ON THE HOMOTOPY GROUPS OF AN INVERTIBLE SPECTRUM IN THE E(2)-LOCAL CATEGORY AT THE PRIME 3

IPPEI ICHIGI

Department of Mathematics, Faculty of Science Kochi University, Kochi, 780-8520, Japan e-mail: 95sm004@math.kochi-u.ac.jp

KATSUMI SHIMOMURA

Department of Mathematics, Faculty of Science Kochi University, Kochi, 780-8520, Japan e-mail: katsumi@math.kochi-u.ac.jp

Abstract

Let L_2 denote the Bousfield localization functor with respect to the second Johnson-Wilson spectrum E(2). A spectrum L_2X is called invertible if there is a spectrum Y such that $L_2X \wedge Y = L_2S^0$. Then Hovey and Sadofsky showed that every invertible spectrum is a suspension of the sphere spectrum L_2S^0 if the prime p is greater than three. At the prime three, Kamiya and the second author constructed an invertible spectrum P other than a suspension of L_2S^0 , and showed a possibility of existence of another invertible spectrum Q such that every invertible spectrum has a form $\sum_{i=1}^{k} P^{i} \wedge Q^{i}$ for integers i=1 and i=1 and

2000 Mathematics Subject Classification: 55Q99.

Key words and phrases: homotopy group, invertible spectrum, Johnson-Wilson spectrum.

Received September 24, 2003

© 2003 Pushpa Publishing House

groups $\pi_*(Q^{\wedge q} \wedge V(1))$ and $\pi_*(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1))$ for the Smith-Toda spectrum V(1). The results make the authors conjecture that Q does not exist.

1. Introduction

Let \mathcal{S}_p for a prime number p and \mathcal{L}_n for an integer $n \geq 0$ denote the category of p-local spectra and its full subcategory of E(n)-local spectra, respectively, and $L_n: \mathcal{S}_p \to \mathcal{L}_n$ be the Bousfield localization functor with respect to E(n), where E(n) denotes the Johnson-Wilson spectrum with the homotopy groups $\pi_*(E(n)) = E(n)_* = \mathbf{Z}_{(p)}[v_1, ..., v_{n-1}, v_n^{\pm 1}]$. We call a spectrum $X \in \mathcal{L}_n$ invertible if there exists a spectrum $Y \in \mathcal{L}_n$ such that $X \wedge Y = L_n S^0$. Hopkins introduced the Picard group $\operatorname{Pic}_{(n)} = \operatorname{Pic}(\mathcal{L}_n)$ consisting of isomorphism classes of invertible spectra in \mathcal{L}_n with multiplication defined by the smash product. Then in [5] (cf. [4]), it is shown by Hovey and Sadofsky that $\operatorname{Pic}_{(n)}$ is a well defined abelian group, that $\operatorname{Pic}_{(n)} \cong \mathbf{Z}$ if $n^2 + n < 2p - 2$ and that $\operatorname{Pic}_{(1)} \cong \mathbf{Z} \oplus \mathbf{Z}/2$ at the prime 2. Note that suspensions $\Sigma^k L_n S^0$ of the sphere spectrum for $k \in \mathbf{Z}$ form a subgroup of $\operatorname{Pic}_{(n)}$ isomorphic to \mathbf{Z} .

Let $E_r^{s,t}(X)$ denote the E_r -term of the Adams-Novikov spectral sequence converging to $\pi_*(L_nX)$. Then Kamiya and the second author [8] constructed a monomorphism

$$\varphi : \operatorname{Pic}_{(n)}/\mathbf{Z} \subset \bigoplus_{r \ge 2} E_r^{r,r-1}(S^0) = T. \tag{1.1}$$

In particular, it is well known that T=0 if $n^2+n<2p-2$ and $T=E_3^{3,2}(S^0)=\mathbf{Z}/2$ if n=1 and p=2, which imply the above results of Hovey and Sadofsky's. At the prime 3, $T=E_5^{5,4}(S^0)=\mathbf{Z}/3\oplus\mathbf{Z}/3$ by [13] (cf. [14]). In [6], we determined the structure of the homotopy groups $\pi_*(L_1QM\wedge V(0))$, where V(0) denotes the mod 2 Moore spectrum, and the question mark complex $QM=S^0\cup_2 e^1\cup_\eta e^3$ represents the

generator of $\mathbf{Z}/2$ in $\operatorname{Pic}_{(1)}$ at the prime two. In this paper, we study homotopy groups of an invertible spectrum in \mathcal{L}_2 at the prime three. Let α and β denote the generators of $E_5^{5,\,4}(S^0)=\mathbf{Z}/3\oplus\mathbf{Z}/3$. In [8], it is shown that α is pulled back to an invertible spectrum P under the monomorphism φ of (1.1). We determined the homotopy groups $\pi_*(P^{\wedge p} \wedge V(1))$ for an integer $p \in \mathbf{Z}/3$ in [6]. Here V(1) denotes the first Smith-Toda spectrum, and $X^{\wedge n}$ denotes the n-fold smash product of X. In [7], we also determined $\pi_*(P^{\wedge p})$ for $p \in \mathbf{Z}/3$. We further, in this paper, assume the existence of an invertible spectrum Q such that $\varphi(Q) = \beta$. Then $\operatorname{Pic}_{(2)} \cong \mathbf{Z} \oplus \mathbf{Z}/3 \oplus \mathbf{Z}/3$. Note that $Q \wedge Q \wedge Q = L_2 S^0$ by the definition corresponding $3\beta = 0$. Since $E_2^{*,*}(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1)) = E_2^{*,*}(V(1))$ for integers $p, q \in \mathbf{Z}/3$, we can compute the homotopy groups $\pi_*(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1))$ by studying the differentials $d_5(g_{p,q})$ and $d_9(g_{p,q})$ on the generator $g_{p,q} \in E_2^{0,0}(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1))$ of the E_2 -term.

We recall [11] (cf. [3], [10]) that the E_2 -term $E_2^{*,*}(V(1))$ is isomorphic, as $K(2)_*$ -module, to the tensor product of $K(2)_*[b_{10}]$ and the direct sum of

$$\begin{split} \widetilde{F} &= K(2)_* \{1, \, h_{10}, \, h_{11}, \, b_{11} \}, \\ \widetilde{F\zeta_2} &= K(2)_* \{\zeta_2, \, h_{10}\zeta_2, \, h_{11}\zeta_2, \, b_{11}\zeta_2 \}, \\ \widetilde{F^*} &= K(2)_* \{\xi, \, \psi_0, \, \psi_1, \, b_{11}\xi \} \end{split}$$

and

$$\widetilde{F^*\zeta_2} = K(2)_* \{\xi\zeta_2, \psi_0\zeta_2, \psi_1\zeta_2, b_{11}\xi\zeta_2\}.$$

Here $K(2)_* = \mathbf{Z}/3[v_2^{\pm 1}]$ and the bidegrees of generators are given as

$$\parallel v_2 \parallel = (0,\,16), \quad \parallel h_{10} \parallel = (1,\,4), \quad \parallel h_{11} \parallel = (1,\,12), \quad \parallel b_{10} \parallel = (2,\,12),$$

$$\parallel b_{11} \parallel = (2, 36), \parallel \xi \parallel = (2, 8), \parallel \psi_0 \parallel = (3, 16) \text{ and } \parallel \psi_1 \parallel = (3, 24).$$

In order to describe the homotopy groups of the invertible spectrum $Q^{\wedge q}$ for $q \in \mathbb{Z}/3$, we introduce some modules:

$$\begin{split} H_{q} &= \sum_{j \neq 0, 1, 5 \ (9)} G_{2}\{v_{2}^{j-2}h_{11}\} \oplus G_{3}\{v_{2}^{j+3}h_{10}\}, \\ H_{q}\zeta_{2} &= \sum_{j \neq 0, 1, 5 \ (9)} G_{2}\{v_{2}^{j-2}h_{11}\zeta_{2}\} \oplus G_{3}\{v_{2}^{j+3}h_{10}\zeta_{2}\}, \\ H_{q}^{*} &= \sum_{j \neq 0, 1, 5 \ (9)} G_{2}\{v_{2}^{j-1}b_{11}\xi\} \oplus G_{3}\{v_{2}^{j+5}\xi\} \\ H_{q}^{*}\zeta_{2} &= \begin{cases} \sum_{j \neq 0, 1, 5 \ (9)} G_{2}\{v_{2}^{j-1}b_{11}\xi\zeta_{2}\} \oplus G_{3}\{v_{2}^{j+5}\xi\zeta_{2}\} & \text{for } q = 0 \\ \sum_{j \equiv 3, 4, 8 \ (9)} \mathbf{Z}/3\{v_{2}^{j-1}b_{11}\xi\zeta_{2}\} \oplus \mathbf{Z}/3\{v_{2}^{j+5}\xi\zeta_{2}\} & \text{for } q = 1, 2 \end{cases} \end{split}$$
 (1.2)

and

$$\overline{I_{q}} = \begin{cases}
\sum_{j = 0, 1, 5} {}_{(9)} G_{5} \{v_{2}^{j}\} \oplus G_{4} \{v_{2}^{j+3}b_{11}\} & \text{for } q = 0, \\
\sum_{j = 0, 1, 5} {}_{(9)} G_{3} \{(v_{2}^{j}b_{10}^{2})^{\sim}, (v_{2}^{j+3}b_{11}b_{10})^{\sim}\} & \text{for } q = 1, 2,
\end{cases}$$

$$\overline{I_{q}\zeta_{2}} = \sum_{j = 0, 1, 5} {}_{(9)} G_{5} \{v_{2}^{j}\zeta_{2}\} \oplus G_{4} \{v_{2}^{j+3}b_{11}\zeta_{2}\},$$

$$\overline{I_{q}^{*}} = \sum_{j = 0, 1, 5} {}_{(9)} G_{4} \{v_{2}^{j+2}\psi_{0}\} \oplus G_{5} \{v_{2}^{j+6}\psi_{1}\}$$

$$\overline{I_{q}^{*}\zeta_{2}} = \sum_{j = 0, 1, 5} {}_{(9)} G_{4} \{v_{2}^{j+2}\psi_{0}\zeta_{2}\} \oplus G_{5} \{v_{2}^{j+6}\psi_{1}\zeta_{2}\},$$

$$(1.3)$$

in which $G_k = \mathbf{Z}/3[b_{10}]/(b_{10}^k)$. Note that an element of the form $(xb_{10})^{\sim}$ is not divisible by b_{10} . Put

$$\begin{split} \overline{F_q} &= H_q \oplus \overline{I_q} \,, & \overline{F_q \zeta_2} &= H_q \zeta_2 \oplus \overline{I_q \zeta_2} \,, \\ \overline{F_q^*} &= H_q^* \oplus \overline{I_q^*} \quad \text{and} \quad \overline{F_q^* \zeta_2} &= H_q^* \zeta_2 \oplus \overline{I_q^* \zeta_2} \,. \end{split}$$

Then $\pi_*(Q^{\wedge q} \wedge V(1))$ for q=0, which is $\pi_*(L_2V(1))$, is shown in [11] (cf. [3], [1]) to be the direct sum of the four subgroups $\overline{F_0}$, $\overline{F_0\zeta_2}$, $\overline{F_0^*}$, and $\overline{F_0^*\zeta_2}$.

Theorem I. At the prime three, the homotopy groups $\pi_*(Q^{\wedge q} \wedge V(1))$ for $q \in \mathbb{Z}/3$ are isomorphic to the direct sum of the subgroups $\overline{F_q}$, $\overline{F_q\zeta_2}$, $\overline{F_q^*}$ and $\overline{F_q^*\zeta_2}$.

Note that this theorem shows an isomorphism $\pi_*(Q^{\wedge 1} \wedge V(1)) \cong \pi_*(Q^{\wedge 2} \wedge V(1))$ while $\pi_*(Q^{\wedge 0} \wedge V(1)) \not\equiv \pi_*(Q^{\wedge 1} \wedge V(1))$. This is the reason why the authors are skeptical about the existence of Q, though the authors of [2] seem to believe the existence.

Recall [6] the equivalence v_2^3 shown by determining the homotopy groups of $P^{\wedge p} \wedge V(1)$.

Theorem II [6]. There exists a homotopy equivalence $v_2^3: \Sigma^{48} L_2V(1)$ $\simeq P^{\wedge 1} \wedge V(1)$.

Theorems I and II give rise to the homotopy groups of an invertible spectrum in the E(2)-local category \mathcal{L}_2 smashing with the Smith-Toda spectrum V(1) at the prime 3. Indeed, each invertible spectrum has the form $\sum^k P^{\wedge p} \wedge Q^{\wedge q}$ for integers $k \in \mathbf{Z}$ and $p, q \in \mathbf{Z}/3$.

Corollary III. The homotopy groups $\pi_*(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1))$ for $p, q \in \mathbb{Z}/3$ are isomorphic to $v_2^{3p}\pi_*(Q^{\wedge q} \wedge V(1))$.

In Sections 2 and 3, we compute the differentials d_5 and d_9 , which give us the E_9 - and E_{13} -terms of the Adams-Novikov spectral sequence converging to the homotopy groups of $Q^{\wedge q} \wedge V(1)$, respectively, and show the Theorem I.

2. The Adams-Novikov E_9 -term for the Invertible Spectrum $Q^{\wedge q}$

Let $E_r^{*,*}(X)$ denote the E_r -term of the Adams-Novikov spectral sequence for $\pi_*(L_2X)$. Then $E_2^{*,*}(X)$ is an $E_2^{*,*}(S^0)$ -module with the action induced from the pairing $X \wedge S^0 \stackrel{\approx}{\to} X$. Let Q be an invertible spectrum such that $\varphi(Q) = \beta = v_2^{-1} \xi b_{10} \zeta_2 \in E_5^{5,4}(S^0)$ for φ in (1.1). Then

 $E_2^{*,*}(Q^{\wedge q})$ is isomorphic to $E_2^{*,*}(S^0)$ as an $E_2^{*,*}(S^0)$ -module on the generator $g_q = g_{0,q} \in E_2^{0,0}(Q^{\wedge q})$ and $d_5(g_q) = q\beta g_q \in E_5^{5,4}(Q^{\wedge q})$ by the definition of φ [8]. We determine the E_9 -term converging to the homotopy groups $\pi_*(Q^{\wedge q} \wedge V(1))$ for the Smith-Toda spectrum V(1) and an integer q = 1, 2 by computing $d_5(g_q)$ with help of the relations of $E_2^{*,*}(Q^{\wedge q} \wedge V(1)) = E_2^{*,*}(V(1))$ given in [11, Proposition 5.9]:

$$\begin{split} h_{10}h_{11} &= 0, \ h_{10}\xi = 0, \ h_{11}\xi = 0, \\ v_2^2h_{10}b_{10} &= h_{11}b_{11}, \ v_2h_{11}b_{10} = -h_{10}b_{11}, \\ b_{11}\xi &= v_2h_{10}\psi_1 = v_2h_{11}\psi_0, \ b_{10}\xi = -h_{10}\psi_0 = v_2^{-1}h_{11}\psi_1, \\ v_2^3b_{10}^2 &= -b_{11}^2, \ b_{10}\psi_1 = -v_2^{-1}b_{11}\psi_0 \ \text{and} \ b_{10}\psi_0 = v_2^{-2}b_{11}\psi_1. \end{split} \tag{2.1}$$

For conveniences, we write down the chart of the E_2 -term $E_2^{*,*}(Q^{\wedge q} \wedge V(1)) = E_2^{*,*}(V(1))$, which is drawn up to multiple of v_2 . In other words, $E_2^{*,*}(V(1)) \cong K(2)_* \otimes$ (the chart) for $K(2)_* = \mathbf{Z}/3[v_2, v_2^{-1}]$.

\dots HOMOTOPY GROUPS OF AN INVERTIBLE SPECTRUM \dots 263

Here each little circle denotes $\mathbb{Z}/3$ generated by the indicated element, and the dot on the upper left of a circle is $\mathbb{Z}/3$ whose generator is the multiplication of the element and ζ_2 .

Lemma 2.2. The differential d_5 of the Adams-Novikov spectral sequence converging to $\pi_*(Q^{\wedge q} \wedge V(1))$ acts trivially except for

$$d_5(v_2^j X g_q) = v_2^{j-1} Y_k g_q \quad if \quad j \equiv 3k, \ 3k+1, \ 3k+5 \quad (9),$$

where the elements X and Y_k for $k \in \mathbb{Z}/3$ are given in the following table:

X	Y_0	Y_1	Y_2
1	$q\xi b_{10}\zeta_2$	$-v_2^{-1}h_{11}b_{10}^2+q\xi b_{10}\zeta_2$	$v_2^{-1}h_{11}b_{10}^2 + q\xi b_{10}\zeta_2$
ζ_2	0	$-v_2^{-1}h_{11}b_{10}^2\zeta_2$	$v_2^{-1}h_{11}b_{10}^2\zeta_2$
b_{11}	$v_2 h_{10} b_{10}^3 + q b_{11} \xi b_{10} \zeta_2$	$qb_{11}\xi b_{10}\zeta_2$	$-v_2h_{10}b_{10}^3+qb_{11}\xi b_{10}\zeta_2$
$b_{11}\zeta_2$	$v_2 h_{10} b_{10}^3 \zeta_2$	0	$-v_2h_{10}b_{10}^3\zeta_2$
$v_2^2 \psi_0$	0	$-b_{11}\xi b_{10}^{2}$	$b_{11}\xi b_{10}^2$
$v_2^2 \psi_0 \zeta_2$	0	$-b_{11}\xi b_{10}^2\zeta_2$	$b_{11}\xi b_{10}^2\zeta_2$
ψ_1	$-\xi b_{10}^3$	ξb_{10}^3	0
$\psi_1\zeta_2$	$-\xi b_{10}^3\zeta_2$	$\xi b_{10}^3 \zeta_2$	0

Proof. Since the identity map $Q^{\wedge q} \wedge V(1) \stackrel{=}{\to} (Q^{\wedge q} \wedge V(1))$ gives a natural pairing, we have a derivation formula

$$d_5(xy) = d_5(x)y + (-1)^{t-s}xd_5(y)$$
(2.3)

for $x\in E_2^{s,t}(Q^{\wedge q})$ and $y\in E_2^{s',t'}(V(1))$ [10, Theorem 2.3.3]. Then the formula (2.3) and the equations on d_5 given in [11, Propositions 8.4, 9.9, 9.10] show us the desired differentials. Note that we set λ in [11] to be 1 in this paper.

By Lemma 2.2, we have

Lemma 2.4. In the E_2 -term of the Adams-Novikov spectral sequence converging to $\pi_*(Q^{\land q} \land V(1))$, the elements $(v_2^j b_{10}^2)^{\sim} g_q = (v_2^j b_{10}^2 + q v_2^j \psi_1 \zeta_2) g_q$ for $j \equiv 0, 1, 5$ and $(v_2^j b_{11} b_{10})^{\sim} g_q = (v_2^j b_{11} b_{10} + q v_2^{j+2} \psi_0 \zeta_2) g_q$ for $j \equiv 3, 4, 8$ are d_5 -cycles.

Proof. The lemma follows from the equations

$$\begin{split} d_5(v_2^j b_{10}^2 g_q) &= q v_2^{j-1} \xi b_{10}^3 \zeta_2 g_q, \\ d_5(q v_2^j \psi_1 \zeta_2 g_q) &= -q v_2^{j-1} \xi b_{10}^3 \zeta_2 g_q, \\ d_5(v_2^j b_{11} b_{10} g_q) &= q v_2^{j-1} b_{11} \xi b_{10}^2 \zeta_2 g_q \end{split}$$

and

$$d_5(qv_2^{j+2}\psi_0\zeta_2g_q)=-qv_2^{j-1}b_{11}\xi b_{10}^2\zeta_2g_q$$

shown in Lemma 2.2.

Lemmas 2.2 and 2.4 show the structure of the E_q -term of the Adams-Novikov spectral sequence.

Proposition 2.5. For $q=1,\,2$, the subgroup $F_q\oplus F_q\zeta_2$ (resp. $F_q^*\oplus F_q\zeta_2$) of the E_9 -term $E_9^{*,*}(Q^{\wedge q}\wedge V(1))$ originating from $\widetilde{F}\oplus \widetilde{F\zeta_2}$ (resp. $\widetilde{F^*}\oplus \widetilde{F^*\zeta_2}$) is $H_q\oplus I_q\oplus H_q\zeta_2\oplus I_q\zeta_2$ (resp. $H_q^*\oplus I_q^*\oplus H_q^*\zeta_2\oplus I_q^*\zeta_2$). Here $H_q,H_q\zeta_2,H_q^*$ and $H_q^*\zeta_2$ are the modules of (1.2), and $I_q,I_q\zeta_2,I_q^*$ and $I_q^*\zeta_2$ are modules defined by

$$\begin{split} I_{q} &= \sum\nolimits_{j\equiv 0,1,5} \ _{(9)}G\{(v_{2}^{j}b_{10}^{2})^{\sim},\ v_{2}^{j-2}h_{11},\ v_{2}^{j+3}h_{10},\ (v_{2}^{j+3}b_{11}b_{10})^{\sim}\},\\ I_{q}\zeta_{2} &= \sum\nolimits_{j\equiv 0,1,5} \ _{(9)}G\{v_{2}^{j}\zeta_{2},\ v_{2}^{j-2}h_{11}\zeta_{2},\ v_{2}^{j+3}h_{10}\zeta_{2},\ v_{2}^{j+3}b_{11}\zeta_{2}\},\\ I_{q}^{*} &= \sum\nolimits_{j\equiv 0,1,5} \ _{(9)}G\{v_{2}^{j+2}\psi_{0},\ v_{2}^{j-1}b_{11}\xi,\ v_{2}^{j+5}\xi,\ v_{2}^{j+6}\psi_{1}\} \end{split}$$

and

$$I_q^*\zeta_2 = \sum\nolimits_{j=0,1,5} {_{(9)}}G\{v_2^{j+2}\psi_0\zeta_2,\, v_2^{j-1}b_{11}\xi\zeta_2,\, v_2^{j+5}\xi\zeta_2,\, v_2^{j+6}\psi_1\zeta_2\},$$

in which G denotes $\mathbb{Z}/3[b_{10}]$.

3. The Adams-Novikov E_{13} -term for the Invertible Spectrum $Q^{\wedge q}$

In this section, we compute the Adams-Novikov differential d_9 and determine the E_{13} -term for the homotopy groups $\pi_*(Q^{\wedge q} \wedge V(1))$, and prove Theorem I by showing that the E_{∞} -term is isomorphic to the E_{13} -term.

Consider the spectra N^1 and M^2 defined by the cofiber sequences

$$L_2S^0 \to L_0S^0 \to N^1 \stackrel{j_0}{\to} \Sigma L_2S^0$$
 and $N^1 \to L_1N^1 \to M^2 \stackrel{j_1}{\to} \Sigma N^1$.

In [13, Lemma 6.2], it is shown that

$$d_9(v_2^4h_{10}/3v_1) = v_2b_{10}^5/3v_1 \in E_2^*(M^2).$$

Sending this to $E_2^*(S^0)$ under the map $(j_0j_1)_*$, we see that

$$d_9(\alpha_1 \beta_4) = \beta_1^6 \in E_2^*(S^0), \tag{3.1}$$

since $\alpha_1 = h_{10}$, $\beta_1 = (j_0 j_1)_* (v_2/3v_1) = b_{10}$ and $\beta_4 = (j_0 j_1)_* (v_2^4/3v_1)$ by definition (cf. [9]).

Lemma 3.2. The action of the differential d_9 of the Adams-Novikov spectral sequence converging to $\pi_*(Q^{\wedge q} \wedge V(1))$ for q = 1, 2 is trivial except for

$$d_9(X_j g_q) = Y_j g_q \text{ for } j = 0, 1, 5 (9),$$

where the elements X_j and Y_j are those in the table:

X_{j}	Y_j	X_j	Y_j
$v_2^{j+3}h_{10}$	$(v_2^j b_{10}^2)^{\sim} b_{10}^3$	$v_2^{j+3}h_{10}\zeta_2$	$v_2^j b_{10}^5 \zeta_2$
$v_2^{j+7}h_{11}$	$(v_2^{j+3}b_{11}b_{10})\tilde{b}_{10}^3$	$v_2^{j+7}h_{11}\zeta_2$	$v_2^{j+3}b_{11}b_{10}^4\zeta_2$
$v_2^{j+5}\xi$	$v_2^{j+2} \psi_0 b_{10}^4$	$v_2^{j+5}\xi\zeta_2$	$v_2^{j+2} \psi_0 b_{10}^4 \zeta_2$
$v_2^{j+8}b_{11}\xi$	$v_2^{j+6} \psi_1 b_{10}^5$	$v_2^{j+8}b_{11}\xi\zeta_2$	$v_2^{j+6} \psi_1 b_{10}^5 \zeta_2$

Here $(v_2^j b_{10}^2)^{\sim}$ and $(v_2^{j+3} b_{11} b_{10})^{\sim}$ are the elements of Lemma 2.4.

Proof. Let κ be one of the generators of I_q , $I_q\zeta_2$, I_q^* and $I_q^*\zeta_2$ such that h_{10} κ ≠ 0. Then by (2.1), we see that κ is one of the elements $(v_2^jb_{10}^2)^\sim$, $(v_2^{j+3}b_{11}b_{10})^\sim$, $v_2^j\zeta_2$, $v_2^{j+3}b_{11}\zeta_2$, $v_2^{j+2}\psi_0$, $v_2^{j+6}\psi_1$, $v_2^{j+2}\psi_0\zeta_2$ and $v_2^{j+6}\psi_1\zeta_2$ for $j \equiv 0, 1, 5$ (9).

Since $\beta_4\equiv v_2^3b_{10} \mod (3,\,v_1),\ \beta_1=b_{10}$ and $\alpha_1=h_{10}$, the derivation formula shows $d_9(v_2^3h_{10}b_{10}\kappa)=b_{10}^6\kappa+v_2^3h_{10}b_{10}d_9(\kappa)$ by (3.1). Since κ and $v_2^3h_{10}\kappa$ are $G=\mathbf{Z}/3[b_{10}]$ -free generators of the E_9 -term, we have

$$d_9(v_2^3 h_{10} \kappa) = b_{10}^5 \kappa + v_2^3 h_{10} d_9(\kappa). \tag{3.3}$$

From the chart of the $E_2(=E_5)$ -term in the previous section, we obtain the following table:

к	C	κ	C
$(v_2^j b_{10}^2)^{\sim}$	$b_{10}^7, \psi_1 b_{10}^5 \zeta_2, h_{11} b_{10}^6 \zeta_2$	$(v_2^{j+3}b_{11}b_{10})^{\sim}$	$b_{11}b_{10}^6$, $\psi_0b_{10}^5\zeta_2$, $h_{10}b_{10}^6\zeta_2$
$v_2^{j+2} \psi_0$	$\psi_0 b_{10}^5, h_{10} b_{10}^6, b_{11} \xi b_{10}^4 \zeta_2$	$v_2^{j+6} \psi_1$	$\psi_1 b_{10}^5, h_{11} b_{10}^6, \xi b_{10}^5 \zeta_2$
$v_2^{j+2} \psi_0 \zeta_2$	$b_{11}b_{10}^6$, $\psi_0b_{10}^5\zeta_2$, $h_{10}b_{10}^6\zeta_2$	$v_2^{j+6} \psi_1 \zeta_2$	$b_{10}^7, \psi_1 b_{10}^5 \zeta_2, h_{11} b_{10}^6 \zeta_2$
$v_2^j \zeta_2$	$b_{10}^5\zeta_2$	$v_2^{j+3}b_{11}\zeta_2$	$b_{10}^5 b_{11} \zeta_2$

Here the column name C stands for candidates of $v_2^3h_{10}d_9(\kappa)$ up to a multiple of v_2 . Using the relations in (2.1), the possible non-trivial differentials are as follows:

$$\begin{split} &d_{9}((v_{2}^{j}b_{10}^{2})^{\sim}) = k_{1}v_{2}^{j-4}b_{11}b_{10}^{5}\zeta_{2}, \\ &d_{9}((v_{2}^{j+3}b_{11}b_{10})^{\sim}) = k_{2}v_{2}^{j+2}b_{10}^{6}\zeta_{2}, \\ &d_{9}(v_{2}^{j+2}\psi_{0}) = k_{3}v_{2}^{j-1}b_{10}^{6} + k_{4}v_{2}^{j-1}\psi_{1}b_{10}^{4}\zeta_{2}, \\ &d_{9}(v_{2}^{j+6}\psi_{1}) = k_{5}v_{2}^{j+2}b_{11}b_{10}^{5} + k_{6}v_{2}^{j+4}\psi_{0}b_{10}^{4}\zeta_{2}, \\ &d_{9}(v_{2}^{j+2}\psi_{0}\zeta_{2}) = k_{7}v_{2}^{j-1}b_{10}^{6}\zeta_{2} \end{split}$$

... HOMOTOPY GROUPS OF AN INVERTIBLE SPECTRUM ... 267 and

$$d_9(v_2^{j+6} \psi_1 \zeta_2) = k_8 v_2^{j+2} b_{11} b_{10}^5 \zeta_2$$

for scalars $k_i \in \mathbf{Z}/3$. All generators of the E_5 -term on the right hand sides of the equations die in E_9 -term by Lemma 2.2 except for

$$d_9(v_2^3 \psi_0 \zeta_2) = k_7 b_{10}^6 \zeta_2$$
 and $d_9(v_2^7 \psi_1 \zeta_2) = k_8 v_2^3 b_{11} b_{10}^5 \zeta_2$.

The relation (3.3) for $\kappa = \zeta_2$ (resp. $\kappa = v_2^3 b_{11} \zeta_2$) is $d_9(v_2^3 h_{10} \zeta_2) = b_{10}^5 \zeta_2$ (resp. $d_9(v_2^6 h_{10} b_{11} \zeta_2) = v_2^3 b_{11} b_{10}^5 \zeta_2$), and so we replace $v_2^3 \psi_0 \zeta_2$ (resp. $v_2^7 \psi_1 \zeta_2$) with $v_2^3 \psi_0 \zeta_2 - k_7 v_2^3 h_{10} b_{10} \zeta_2$ (resp. $v_2^7 \psi_1 \zeta_2 - k_8 v_2^6 h_{10} b_{11} \zeta_2$). After the replacement, we see that $d_9(\kappa) = 0$, and so $d_9(v_2^3 h_{10} \kappa) = b_{10}^5 \kappa$. It gives rise to the table of the theorem by the relations (2.1).

Therefore, we obtain the E_{13} -term of the Adams-Novikov spectral sequence.

Proposition 3.4. In the homotopy group $\pi_*(Q^{\wedge q} \wedge V(1))$ for each q=1, 2, the subgroup $\overline{F_q} \oplus \overline{F_q \zeta_2}$ (resp. $\overline{F_q^*} \oplus \overline{F_q^* \zeta_2}$) of the E_{13} -term originating from $F_q \oplus F_q \zeta_2$ (resp. $F_q^* \oplus F_q^* \zeta_2$) is $H_q \oplus \overline{I_q} \oplus H_q \zeta_2 \oplus \overline{I_q \zeta_2}$ (resp. $H_q^* \oplus \overline{I_q^*} \oplus H_q^* \zeta_2 \oplus \overline{I_q^* \zeta_2}$). Here the modules H_q , $H_q \zeta_2$, H_q^* , $H_q^* \zeta_2$, $\overline{I_q}$, $\overline{I_q \zeta_2}$, $\overline{I_q^*}$ and $\overline{I_q^* \zeta_2}$ are those given in (1.2) and (1.3).

Proof of Theorem I. For q=0, the theorem is shown in [11] (cf. [3], [1]). For q=1, 2, Proposition 3.4 says that $E_{13}^{s,t}(Q^{\wedge q} \wedge V(1))=0$ for s>12, and so $E_{13}^{s,t}(Q^{\wedge q} \wedge V(1))=E_{\infty}^{s,t}(Q^{\wedge q} \wedge V(1))$ since the differential $d_r=0$ for $r\geq 13$. The homotopy group $\pi_k(Q^{\wedge q} \wedge V(1))$ for each $k\in \mathbf{Z}$ is a $\mathbf{Z}/3$ -vector space since $Q^{\wedge q} \wedge V(1)$ is a V(0)-module spectrum. Therefore, there is no extension problem and we obtain the theorem from Proposition 3.4.

References

- [1] P. Goerss, H.-W. Henn and M. Mahowald, The homotopy of $L_2V(1)$ for the prime 3, Proceedings of the International Conference on Algebraic Topology, The Isle of Skye, 2001 (to appear).
- [2] P. Goerss, H.-W. Henn, M. Mahowald and C. Rezk, A resolution of the K(2)-local sphere (preprint).
- [3] H.-W. Henn, Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups, Duke Math. J. 91 (1998), 561-585.
- [4] M. J. Hopkins, M. E. Mahowald and H. Sadofsky, Constructions of elements in Picard group, Contem. Math. 158 (1994), 89-126.
- [5] M. Hovey and H. Sadofsky, Invertible spectra in the *E*(*n*)-local stable homotopy category, J. London Math. Soc. 60 (1999), 284-302.
- [6] I. Ichigi and K. Shimomura, E(2)-invertible spectra smashing with the Smith-Toda spectrum V(1) at the prime 3, Proc. Amer. Math. Soc. (to appear).
- [7] I. Ichigi and K. Shimomura, The homotopy groups of $L_2V\left(1\frac{1}{2}\right)$ and an invertible spectrum at the prime three (preprint).
- [8] Y. Kamiya and K. Shimomura, A relation between the Picard group of the *E*(*n*)-local homotopy category and *E*(*n*)-based Adams spectral sequence, Proceedings of the Northwestern University Algebraic Topology Conference, 2002, Contem. Math. Ser. Amer. Math. Soc. (to appear).
- [9] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. Math. 106 (1977), 469-516.
- [10] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.
- [11] K. Shimomura, The homotopy groups of the L_2 -localized Toda-Smith spectrum V(1) at the prime 3, Trans. Amer. Math. Soc. 349 (1997), 1821-1850.
- [12] K. Shimomura, The homotopy groups of the L_2 -localized mod 3 Moore spectrum, J. Math. Soc. Japan 52 (2000), 65-90.
- [13] K. Shimomura, On the action of β_1 in the stable homotopy of spheres at the prime 3, Hiroshima Math. J. 30 (2000), 345-362.
- [14] K. Shimomura and X. Wang, The homotopy groups $\pi_*(L_2S^0)$ at the prime 3, Topology 41 (2002), 1183-1198.