ON THE HOMOTOPY GROUPS OF AN INVERTIBLE SPECTRUM IN THE $E(2)$-LOCAL CATEGORY AT THE PRIME 3

IPPEI ICHIGI
Department of Mathematics, Faculty of Science
Kochi University, Kochi, 780-8520, Japan
e-mail: 95sm004@math.kochi-u.ac.jp
KATSUMI SHIMOMURA
Department of Mathematics, Faculty of Science
Kochi University, Kochi, 780-8520, Japan
e-mail: katsumi@math.kochi-u.ac.jp

Abstract

Let L_{2} denote the Bousfield localization functor with respect to the second Johnson-Wilson spectrum $E(2)$. A spectrum $L_{2} X$ is called invertible if there is a spectrum Y such that $L_{2} X \wedge Y=L_{2} S^{0}$. Then Hovey and Sadofsky showed that every invertible spectrum is a suspension of the sphere spectrum $L_{2} S^{0}$ if the prime p is greater than three. At the prime three, Kamiya and the second author constructed an invertible spectrum P other than a suspension of $L_{2} S^{0}$, and showed a possibility of existence of another invertible spectrum Q such that every invertible spectrum has a form $\Sigma^{k} P^{\wedge p} \wedge Q^{\wedge q}$ for integers $k \in \mathbf{Z}$ and $p, q \in \mathbf{Z} / 3$, where $X \wedge X \wedge X=L_{2} S^{0}$ for $X=P, Q$. In this paper, we consider the homotopy groups of the invertible spectrum Q under the assumption that Q exists, and determine the homotopy

[^0]Key words and phrases: homotopy group, invertible spectrum, Johnson-Wilson spectrum.
Received September 24, 2003
groups $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$ and $\pi_{*}\left(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1)\right)$ for the Smith-Toda spectrum $V(1)$. The results make the authors conjecture that Q does not exist.

1. Introduction

Let \mathcal{S}_{p} for a prime number p and \mathcal{L}_{n} for an integer $n \geq 0$ denote the category of p-local spectra and its full subcategory of $E(n)$-local spectra, respectively, and $L_{n}: \mathcal{S}_{p} \rightarrow \mathcal{L}_{n}$ be the Bousfield localization functor with respect to $E(n)$, where $E(n)$ denotes the Johnson-Wilson spectrum with the homotopy groups $\pi_{*}(E(n))=E(n)_{*}=\mathbf{Z}_{(p)}\left[v_{1}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right]$. We call a spectrum $X \in \mathcal{L}_{n}$ invertible if there exists a spectrum $Y \in \mathcal{L}_{n}$ such that $X \wedge Y=L_{n} S^{0}$. Hopkins introduced the Picard $\operatorname{group}^{\operatorname{Pic}}(n)=\operatorname{Pic}\left(\mathcal{L}_{n}\right)$ consisting of isomorphism classes of invertible spectra in \mathcal{L}_{n} with multiplication defined by the smash product. Then in [5] (cf. [4]), it is shown by Hovey and $\operatorname{Sadofsky}$ that $\operatorname{Pic}_{(n)}$ is a well defined abelian group, that $\operatorname{Pic}_{(n)} \cong \mathbf{Z}$ if $n^{2}+n<2 p-2$ and that $\operatorname{Pic}_{(1)} \cong \mathbf{Z} \oplus \mathbf{Z} / 2$ at the prime 2. Note that suspensions $\sum^{k} L_{n} S^{0}$ of the sphere spectrum for $k \in \mathbf{Z}$ form a subgroup of $\operatorname{Pic}_{(n)}$ isomorphic to \mathbf{Z}.

Let $E_{r}^{s, t}(X)$ denote the E_{r}-term of the Adams-Novikov spectral sequence converging to $\pi_{*}\left(L_{n} X\right)$. Then Kamiya and the second author [8] constructed a monomorphism

$$
\begin{equation*}
\varphi: \operatorname{Pic}_{(n)} / \mathbf{Z} \subset \bigoplus_{r \geq 2} E_{r}^{r, r-1}\left(S^{0}\right)=T \tag{1.1}
\end{equation*}
$$

In particular, it is well known that $T=0$ if $n^{2}+n<2 p-2$ and $T=E_{3}^{3,2}\left(S^{0}\right)=\mathbf{Z} / 2$ if $n=1$ and $p=2$, which imply the above results of Hovey and Sadofsky's. At the prime 3, $T=E_{5}^{5,4}\left(S^{0}\right)=\mathbf{Z} / 3 \oplus \mathbf{Z} / 3$ by [13] (cf. [14]). In [6], we determined the structure of the homotopy groups $\pi_{*}\left(L_{1} Q M \wedge V(0)\right)$, where $V(0)$ denotes the $\bmod 2$ Moore spectrum, and the question mark complex $Q M=S^{0} \cup_{2} e^{1} \cup_{\eta} e^{3}$ represents the
generator of $\mathbf{Z} / 2$ in $\operatorname{Pic}_{(1)}$ at the prime two. In this paper, we study homotopy groups of an invertible spectrum in \mathcal{L}_{2} at the prime three. Let α and β denote the generators of $E_{5}^{5,4}\left(S^{0}\right)=\mathbf{Z} / 3 \oplus \mathbf{Z} / 3$. In [8], it is shown that α is pulled back to an invertible spectrum P under the monomorphism φ of (1.1). We determined the homotopy groups $\pi_{*}\left(P^{\wedge p} \wedge V(1)\right)$ for an integer $p \in \mathbf{Z} / 3$ in [6]. Here $V(1)$ denotes the first Smith-Toda spectrum, and $X^{\wedge n}$ denotes the n-fold smash product of X. In [7], we also determined $\pi_{\circledast}\left(P^{\wedge p}\right)$ for $p \in \mathbf{Z} / 3$. We further, in this paper, assume the existence of an invertible spectrum Q such that $\varphi(Q)=\beta$. Then $\operatorname{Pic}_{(2)} \cong \mathbf{Z} \oplus \mathbf{Z} / 3 \oplus \mathbf{Z} / 3$. Note that $Q \wedge Q \wedge Q=L_{2} S^{0}$ by the definition corresponding $3 \beta=0$. Since $E_{2}^{*, *}\left(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1)\right)=$ $E_{2}^{*, *}(V(1))$ for integers $p, q \in \mathbf{Z} / 3$, we can compute the homotopy groups $\pi_{*}\left(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1)\right)$ by studying the differentials $d_{5}\left(g_{p, q}\right)$ and $d_{9}\left(g_{p, q}\right)$ on the generator $g_{p, q} \in E_{2}^{0,0}\left(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1)\right)$ of the E_{2}-term.

We recall [11] (cf. [3], [10]) that the E_{2}^{-}-term $E_{2}^{*, *}(V(1))$ is isomorphic, as $K(2)_{*}$-module, to the tensor product of $K(2)_{*}\left[b_{10}\right]$ and the direct sum of

$$
\begin{aligned}
& \widetilde{F}=K(2)_{*}\left\{1, h_{10}, h_{11}, b_{11}\right\}, \\
& \widetilde{F \zeta_{2}}=K(2)_{*}\left\{\zeta_{2}, h_{10} \zeta_{2}, h_{11} \zeta_{2}, b_{11} \zeta_{2}\right\}, \\
& \widetilde{F^{*}}=K(2)_{*}\left\{\xi, \psi_{0}, \psi_{1}, b_{11} \xi\right\}
\end{aligned}
$$

and

$$
\widetilde{F^{*} \zeta_{2}}=K(2)_{*}\left\{\xi \zeta_{2}, \psi_{0} \zeta_{2}, \psi_{1} \zeta_{2}, b_{11} \xi \zeta_{2}\right\} .
$$

Here $K(2)_{*}=\mathbf{Z} / 3\left[v_{2}^{ \pm 1}\right]$ and the bidegrees of generators are given as

$$
\begin{aligned}
& \left\|v_{2}\right\|=(0,16), \quad\left\|h_{10}\right\|=(1,4), \quad\left\|h_{11}\right\|=(1,12), \quad\left\|b_{10}\right\|=(2,12), \\
& \left\|b_{11}\right\|=(2,36), \quad\|\xi\|=(2,8), \quad\left\|\psi_{0}\right\|=(3,16) \quad \text { and } \quad\left\|\psi_{1}\right\|=(3,24) .
\end{aligned}
$$

In order to describe the homotopy groups of the invertible spectrum $Q^{\wedge q}$ for $q \in \mathbf{Z} / 3$, we introduce some modules:

$$
\begin{align*}
& H_{q}=\sum_{j \neq 0,1,5(9)} G_{2}\left\{v_{2}^{j-2} h_{11}\right\} \oplus G_{3}\left\{v_{2}^{j+3} h_{10}\right\} \\
& H_{q} \zeta_{2}=\sum_{j \neq 0,1,5(9)} G_{2}\left\{v_{2}^{j-2} h_{11} \zeta_{2}\right\} \oplus G_{3}\left\{v_{2}^{j+3} h_{10} \zeta_{2}\right\}, \\
& H_{q}^{*}=\sum_{j \neq 0,1,5(9)} G_{2}\left\{v_{2}^{j-1} b_{11} \xi\right\} \oplus G_{3}\left\{v_{2}^{j+5} \xi\right\} \\
& H_{q}^{*} \zeta_{2}=\left\{\begin{array}{l}
\sum_{j \neq 0,1,5(9)} G_{2}\left\{v_{2}^{j-1} b_{11} \xi \zeta_{2}\right\} \oplus G_{3}\left\{v_{2}^{j+5} \xi \zeta_{2}\right\} \quad \text { for } q=0 \\
\oplus \sum_{j \equiv 2,4,8(9)} \mathbf{Z} / 3\left\{v_{2}^{j-1} b_{11} \xi \zeta_{2}\right\} \oplus \mathbf{Z} / 3\left\{v_{2}^{j+5} \xi \zeta_{2}\right\} \\
G_{2}\left\{v_{2}^{j-1} b_{11} \xi \zeta_{2}\right\} \oplus G_{3}\left\{v_{2}^{j+5} \xi \zeta_{2}\right\} \text { for } q=1,2
\end{array}\right. \tag{1.2}
\end{align*}
$$

and

$$
\begin{align*}
& \overline{I_{q}}= \begin{cases}\sum_{j \equiv 0,1,5(9)} G_{5}\left\{v_{2}^{j}\right\} \oplus G_{4}\left\{v_{2}^{j+3} b_{11}\right\} & \text { for } q=0 \\
\sum_{j \equiv 0,1,5(9)} G_{3}\left\{\left(v_{2}^{j} b_{10}^{2}\right)^{\sim},\left(v_{2}^{j+3} b_{11} b_{10}\right)^{\sim}\right\} & \text { for } q=1,2\end{cases} \\
& \overline{I_{q} \zeta_{2}}=\sum_{j \equiv 0,1,5(9)} G_{5}\left\{v_{2}^{j} \zeta_{2}\right\} \oplus G_{4}\left\{v_{2}^{j+3} b_{11} \zeta_{2}\right\}, \\
& \overline{I_{q}^{*}}=\sum_{j \equiv 0,1,5(9)} G_{4}\left\{v_{2}^{j+2} \psi_{0}\right\} \oplus G_{5}\left\{v_{2}^{j+6} \psi_{1}\right\} \\
& \overline{I_{q}^{*} \zeta_{2}}=\sum_{j \equiv 0,1,5(9)} G_{4}\left\{v_{2}^{j+2} \psi_{0} \zeta_{2}\right\} \oplus G_{5}\left\{v_{2}^{j+6} \psi_{1} \zeta_{2}\right\} \tag{1.3}
\end{align*}
$$

in which $G_{k}=\mathbf{Z} / 3\left[b_{10}\right] /\left(b_{10}^{k}\right)$. Note that an element of the form $\left(x b_{10}\right)^{\sim}$ is not divisible by b_{10}. Put

$$
\begin{array}{ll}
\overline{F_{q}}=H_{q} \oplus \overline{I_{q}}, & \overline{F_{q} \zeta_{2}}=H_{q} \zeta_{2} \oplus \overline{I_{q} \zeta_{2}} \\
\overline{F_{q}^{*}}=H_{q}^{*} \oplus \overline{I_{q}^{*}} & \text { and } \\
\overline{F_{q}^{*} \zeta_{2}}=H_{q}^{*} \zeta_{2} \oplus \overline{I_{q}^{*} \zeta_{2}}
\end{array}
$$

Then $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$ for $q=0$, which is $\pi_{*}\left(L_{2} V(1)\right)$, is shown in [11] (cf. [3], [1]) to be the direct sum of the four subgroups $\overline{F_{0}}, \overline{F_{0} \zeta_{2}}, \overline{F_{0}^{*}}$, and $F_{0}^{*} \zeta_{2}$.

Theorem I. At the prime three, the homotopy groups $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$ for $q \in \mathbf{Z} / 3$ are isomorphic to the direct sum of the subgroups $\overline{F_{q}}, \overline{F_{q} \zeta_{2}}$, $\overline{F_{q}^{*}}$ and $\overline{F_{q}^{*} \zeta_{2}}$.

Note that this theorem shows an isomorphism $\pi_{*}\left(Q^{\wedge 1} \wedge V(1)\right) \cong$ $\pi_{*}\left(Q^{\wedge 2} \wedge V(1)\right)$ while $\pi_{*}\left(Q^{\wedge 0} \wedge V(1)\right) \not \equiv \pi_{*}\left(Q^{\wedge 1} \wedge V(1)\right)$. This is the reason why the authors are skeptical about the existence of Q, though the authors of [2] seem to believe the existence.

Recall [6] the equivalence v_{2}^{3} shown by determining the homotopy groups of $P^{\wedge p} \wedge V(1)$.

Theorem II [6]. There exists a homotopy equivalence $v_{2}^{3}: \sum^{48} L_{2} V(1)$ $\simeq P^{\wedge 1} \wedge V(1)$.

Theorems I and II give rise to the homotopy groups of an invertible spectrum in the $E(2)$-local category \mathcal{L}_{2} smashing with the Smith-Toda spectrum $V(1)$ at the prime 3 . Indeed, each invertible spectrum has the form $\sum^{k} P^{\wedge p} \wedge Q^{\wedge q}$ for integers $k \in \mathbf{Z}$ and $p, q \in \mathbf{Z} / 3$.

Corollary III. The homotopy groups $\pi_{*}\left(P^{\wedge p} \wedge Q^{\wedge q} \wedge V(1)\right)$ for $p, q \in \mathbf{Z} / 3$ are isomorphic to $v_{2}^{3 p} \pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$.

In Sections 2 and 3, we compute the differentials d_{5} and d_{9}, which give us the E_{9} - and E_{13}-terms of the Adams-Novikov spectral sequence converging to the homotopy groups of $Q^{\wedge q} \wedge V(1)$, respectively, and show the Theorem I.

2. The Adams-Novikov E_{9}-term for the Invertible Spectrum $Q^{\wedge q}$

Let $E_{r}^{*, *}(X)$ denote the E_{r}-term of the Adams-Novikov spectral sequence for $\pi_{*}\left(L_{2} X\right)$. Then $E_{2}^{*, *}(X)$ is an $E_{2}^{*, *}\left(S^{0}\right)$-module with the action induced from the pairing $X \wedge S^{0} \xrightarrow{\approx} X$. Let Q be an invertible spectrum such that $\varphi(Q)=\beta=v_{2}^{-1} \xi b_{10} \zeta_{2} \in E_{5}^{5,4}\left(S^{0}\right)$ for φ in (1.1). Then
$E_{2}^{*, *}\left(Q^{\wedge q}\right)$ is isomorphic to $E_{2}^{*, *}\left(S^{0}\right)$ as an $E_{2}^{*, *}\left(S^{0}\right)$-module on the generator $g_{q}=g_{0, q} \in E_{2}^{0,0}\left(Q^{\wedge q}\right)$ and $d_{5}\left(g_{q}\right)=q \beta g_{q} \in E_{5}^{5,4}\left(Q^{\wedge q}\right)$ by the definition of φ [8]. We determine the E_{9}-term converging to the homotopy groups $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$ for the Smith-Toda spectrum $V(1)$ and an integer $q=1,2$ by computing $d_{5}\left(g_{q}\right)$ with help of the relations of $E_{2}^{*, *}\left(Q^{\wedge q} \wedge V(1)\right)=E_{2}^{*, *}(V(1))$ given in [11, Proposition 5.9]:
$h_{10} h_{11}=0, h_{10} \xi=0, h_{11} \xi=0$,
$v_{2}^{2} h_{10} b_{10}=h_{11} b_{11}, \quad v_{2} h_{11} b_{10}=-h_{10} b_{11}$,
$b_{11} \xi=v_{2} h_{10} \psi_{1}=v_{2} h_{11} \psi_{0}, \quad b_{10} \xi=-h_{10} \psi_{0}=v_{2}^{-1} h_{11} \psi_{1}$,
$v_{2}^{3} b_{10}^{2}=-b_{11}^{2}, b_{10} \psi_{1}=-v_{2}^{-1} b_{11} \psi_{0}$ and $b_{10} \psi_{0}=v_{2}^{-2} b_{11} \psi_{1}$.
For conveniences, we write down the chart of the E_{2}-term $E_{2}^{*, *}\left(Q^{\wedge q} \wedge V(1)\right)=E_{2}^{*, *}(V(1))$, which is drawn up to multiple of v_{2}. In other words, $E_{2}^{*, *}(V(1)) \cong K(2)_{*} \otimes$ (the chart) for $K(2)_{*}=\mathbf{Z} / 3\left[v_{2}, v_{2}^{-1}\right]$.

Here each little circle denotes $\mathbf{Z} / 3$ generated by the indicated element, and the dot on the upper left of a circle is $\mathbf{Z} / 3$ whose generator is the multiplication of the element and ζ_{2}.

Lemma 2.2. The differential d_{5} of the Adams-Novikov spectral sequence converging to $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$ acts trivially except for

$$
d_{5}\left(v_{2}^{j} X g_{q}\right)=v_{2}^{j-1} Y_{k} g_{q} \text { if } j \equiv 3 k, 3 k+1,3 k+5
$$

where the elements X and Y_{k} for $k \in \mathbf{Z} / 3$ are given in the following table:

X	Y_{0}	Y_{1}	Y_{2}
1	$q \xi b_{10} \zeta_{2}$	$-v_{2}^{-1} h_{11} b_{10}^{2}+q \xi b_{10} \zeta_{2}$	$v_{2}^{-1} h_{11} b_{10}^{2}+q \xi b_{10} \zeta_{2}$
ζ_{2}	0	$-v_{2}^{-1} h_{11} b_{10}^{2} \zeta_{2}$	$v_{2}^{-1} h_{11} b_{10}^{2} \zeta_{2}$
b_{11}	$v_{2} h_{10} b_{10}^{3}+q b_{11} \xi b_{10} \zeta_{2}$	$q b_{11} \xi b_{10} \zeta_{2}$	$-v_{2} h_{10} b_{10}^{3}+q b_{11} \xi b_{10} \zeta_{2}$
$b_{11} \zeta_{2}$	$v_{2} h_{10} b_{10}^{3} \zeta_{2}$	0	$-v_{2} h_{10} b_{10}^{3} \zeta_{2}$
$v_{2}^{2} \psi_{0}$	0	$-b_{11} \xi b_{10}^{2}$	$b_{11} \xi b_{10}^{2}$
$v_{2}^{2} \psi_{0} \zeta_{2}$	0	$-b_{11} \xi b_{10}^{2} \zeta_{2}$	$b_{11} \xi b_{10}^{2} \zeta_{2}$
ψ_{1}	$-\xi b_{10}^{3}$	ξb_{10}^{3}	0
$\psi_{1} \zeta_{2}$	$-\xi b_{10}^{3} \zeta_{2}$	$\xi b_{10}^{3} \zeta_{2}$	0

Proof. Since the identity map $Q^{\wedge q} \wedge V(1) \xrightarrow{\Xi}\left(Q^{\wedge q} \wedge V(1)\right)$ gives a natural pairing, we have a derivation formula

$$
\begin{equation*}
d_{5}(x y)=d_{5}(x) y+(-1)^{t-s} x d_{5}(y) \tag{2.3}
\end{equation*}
$$

for $x \in E_{2}^{s, t}\left(Q^{\wedge q}\right)$ and $y \in E_{2}^{s^{\prime}, t^{\prime}}(V(1))$ [10, Theorem 2.3.3]. Then the formula (2.3) and the equations on d_{5} given in [11, Propositions 8.4, 9.9, 9.10] show us the desired differentials. Note that we set λ in [11] to be 1 in this paper.

By Lemma 2.2, we have

Lemma 2.4. In the E_{2}-term of the Adams-Novikov spectral sequence converging to $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$, the elements $\left(v_{2}^{j} b_{10}^{2}\right)^{\sim} g_{q}=\left(v_{2}^{j} b_{10}^{2}+q v_{2}^{j} \psi_{1} \zeta_{2}\right) g_{q}$ for $j \equiv 0,1,5$ and $\left(v_{2}^{j} b_{11} b_{10}\right)^{\sim} g_{q}=\left(v_{2}^{j} b_{11} b_{10}+q v_{2}^{j+2} \psi_{0} \zeta_{2}\right) g_{q}$ for $j \equiv 3,4,8$ are d_{5}-cycles.

Proof. The lemma follows from the equations

$$
\begin{aligned}
& d_{5}\left(v_{2}^{j} b_{10}^{2} g_{q}\right)=q v_{2}^{j-1} \xi b_{10}^{3} \zeta_{2} g_{q} \\
& d_{5}\left(q v_{2}^{j} \psi_{1} \zeta_{2} g_{q}\right)=-q v_{2}^{j-1} \xi b_{10}^{3} \zeta_{2} g_{q} \\
& d_{5}\left(v_{2}^{j} b_{11} b_{10} g_{q}\right)=q v_{2}^{j-1} b_{11} \xi b_{10}^{2} \zeta_{2} g_{q}
\end{aligned}
$$

and

$$
d_{5}\left(q v_{2}^{j+2} \psi_{0} \zeta_{2} g_{q}\right)=-q v_{2}^{j-1} b_{11} \xi b_{10}^{2} \zeta_{2} g_{q}
$$

shown in Lemma 2.2.
Lemmas 2.2 and 2.4 show the structure of the E_{q}-term of the AdamsNovikov spectral sequence.

Proposition 2.5. For $q=1,2$, the subgroup $F_{q} \oplus F_{q} \zeta_{2}$ (resp. $F_{q}^{*} \oplus$ $\left.F_{q}^{*} \zeta_{2}\right)$ of the E_{9}-term $E_{9}^{*, *}\left(Q^{\wedge q} \wedge V(1)\right)$ originating from $\widetilde{F} \oplus \widetilde{F \zeta_{2}}$ (resp. $\widetilde{F^{*}} \oplus \widetilde{F^{*} \zeta_{2}}$) is $H_{q} \oplus I_{q} \oplus H_{q} \zeta_{2} \oplus I_{q} \zeta_{2}\left(\right.$ resp. $H_{q}^{*} \oplus I_{q}^{*} \oplus H_{q}^{*} \zeta_{2} \oplus I_{q}^{*} \zeta_{2}$). Here $H_{q}, H_{q} \zeta_{2}, H_{q}^{*}$ and $H_{q}^{*} \zeta_{2}$ are the modules of (1.2), and $I_{q}, I_{q} \zeta_{2}, I_{q}^{*}$ and $I_{q}^{*} \zeta_{2}$ are modules defined by

$$
\begin{aligned}
& I_{q}=\sum_{j \equiv 0,1,5(9)} G\left\{\left(v_{2}^{j} b_{10}^{2}\right)^{\sim}, v_{2}^{j-2} h_{11}, v_{2}^{j+3} h_{10},\left(v_{2}^{j+3} b_{11} b_{10}\right)^{\sim}\right\} \\
& I_{q} \zeta_{2}=\sum_{j \equiv 0,1,5(9)} G\left\{v_{2}^{j} \zeta_{2}, v_{2}^{j-2} h_{11} \zeta_{2}, v_{2}^{j+3} h_{10} \zeta_{2}, v_{2}^{j+3} b_{11} \zeta_{2}\right\} \\
& I_{q}^{*}=\sum_{j \equiv 0,1,5(9)} G\left\{v_{2}^{j+2} \psi_{0}, v_{2}^{j-1} b_{11} \xi, v_{2}^{j+5} \xi, v_{2}^{j+6} \psi_{1}\right\}
\end{aligned}
$$

and

$$
I_{q}^{*} \zeta_{2}=\sum_{j \equiv 0,1,5(9)} G\left\{v_{2}^{j+2} \psi_{0} \zeta_{2}, v_{2}^{j-1} b_{11} \xi \zeta_{2}, v_{2}^{j+5} \xi \zeta_{2}, v_{2}^{j+6} \psi_{1} \zeta_{2}\right\}
$$

in which G denotes $\mathbf{Z} / 3\left[b_{10}\right]$.

3. The Adams-Novikov E_{13}-term for the Invertible Spectrum $Q^{\wedge q}$

In this section, we compute the Adams-Novikov differential d_{9} and determine the E_{13}-term for the homotopy groups $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$, and prove Theorem I by showing that the E_{∞}-term is isomorphic to the E_{13}-term.

Consider the spectra N^{1} and M^{2} defined by the cofiber sequences

$$
L_{2} S^{0} \rightarrow L_{0} S^{0} \rightarrow N^{1} \xrightarrow{j_{0}} \Sigma L_{2} S^{0} \text { and } N^{1} \rightarrow L_{1} N^{1} \rightarrow M^{2} \xrightarrow{j_{1}} \Sigma N^{1} .
$$

In [13, Lemma 6.2], it is shown that

$$
d_{9}\left(v_{2}^{4} h_{10} / 3 v_{1}\right)=v_{2} b_{10}^{5} / 3 v_{1} \in E_{2}^{*}\left(M^{2}\right) .
$$

Sending this to $E_{2}^{*}\left(S^{0}\right)$ under the map $\left(j_{0} j_{1}\right)_{*}$, we see that

$$
\begin{equation*}
d_{9}\left(\alpha_{1} \beta_{4}\right)=\beta_{1}^{6} \in E_{2}^{*}\left(S^{0}\right), \tag{3.1}
\end{equation*}
$$

since $\alpha_{1}=h_{10}, \quad \beta_{1}=\left(j_{0} j_{1}\right)_{*}\left(v_{2} / 3 v_{1}\right)=b_{10}$ and $\beta_{4}=\left(j_{0} j_{1}\right)_{*}\left(v_{2}^{4} / 3 v_{1}\right)$ by definition (cf. [9]).

Lemma 3.2. The action of the differential d_{9} of the Adams-Novikov spectral sequence converging to $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$ for $q=1,2$ is trivial except for

$$
d_{9}\left(X_{j} g_{q}\right)=Y_{j} g_{q} \text { for } j \equiv 0,1,5 \quad(9)
$$

where the elements X_{j} and Y_{j} are those in the table:

X_{j}	Y_{j}	X_{j}	Y_{j}
$v_{2}^{j+3} h_{10}$	$\left(v_{2}^{j} b_{10}^{2}\right)^{\sim} b_{10}^{3}$	$v_{2}^{j+3} h_{10} \zeta_{2}$	$v_{2}^{j} b_{10}^{5} \zeta_{2}$
$v_{2}^{j+7} h_{11}$	$\left(v_{2}^{j+3} b_{11} b_{10}\right)^{\sim} b_{10}^{3}$	$v_{2}^{j+7} h_{11} \zeta_{2}$	$v_{2}^{j+3} b_{11} b_{10}^{4} \zeta_{2}$
$v_{2}^{j+5} \xi$	$v_{2}^{j+2} \psi_{0} b_{10}^{4}$	$v_{2}^{j+5} \xi \zeta_{2}$	$v_{2}^{j+2} \psi_{0} b_{10}^{4} \zeta_{2}$
$v_{2}^{j+8} b_{11} \xi$	$v_{2}^{j+6} \psi_{1} b_{10}^{5}$	$v_{2}^{j+8} b_{11} \xi \zeta_{2}$	$v_{2}^{j+6} \psi_{1} b_{10}^{5} \zeta_{2}$

Here $\left(v_{2}^{j} b_{10}^{2}\right)^{\sim}$ and $\left(v_{2}^{j+3} b_{11} b_{10}\right)^{\sim}$ are the elements of Lemma 2.4.

Proof. Let κ be one of the generators of $I_{q}, I_{q} \zeta_{2}, I_{q}^{*}$ and $I_{q}^{*} \zeta_{2}$ such that $h_{10} \kappa \neq 0$. Then by (2.1), we see that κ is one of the elements $\left(v_{2}^{j} b_{10}^{2}\right)^{\sim}$, $\left(v_{2}^{j+3} b_{11} b_{10}\right)^{\sim}, v_{2}^{j} \zeta_{2}, v_{2}^{j+3} b_{11} \zeta_{2}, v_{2}^{j+2} \psi_{0}, v_{2}^{j+6} \psi_{1}, v_{2}^{j+2} \psi_{0} \zeta_{2}$ and $v_{2}^{j+6} \psi_{1} \zeta_{2}$ for $j \equiv 0,1,5$ (9).

Since $\beta_{4} \equiv v_{2}^{3} b_{10} \bmod \left(3, v_{1}\right), \beta_{1}=b_{10}$ and $\alpha_{1}=h_{10}$, the derivation formula shows $d_{9}\left(v_{2}^{3} h_{10} b_{10} \kappa\right)=b_{10}^{6} \kappa+v_{2}^{3} h_{10} b_{10} d_{9}(\kappa)$ by (3.1). Since κ and $v_{2}^{3} h_{10} \kappa$ are $G=\mathbf{Z} / 3\left[b_{10}\right]$-free generators of the E_{9}-term, we have

$$
\begin{equation*}
d_{9}\left(v_{2}^{3} h_{10} \kappa\right)=b_{10}^{5} \kappa+v_{2}^{3} h_{10} d_{9}(\kappa) \tag{3.3}
\end{equation*}
$$

From the chart of the $E_{2}\left(=E_{5}\right)$-term in the previous section, we obtain the following table:

κ	C	κ	C
$\left(v_{2}^{j} b_{10}^{2}\right)^{\sim}$	$b_{10}^{7}, \psi_{1} b_{10}^{5} \zeta_{2}, h_{11} b_{10}^{6} \zeta_{2}$	$\left(v_{2}^{j+3} b_{11} b_{10}\right)^{\sim}$	$b_{11} b_{10}^{6}, \psi_{0} b_{10}^{5} \zeta_{2}, h_{10} b_{10}^{6} \zeta_{2}$
$v_{2}^{j+2} \psi_{0}$	$\psi_{0} b_{10}^{5}, h_{10} b_{10}^{6}, b_{11} \xi b_{10}^{4} \zeta_{2}$	$v_{2}^{j+6} \psi_{1}$	$\psi_{1} b_{10}^{5}, h_{11} b_{10}^{6}, \xi b_{10}^{5} \zeta_{2}$
$v_{2}^{j+2} \psi_{0} \zeta_{2}$	$b_{11} b_{10}^{6}, \psi_{0} b_{10}^{5} \zeta_{2}, h_{10} b_{10}^{6} \zeta_{2}$	$v_{2}^{j+6} \psi_{1} \zeta_{2}$	$b_{10}^{7}, \psi_{1} b_{10}^{5} \zeta_{2}, h_{11} b_{10}^{6} \zeta_{2}$
$v_{2}^{j} \zeta_{2}$	$b_{10}^{5} \zeta_{2}$	$v_{2}^{j+3} b_{11} \zeta_{2}$	$b_{10}^{5} b_{11} \zeta_{2}$

Here the column name C stands for candidates of $v_{2}^{3} h_{10} d_{9}(\kappa)$ up to a multiple of v_{2}. Using the relations in (2.1), the possible non-trivial differentials are as follows:

$$
\begin{aligned}
& d_{9}\left(\left(v_{2}^{j} b_{10}^{2}\right)^{\sim}\right)=k_{1} v_{2}^{j-4} b_{11} b_{10}^{5} \zeta_{2} \\
& d_{9}\left(\left(v_{2}^{j+3} b_{11} b_{10}\right)^{\sim}\right)=k_{2} v_{2}^{j+2} b_{10}^{6} \zeta_{2} \\
& d_{9}\left(v_{2}^{j+2} \psi_{0}\right)=k_{3} v_{2}^{j-1} b_{10}^{6}+k_{4} v_{2}^{j-1} \psi_{1} b_{10}^{4} \zeta_{2} \\
& d_{9}\left(v_{2}^{j+6} \psi_{1}\right)=k_{5} v_{2}^{j+2} b_{11} b_{10}^{5}+k_{6} v_{2}^{j+4} \psi_{0} b_{10}^{4} \zeta_{2} \\
& d_{9}\left(v_{2}^{j+2} \psi_{0} \zeta_{2}\right)=k_{7} v_{2}^{j-1} b_{10}^{6} \zeta_{2}
\end{aligned}
$$

and

$$
d_{9}\left(v_{2}^{j+6} \psi_{1} \zeta_{2}\right)=k_{8} v_{2}^{j+2} b_{11} b_{10}^{5} \zeta_{2}
$$

for scalars $k_{i} \in \mathbf{Z} / 3$. All generators of the E_{5}-term on the right hand sides of the equations die in E_{9}-term by Lemma 2.2 except for

$$
d_{9}\left(v_{2}^{3} \psi_{0} \zeta_{2}\right)=k_{7} b_{10}^{6} \zeta_{2} \text { and } d_{9}\left(v_{2}^{7} \psi_{1} \zeta_{2}\right)=k_{8} v_{2}^{3} b_{11} b_{10}^{5} \zeta_{2} .
$$

The relation (3.3) for $\kappa=\zeta_{2}$ (resp. $\kappa=v_{2}^{3} b_{11} \zeta_{2}$) is $d_{9}\left(v_{2}^{3} h_{10} \zeta_{2}\right)=b_{10}^{5} \zeta_{2}$ (resp. $\left.d_{9}\left(v_{2}^{6} h_{10} b_{11} \zeta_{2}\right)=v_{2}^{3} b_{11} b_{10}^{5} \zeta_{2}\right)$, and so we replace $v_{2}^{3} \psi_{0} \zeta_{2}$ (resp. $v_{2}^{7} \psi_{1} \zeta_{2}$) with $v_{2}^{3} \psi_{0} \zeta_{2}-k_{7} v_{2}^{3} h_{10} b_{10} \zeta_{2}$ (resp. $v_{2}^{7} \psi_{1} \zeta_{2}-k_{8} v_{2}^{6} h_{10} b_{11} \zeta_{2}$). After the replacement, we see that $d_{9}(\kappa)=0$, and so $d_{9}\left(v_{2}^{3} h_{10} \kappa\right)=b_{10}^{5}$ к. It gives rise to the table of the theorem by the relations (2.1).

Therefore, we obtain the E_{13}-term of the Adams-Novikov spectral sequence.

Proposition 3.4. In the homotopy group $\pi_{*}\left(Q^{\wedge q} \wedge V(1)\right)$ for each $q=1,2$, the subgroup $\overline{F_{q}} \oplus \overline{F_{q} \zeta_{2}}$ (resp. $\overline{F_{q}^{*}} \oplus \overline{F_{q}^{*} \zeta_{2}}$) of the E_{13}-term originating from $F_{q} \oplus F_{q} \zeta_{2}$ (resp. $F_{q}^{*} \oplus F_{q}^{*} \zeta_{2}$) is $H_{q} \oplus \overline{I_{q}} \oplus H_{q} \zeta_{2} \oplus \overline{I_{q} \zeta_{2}}$ (resp. $H_{q}^{*} \oplus \overline{I_{q}^{*}} \oplus H_{q}^{*} \zeta_{2} \oplus \overline{I_{q}^{*} \zeta_{2}}$). Here the modules $H_{q}, H_{q} \zeta_{2}, H_{q}^{*}, H_{q}^{*} \zeta_{2}$, $\overline{I_{q}}, \overline{I_{q} \zeta_{2}}, \overline{I_{q}^{*}}$ and $\overline{I_{q}^{*} \zeta_{2}}$ are those given in (1.2) and (1.3).

Proof of Theorem I. For $q=0$, the theorem is shown in [11] (cf. [3], [1]). For $q=1,2$, Proposition 3.4 says that $E_{13}^{s, t}\left(Q^{\wedge q} \wedge V(1)\right)=0$ for $s>12$, and so $E_{13}^{s, t}\left(Q^{\wedge q} \wedge V(1)\right)=E_{\infty}^{s, t}\left(Q^{\wedge q} \wedge V(1)\right)$ since the differential $d_{r}=0$ for $r \geq 13$. The homotopy group $\pi_{k}\left(Q^{\wedge q} \wedge V(1)\right)$ for each $k \in \mathbf{Z}$ is a $\mathbf{Z} / 3$-vector space since $Q^{\wedge q} \wedge V(1)$ is a $V(0)$-module spectrum. Therefore, there is no extension problem and we obtain the theorem from Proposition 3.4.

References

[1] P. Goerss, H.-W. Henn and M. Mahowald, The homotopy of $L_{2} V(1)$ for the prime 3, Proceedings of the International Conference on Algebraic Topology, The Isle of Skye, 2001 (to appear).
[2] P. Goerss, H.-W. Henn, M. Mahowald and C. Rezk, A resolution of the $K(2)$-local sphere (preprint).
[3] H.-W. Henn, Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups, Duke Math. J. 91 (1998), 561-585.
[4] M. J. Hopkins, M. E. Mahowald and H. Sadofsky, Constructions of elements in Picard group, Contem. Math. 158 (1994), 89-126.
[5] M. Hovey and H. Sadofsky, Invertible spectra in the $E(n)$-local stable homotopy category, J. London Math. Soc. 60 (1999), 284-302.
[6] I. Ichigi and K. Shimomura, $E(2)$-invertible spectra smashing with the Smith-Toda spectrum $V(1)$ at the prime 3, Proc. Amer. Math. Soc. (to appear).
[7] I. Ichigi and K. Shimomura, The homotopy groups of $L_{2} V\left(1 \frac{1}{2}\right)$ and an invertible spectrum at the prime three (preprint).
[8] Y. Kamiya and K. Shimomura, A relation between the Picard group of the $E(n)$-local homotopy category and $E(n)$-based Adams spectral sequence, Proceedings of the Northwestern University Algebraic Topology Conference, 2002, Contem. Math. Ser. Amer. Math. Soc. (to appear).
[9] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. Math. 106 (1977), 469-516.
[10] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.
[11] K. Shimomura, The homotopy groups of the L_{2}-localized Toda-Smith spectrum $V(1)$ at the prime 3, Trans. Amer. Math. Soc. 349 (1997), 1821-1850.
[12] K. Shimomura, The homotopy groups of the L_{2}-localized mod 3 Moore spectrum, J. Math. Soc. Japan 52 (2000), 65-90.
[13] K. Shimomura, On the action of β_{1} in the stable homotopy of spheres at the prime 3 , Hiroshima Math. J. 30 (2000), 345-362.
[14] K. Shimomura and X. Wang, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 3 , Topology 41 (2002), 1183-1198.

[^0]: 2000 Mathematics Subject Classification: 55Q99.

