 0
viGe — £bioCs Ebjote 0

Proof. Since the identity map @7 A V(1) = (Q"7 A V(1)) gives a

natural pairing, we have a derivation formula
ds(xy) = ds(x)y + (- 1) xds(y) (2.3)

for x e Ey'(Q"Y) and ye E’g”t/(V(l)) [10, Theorem 2.3.3]. Then the
formula (2.3) and the equations on d5 given in [11, Propositions 8.4, 9.9,

9.10] show us the desired differentials. Note that we set A in [11] to be 1
in this paper.

By Lemma 2.2, we have
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Lemma 2.4. In the Eq-term of the Adams-Novikov spectral sequence
converging to n.(Q"Y AV (1)), the elements (vébfo ) 9q = (056120 +qvéw1C2)gq

for j=0,1,5 and (v%bllblo)Ngq = (v%bllblo + qU£+2WOC2)gq for j=3,4,8

are dj -cycles.
Proof. The lemma follows from the equations
ds(ibfg,) = quy tEboCag,
ds(quiwi8ady) = —qui €L 29,

ds (Uébllblogq) = QU£_1511§5120C29¢1
and
ds(quy*wolady) = —qui b1 EbT L2,
shown in Lemma 2.2.
Lemmas 2.2 and 2.4 show the structure of the E -term of the Adams-
Novikov spectral sequence.
Proposition 2.5. For q =1, 2, the subgroup F, ® FqCZ (resp. Fq* @

F;C2) of the Eq-term ES’*(Q’\Q A V(@) originating from F & Fz; (resp.

F'®F () is Hy® I, ® HyCy ® I,Cy (resp. Hy ® I @ Hyly ® I5Cs).
Here H,, H,Cs, H; and HZCZ are the modules of (1.2), and 1, 1,8y, I;

and I;Cz are modules defined by
I, = ijo s (Q)G{(Uéb120r, v} ?hy1, 04 Phyg, 03 b11byo) 7
I,Co = Z;‘zo s (9)G{05C2, v 2hy1Cg, 0§ PhyoCa, 041185},

* ]+2 ]_1 ]+5 _]+6
Iy = E i=0.1.5 (g)G{UQ Vo, Uy b11&, v57 78, vy vy}
and

x i+2 i1 i+5 i+6
1,Co = Zj20,1,5 (9)G{vé+ Vole, v 011ECs, V] s, v] Pyl },

in which G denotes Z/3[by .
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3. The Adams-Novikov E;;-term for the Invertible Spectrum Q"¢

In this section, we compute the Adams-Novikov differential dg and

determine the Ej3-term for the homotopy groups =.(@"? A V(1)), and
prove Theorem I by showing that the E_ -term is isomorphic to the

E, 3 -term.
Consider the spectra N 1 and M? defined by the cofiber sequences

LyS° » L,S° —» N? . >LyS® and N! - L,N' - M? A s
In [13, Lemma 6.2], it is shown that
dg(v3ho/3v1) = vobio/3v; € E3(M?).
Sending this to E3(S®) under the map (jyj; )., we see that
dg(a1Bg) = B € E5(S°), (3.1)

since oy = hyg, By = (joj1).(va/301) = by and By = (joj1).(v2/3v) by
definition (cf. [9]).

Lemma 3.2. The action of the differential dg of the Adams-Novikov

spectral sequence converging to n.(Q@"? A V(1)) for q =1, 2 is trivial except

for
d9(X]gq) = ngq fOl" ] =0,1,5 (9),

where the elements X]- and Yj are those in the table:

X; Y; X; Y;
AR Vil ) biY vi*3hy oy 03bioCa
v£+7h11 (U§+Sb11b10)~b§0 U§+7h11C2 Ué+3b11bf0C2

vl *oe v 2yobio v] ey v} *yobiolz
vé+sbl 18 U£+6W1bf0 U£+8b11§C2 u£+6\u1b150C2

Here (051)120 ) and (vé+3b11b10 )" are the elements of Lemma 2.4.
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Proof. Let « be one of the generators of I, 1,0y, I; and I;CQ such
that gk # 0. Then by (2.1), we see that « is one of the elements (v%blzo ),
(04 b11b10) "y vhCa,s v Pbi1Cs, v Py, v s, Vi PeCs and v Oy Ly
for j=0,1,5 (9).

Since By = vibjp mod (3, v;), By = by and oy = hyg, the derivation
formula shows dg(vshyobiok) = bk + vahyobiodg(x) by (3.1). Since x and

vahyok are G = Z/3[byy ] -free generators of the Eg -term, we have

dg(v3h1o) = bipk + vEhiodg (k). (3.3)

From the chart of the Ey(= Ej)-term in the previous section, we obtain

the following table:

K C K C
(vdbio) blo» wibloGe, hi1bioGe 3" %b11b10)™ | Buabfo, wobloGas ProbroGe
AR Wobto, hiobio, b11EbiGs v] Oy w1b50, Pn1bro, EbioGs
vy yols | Biiblos WobloGes MuoboGe AT blo, W1bioGa, Mr1bioGe
v{Cs broGe 0] by1C brobi1Go

Here the column name C stands for candidates of vihjodg(k) up to a
multiple of vy. Using the relations in (2.1), the possible non-trivial

differentials are as follows:
do (W31 ) ™) = kvd ~*by1bioCs,
do (V3 11b10)7) = kevd™?bipLs,
do (V] *w) = kyvd bl + kavd M wibl o,
dg (V3 *Ow1) = ksvfby1biy + kevd wobioLa,

do 3 2 woLls) = kyvg b Gy
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and
do(vgCw1Gs) = kevd "2by1b00Go

for scalars k; € Z/3. All generators of the Ej-term on the right hand

sides of the equations die in Eg -term by Lemma 2.2 except for

doW3wola) = kibiple and dg(viwiCy) = kgviby1bipCs-

The relation (33) for x = Cz (I'esp. K = Ugbl]_Cz) is dg(UShl()Cz) = b150C2
(resp. dg(vShiob11Gs) = v3b11b0Cs), and so we replace viwly (resp.
v3y1G2) With v3woLs — kudgbios (resp. vawiCs — kguShigbi1Gs). After

the replacement, we see that dg(k) =0, and so dg(vihiok) = bipk. It

gives rise to the table of the theorem by the relations (2.1).

Therefore, we obtain the Ej5-term of the Adams-Novikov spectral

sequence.

Proposition 3.4. In the homotopy group m.(Q@"? A V(1)) for each

qg =1, 2, the subgroup F_q@ F,Cy (resp. Fq* @ F;Qz) of the Ei5-term

originating from F, ® F,Cy (resp. Fq* &) F;Cz) is H, @E@ H,Co ® 1,89

(resp. H; @I; @H;QZ @ I;CQ). Here the modules H,, H,Cy, H;, H;CQ,

E, 1,Gs, I; and I;Cz are those given in (1.2) and (1.3).

Proof of Theorem I. For ¢ = 0, the theorem is shown in [11] (cf. [3],
[1]). For q =1, 2, Proposition 3.4 says that Efét(QAq AV(@) =0 for
s > 12, and so ElsSt Q" A V(1)) = ESH(Q"Y A V(1)) since the differential
d, =0 for r 213. The homotopy group 7,(@"? A V(1)) for each ke Z

is a Z/3-vector space since @Y A V(1) is a V(0)-module spectrum.

Therefore, there is no extension problem and we obtain the theorem from

Proposition 3.4.
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