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Abstract 

Using the complete discrimination system for polynomial, we give the 
classification of single traveling wave solutions to the ( )nmK ,  

equation for 1=m  and .2=n  

1. Introduction 

The classifications of single traveling wave solutions to some nonlinear 
differential equations have been obtained extensively by the complete 
discrimination system for polynomial method proposed by Liu [1-3]. In the 
present paper, we consider the ( )nmK ,  equation [4, 5], which reads as 
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where m, n are parameters. We will give the classification of single traveling 
wave solutions to the ( )nmK ,  equation for 1=m  and .2=n  

2. Classification of Traveling Wave Solutions 

In order to obtain the traveling wave solutions, we take a wave 
transformation ( )ξ= uu  and ,ktx −=ξ  the ( )nmK ,  equation is reduced to 

the following ODE: 

 ( ) ( ) .0=′″+′+′− nm uuauk  (2) 

Integrating equation (2) once and let ,nuw =  we have: 
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where 0C  is an integral constant. Multiplying the both sides of equation (3) 

by w′  and integrating it once, we can obtain 
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where 1C  is an integral constant. Owing to ,nuw =  the solutions of u can 

be given from 
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The classifications of single traveling wave solutions to the ( )nmK ,  

equation for some values of m and n by using the discrimination system are 
the following: 

In the present paper, we consider 1=m  and .2=n  

Case 1. .01 =C  The corresponding solutions are 

 ( ) ( ) .2
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Case 2. .01 ≠C  Performing the transformation ,3
3
1

uakt ⎟
⎠
⎞⎜

⎝
⎛ −=  the 

general solution can be obtained from the following quadrature: 
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According to the complete discrimination system (8) for polynomial 
( ),tF  there exist four cases to be discussed: 

Case 2.1. .0,0 <=Δ D  Then we have ( ) ( ) ( ),2 β−α−= tttF  where 

α, β are real numbers. 

When ,α>β  
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When ,α<β  
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Case 2.2. ,0=Δ  .0=D  Then we have ( ) ( ) .3α−= ttF  The 

corresponding solutions are: 
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Case 2.3. .0,0 <>Δ D  Then we have ( ) ( ) ( ) ( ).γ−β−α−= ttttF  

Case 2.4. .0<Δ  Then we have ( ) ( ) ( ).2 qpttttF ++α−=  

For Cases 2.3 and 2.4, the corresponding solutions can be expressed by 
hyper-elliptic functions or hyper-elliptic integral. We omit them for 
simplicity. 
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