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Abstract 

The neutrix composition ( )( )xfF  of a distribution ( )xF  and a locally 

summable function ( )xf  is said to exist and be equal to the 

distribution ( ),xh  if the neutrix limit of the sequence ( )( ){ }xfFn  is 

equal to ( ),xh  where ( ) ( ) ( )xxFxF nn δ∗=  and ( ){ }xnδ  is a certain 

sequence of infinitely differentiable functions converging to the Dirac 
delta-function ( ).xδ  It is proved that if ( )xG ms,  denotes the 

distribution ( )( ),ln 1 sm x−
+  then the neutrix composition ( )r

ms xG +,  
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( )( )∫ ρ=
1
0, ln dvvvvc sis

is  

for ,...,,2,1,0 si =  and B denotes the Beta function. 

In the following, we let D  be the space of infinitely differentiable 
functions ϕ with compact support and let [ ]ba,D  be the space of infinitely 

differentiable functions with support contained in the interval [ ]., ba  We let 

D′  be the space of distributions defined on D  and let [ ]ba,D′  be the space 

of distributions defined on [ ]., baD   

Now let ( )xρ  be a function in D  having the following properties: 

  (i) ( ) 0=ρ x  for ,1≥x  

 (ii) ( ) ,0≥ρ x  

(iii) ( ) ( ),xx −ρ=ρ  

(iv) ( )∫− =ρ
1
1

.1dxx  

Putting ( ) ( )nxnxn ρ=δ  for ...,,2,1=n  it follows that ( ){ }xnδ  is a 

regular sequence of infinitely differentiable functions converging to the Dirac 
delta-function ( ).xδ  Further, if F is a distribution in D′  and ( ) =xFn  

( ) ( ) ,, xtxF nδ−  then ( ){ }xFn  is a regular sequence of infinitely 

differentiable functions converging to ( ).xF  

Now let ( )xf  be an infinitely differentiable function having a single 

simple root at the point .0xx =  Gel’fand and Shilov defined the distribution 
( ) ( )( )xfrδ  by the equation 

( ) ( )( ) ( ) ( ) ( ),11
0

0
xxdx

d
xfxfxf

r
r −δ⎥⎦

⎤
⎢⎣
⎡

′′=δ  

for ...,,2,1,0=r  see [8]. 

In order to give a more general definition for the composition of 
distributions, the following definition for the neutrix composition of 
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distributions was given in [2] and was originally called the composition of 
distributions. 

Definition 1. Let F be a distribution in D′  and let f be a locally 
summable function. We say that the neutrix composition ( )( )xfF  exists and 

is equal to h on the open interval ( )ba,  if 

( )( ) ( ) ( ) ( )∫
∞

∞−∞→
ϕ=ϕ− xxhdxxxfFN nn

,lim  

for all ϕ in [ ],, baD  where ( ) ( ) ( )xxFxF nn δ∗=  for ...,2,1=n  and N is 

the neutrix, see [1], having domain N ′  the positive integers and range N ′′  
the real numbers, with negligible functions which are finite linear sums of the 
functions 

...,2,1,0:ln,ln 1 =>λ−λ rnnn rr  

and all functions which converge to zero in the usual sense as n tends to 
infinity. 

In particular, we say that the composition ( )( )xfF  exists and is equal to 

h on the open interval ( )ba,  if 

( )( ) ( ) ( ) ( )∫
∞

∞−∞→
ϕ=ϕ xxhdxxxfFnn

,lim  

for all ϕ in [ ]., baD  

Note that taking the neutrix limit of a function ( ),nf  is equivalent to 

taking the usual limit of Hadamard’s finite part of ( ).nf  

We need the following lemma, which can be easily proved by induction: 

Lemma 1. 
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for ....,2,1,0=s  
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The following theorems were proved in [2], [4], [5], [6] and [7], 
respectively. 

Theorem 1. If ( )xFλ  denotes the distribution ,λ−x  then the neutrix 

composition ( )λ−
+λ

rxF  exists and 

( ) ( ) ( )
( )

( )( )xrrxF r
r

r 1
1

!12
cosec 1 −

−
λ−

+λ δ
−

πλπλ−
=  

for ...,2,1,0 −−≠λ<λ  and ....,2,1=r  

Theorem 2. If ( )xFs  denotes the distribution ,sx−−  then the neutrix 

composition ( )r
s xF +  exists and 

 ( ) ( ) ( )
( )

( )( )xrsr
cxF rs

srs
r

s
1

!1
1 −

+

+ δ
−

ρ−
=  (1) 

for ...,,2,1, =sr  where ( ) ( )∫ ρ=ρ
1
0

.ln dtttc  

Note that in this theorem, the distribution sx−−  is defined by 

( )( )

( ) ,!1
ln

−
−= −−

− s
xx

s
s  

for ....,2,1=s  

Theorem 3. If ( )xF m,λ  denotes the distribution ,ln +
λ
+ xx m  then the 

neutrix composition ( )μ+λ xF m,  exists and 

( ) +
λμ
+

μ
+λ μ= xxxF mm

m ln,  

for 0,0 >μ<λ  and ....,2,1, −−≠λμλ  

Theorem 4. If ( )xF ms,  denotes the distribution ,ln +
−
+ xx ms  then the 

neutrix composition ( )μ+xF ms,  exists and 
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( ) +
μ−

+
μ
+ μ= xxxF msm

ms ln,  

for 0...,,2,1...,,2,1,0 >μ== sm  and ....,2,1≠μs  

Theorem 5. If ( )xF s,λ  denotes the distribution ,ln −
λ
− xx s  then the 

neutrix composition ( )λ−
+λ

r
s xF ,  exists and 
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r
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for ...,2,1...,,2,1,0 =−−≠λ<λ r  and ...,,2,1,0=s  where 

( )( )∫ ρ=
1

0, ln dvvvvc mim
im  

for si ...,,2,1,0=  and ,1 mm −<λ<−−  for ....,2,1=m  

In the particular case ,0=m  we have 
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1
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1  

In the following, the distribution −
−
− xx mln1  is defined by 

( )
1

lnln
1

1
+

′
−= −

+

−
−
− m

xxx
m

m  

for ...,2,1=m  and the distribution −
−−

− xx ms ln1  is defined inductively by 

the equation 

( )
s

xxxmxxx
msms

ms
′+

= −
−
−−

−−−
−

−
−−

−
lnlnln

11
1  

for ....,2,1, =ms  Note that this is not the same as Gel’fand and Shilov’s 

definition, see [8]. 
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Putting ( ) ( )( ),ln 1
,

sm
ms xxG −

+=  for ...,,2,1, =ms  we see that 

( )xG ms,  is of the form 

( ) ∑
=

−
−
−=

m

i

is
imsms xxaxG

0
,,, ,ln  

for ...,,2,1, =ms  where 0,, =imsa  if .smi −≤  

In particular, 

 ( ) ( ) −
−
−+−= xxmxG m

m ln1 1
,1  (2) 

for ...,2,1=m  and 

 ( ) ( ) ( ) ( ) ,ln!121!121, −
−
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−
− −−−φ−= xxsxssxG ss

s  (3) 
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We first of all prove 

Theorem 6. The neutrix composition ( )r
ms xG +,  exists and 
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for ...,,2,1,, =msr  where 

( )( )∫ ρ=
1

0, ln dvvvvc sis
is  

for ....,,2,1,0 si =  

In particular 
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Proof. Putting ( ) ( ) ( ),,,, xxGxG nmsmsn δ∗=  we have 

 ( ) ( ) ( )ttxGxG nmsmsn δ−= ,,,,  
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and it follows that 
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Now let ϕ be an arbitrary function in .D  We may suppose that ( )xϕ  is in 

[ ],, baD  where .0 ba <<  By Taylor’s Theorem, we have 

( )
( )( ) ( )( )

( )∑
−
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1

0
,!!

0rs
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k
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where .10 <ξ<  We therefore need to evaluate 
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If now ,1 bn r <−  we have 
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−
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Putting ,vnt =  we have 
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0
1lnln1

a
smkss
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and it follows that 

 ( ) ,0lim =−
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for ....,2,1,0=k  

Further, putting ,unxr =  we have 
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It follows that 
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When ,1−= rsk  we have from equation (9), 
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Putting ,vwu =  we have 
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where ( )μλ,B  denotes the Beta function and 
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+
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for ....,2,1,0, =ji  It now follows from equations (11) and (12) that 
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When ,rsk =  we have from equation (9) that 
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and so 
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Further, putting vnt =  again, we have 
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( ) ( )( ) ( ) ( )( )∫ ∫ δξϕ−= +0 1
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for arbitrary ( )xϕ  in D  and equation (4) follows. 

Equation (5) follows on noting that 0,1 =ic  for 1...,,2,1,0 −= mi  

and 

( ) ( ).1,111,1 1,00,0 BB −==  

We now prove the following generalization of equation (1). 

Theorem 7. If ( )xF ms,  denotes the distribution ,ln −
−
− xx ms  then the 

neutrix composition ( )r
ms xF +,  exists for ....,2,1,, =msr  
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In particular, 
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Proof. We note first of all that from equation (2), we have 
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and equation (18) follows. This completes the proof of the theorem. 
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