Volume 5, Number 1, 2013, Pages 37-48

Published Online: January 2013

Available online at http://pphmj.com/journals/ijaota.htm Published by Pushpa Publishing House, Allahabad, INDIA

ON THE COMPOSITION OF THE DISTRIBUTIONS

 $x_{-}^{-s} \ln^m x_{-}$ **AND** x_{+}^{r}

Brian Fisher

Department of Mathematics University of Leicester Leicester, LE1 7RH, England

e-mail: fbr@le.ac.uk

Abstract

The neutrix composition F(f(x)) of a distribution F(x) and a locally summable function f(x) is said to exist and be equal to the distribution h(x), if the neutrix limit of the sequence $\{F_n(f(x))\}$ is equal to h(x), where $F_n(x) = F(x) * \delta_n(x)$ and $\{\delta_n(x)\}$ is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$. It is proved that if $G_{s,m}(x)$ denotes the distribution $(\ln^{m+1} x_{-})^{(s)}$, then the neutrix composition $G_{s,m}(x_{+}^{r})$ exists and

$$G_{s,m}(x_+^r) = \sum_{i=0}^{m+1} {m+1 \choose i} \frac{(-1)^{rs+s-1} c_{s,i} B_{0,m-i+1}(s,1)}{r(rs-1)!} \delta^{(rs-1)}(x),$$

for r, s, m = 1, 2, ..., where

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 46F10.

Keywords and phrases: distribution, Dirac-delta function, neutrix, neutrix limit, neutrix composition of distributions.

Communicated by Massimiliano Ferrara

Received February 23, 2012

38 Brian Fisher

$$c_{s,i} = \int_0^1 v^s \ln^i v \rho^{(s)}(v) dv$$

for i = 0, 1, 2, ..., s, and B denotes the Beta function.

In the following, we let \mathcal{D} be the space of infinitely differentiable functions φ with compact support and let $\mathcal{D}[a, b]$ be the space of infinitely differentiable functions with support contained in the interval [a, b]. We let \mathcal{D}' be the space of distributions defined on \mathcal{D} and let $\mathcal{D}'[a, b]$ be the space of distributions defined on $\mathcal{D}[a, b]$.

Now let $\rho(x)$ be a function in \mathcal{D} having the following properties:

- (i) $\rho(x) = 0$ for $|x| \ge 1$,
- (ii) $\rho(x) \ge 0$,
- (iii) $\rho(x) = \rho(-x)$,

(iv)
$$\int_{-1}^{1} \rho(x) dx = 1$$
.

Putting $\delta_n(x) = n\rho(nx)$ for n = 1, 2, ..., it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$. Further, if F is a distribution in \mathcal{D}' and $F_n(x) = \langle F(x-t), \delta_n(x) \rangle$, then $\{F_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to F(x).

Now let f(x) be an infinitely differentiable function having a single simple root at the point $x = x_0$. Gel'fand and Shilov defined the distribution $\delta^{(r)}(f(x))$ by the equation

$$\delta^{(r)}(f(x)) = \frac{1}{|f'(x_0)|} \left[\frac{1}{|f'(x)|} \frac{d}{dx} \right]^r \delta(x - x_0),$$

for r = 0, 1, 2, ..., see [8].

In order to give a more general definition for the composition of distributions, the following definition for the neutrix composition of distributions was given in [2] and was originally called the composition of distributions.

Definition 1. Let F be a distribution in \mathcal{D}' and let f be a locally summable function. We say that the neutrix composition F(f(x)) exists and is equal to h on the open interval (a, b) if

$$N - \lim_{n \to \infty} \int_{-\infty}^{\infty} F_n(f(x)) \varphi(x) dx = \langle h(x), \varphi(x) \rangle$$

for all φ in $\mathcal{D}[a, b]$, where $F_n(x) = F(x) * \delta_n(x)$ for n = 1, 2, ... and N is the neutrix, see [1], having domain N' the positive integers and range N'' the real numbers, with negligible functions which are finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n, \ln^r n : \lambda > 0, \quad r = 1, 2, ...$$

and all functions which converge to zero in the usual sense as n tends to infinity.

In particular, we say that the composition F(f(x)) exists and is equal to h on the open interval (a, b) if

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} F_n(f(x)) \varphi(x) dx = \langle h(x), \varphi(x) \rangle$$

for all φ in $\mathcal{D}[a, b]$.

Note that taking the neutrix limit of a function f(n), is equivalent to taking the usual limit of Hadamard's finite part of f(n).

We need the following lemma, which can be easily proved by induction:

Lemma 1.

$$\int_{0}^{1} t^{i} \rho^{(s)}(t) dt = \begin{cases} 0, & 0 \le i < s, \\ \frac{(-1)^{s} s!}{2}, & i = s \end{cases}$$

for s = 0, 1, 2,

The following theorems were proved in [2], [4], [5], [6] and [7], respectively.

Theorem 1. If $F_{\lambda}(x)$ denotes the distribution x_{-}^{λ} , then the neutrix composition $F_{\lambda}(x_{+}^{-r/\lambda})$ exists and

$$F_{\lambda}(x_{+}^{-r/\lambda}) = \frac{(-1)^{r-1}\pi\lambda\operatorname{cosec}(\pi\lambda)}{2r(r-1)!}\delta^{(r-1)}(x)$$

for $\lambda < 0$, $\lambda \neq -1$, -2, ... and r = 1, 2,

Theorem 2. If $F_s(x)$ denotes the distribution x_-^{-s} , then the neutrix composition $F_s(x_+^r)$ exists and

$$F_s(x_+^r) = \frac{(-1)^{rs+s} c(\rho)}{r(rs-1)!} \delta^{(rs-1)}(x)$$
 (1)

for $r, s = 1, 2, ..., where <math>c(\rho) = \int_0^1 \ln t \rho(t) dt$.

Note that in this theorem, the distribution x_{-}^{-s} is defined by

$$x_{-}^{-s} = -\frac{(\ln x_{-})^{(s)}}{(s-1)!},$$

for s = 1, 2,

Theorem 3. If $F_{\lambda,m}(x)$ denotes the distribution $x_+^{\lambda} \ln^m x_+$, then the neutrix composition $F_{\lambda,m}(x_+^{\mu})$ exists and

$$F_{\lambda, m}(x_+^{\mu}) = \mu^m x_+^{\lambda \mu} \ln^m x_+$$

for $\lambda < 0$, $\mu > 0$ and λ , $\lambda \mu \neq -1$, -2,

Theorem 4. If $F_{s,m}(x)$ denotes the distribution $x_+^{-s} \ln^m x_+$, then the neutrix composition $F_{s,m}(x_+^{\mu})$ exists and

On the Composition of the Distributions $x_{-}^{-s} \ln^m x_{-}$ and x_{+}^{r} 41

$$F_{s,m}(x_+^{\mu}) = \mu^m x_+^{-s\mu} \ln^m x_+$$

for $m = 0, 1, 2, ..., s = 1, 2, ..., \mu > 0$ and $s\mu \neq 1, 2,$

Theorem 5. If $F_{\lambda, s}(x)$ denotes the distribution $x_-^{\lambda} \ln^s x_-$, then the neutrix composition $F_{\lambda, s}(x_+^{-r/\lambda})$ exists and

$$F_{\lambda, s}(x_+^{-r/\lambda}) =$$

$$\frac{(-1)^r \lambda}{r!} \sum_{i=0}^s \sum_{j=0}^i {i \choose j} {s \choose i} \frac{c_{m,i} B_{s-i,0}(\lambda+1,m) B_{0,i-j}(-\lambda,\lambda+m+1)}{(m-1)!} \delta^{(r-1)}(x),$$

for $\lambda < 0, \lambda \neq -1, -2, ..., r = 1, 2, ...$ and s = 0, 1, 2, ..., where

$$c_{m,i} = \int_0^1 v^m \ln^i v \rho^{(m)}(v) dv$$

for i = 0, 1, 2, ..., s and $-m - 1 < \lambda < -m$, for m = 1, 2, ...

In the particular case m = 0, we have

$$F_{\lambda, s}(x_{+}^{-r/\lambda}) = \frac{(-1)^{r} \lambda}{r!} \sum_{j=0}^{s} {s \choose j} c_{0, j} B_{0, s-j}(-\lambda, \lambda + 1) \delta^{(r-1)}(x).$$

In the following, the distribution $x_{-}^{-1} \ln^{m} x_{-}$ is defined by

$$x_{-}^{-1} \ln^{m} x_{-} = -\frac{\left(\ln^{m+1} x_{-}\right)'}{m+1}$$

for m = 1, 2, ... and the distribution $x_{-}^{-s-1} \ln^{m} x_{-}$ is defined inductively by the equation

$$x_{-}^{-s-1} \ln^{m} x_{-} = \frac{m x_{-}^{-s-1} \ln^{m-1} x_{-} + (x_{-}^{-s} \ln^{m} x_{-})'}{s}$$

for s, m = 1, 2, ... Note that this is not the same as Gel'fand and Shilov's definition, see [8].

Putting $G_{s,m}(x) = (\ln^{m+1} x_-)^{(s)}$, for s, m = 1, 2, ..., we see that $G_{s,m}(x)$ is of the form

$$G_{s,m}(x) = \sum_{i=0}^{m} a_{s,m,i} x_{-}^{-s} \ln^{i} x_{-},$$

for s, m = 1, 2, ..., where $a_{s, m, i} = 0$ if $i \le m - s$.

In particular,

$$G_{1,m}(x) = -(m+1)x_{-}^{-1} \ln^m x_{-}$$
 (2)

for m = 1, 2, ... and

$$G_{s,1}(x) = 2(s-1)!\phi(s-1)x_{-}^{-s} - 2(s-1)!x_{-}^{-s}\ln x_{-},$$
(3)

for s = 1, 2, ..., where

$$\phi(s) = \begin{cases} \sum_{i=1}^{s} i^{-1}, & s \ge 1, \\ 0, & s = 0. \end{cases}$$

We first of all prove

Theorem 6. The neutrix composition $G_{s,m}(x_+^r)$ exists and

$$G_{s,m}(x_+^r) = \sum_{i=0}^{m+1} {m+1 \choose i} \frac{(-1)^{rs+s-1} c_{s,i} B_{0,m-i+1}(s,1)}{r(rs-1)!} \delta^{(rs-1)}(x), \tag{4}$$

for r, s, m = 1, 2, ..., where

$$c_{s,i} = \int_0^1 v^s \ln^i v \rho^{(s)}(v) dv$$

for i = 0, 1, 2, ..., s.

In particular

$$G_{1,m}(x_+^r) = \frac{(-1)^r (c_{1,m+1} - mc_{1,m})}{r!} \delta^{(r-1)}(x)$$
 (5)

for r, m = 1, 2,

On the Composition of the Distributions $x_{-}^{-s} \ln^m x_{-}$ and x_{+}^{r} 43

Proof. Putting $G_{n, s, m}(x) = G_{s, m}(x) * \delta_n(x)$, we have

$$G_{n, s, m}(x) = \langle G_{s, m}(x - t), \delta_{n}(t) \rangle$$

$$= (-1)^{s} \langle \ln^{m+1}(x - t)_{-}, \delta_{n}^{(s)}(t) \rangle$$

$$= \begin{cases} (-1)^{s} \int_{x}^{1/n} \ln^{m+1}(t - x) \delta_{n}^{(s)}(t) dt, & -1/n < x < 1/n, \\ (-1)^{s} \int_{-1/n}^{1/n} \ln^{m+1}(t - x) \delta_{n}^{(s)}(t) dt, & x < -1/n, \\ 0, & x > 1/n \end{cases}$$

and it follows that

$$G_{n, s, m}(x_{+}^{r}) = \begin{cases} (-1)^{s} \int_{x_{-}}^{1/n} \ln^{m+1}(t - x^{r}) \delta_{n}^{(s)}(t) dt, & 0 < x^{r} < 1/n, \\ (-1)^{s} \int_{0}^{1/n} \ln^{m+1} t \delta_{n}^{(s)}(t) dt, & x < 0, \\ 0, & x^{r} > 1/n. \end{cases}$$

Now let φ be an arbitrary function in \mathcal{D} . We may suppose that $\varphi(x)$ is in $\mathcal{D}[a, b]$, where a < 0 < b. By Taylor's Theorem, we have

$$\varphi(x) = \sum_{k=0}^{rs-1} \frac{\varphi^{(k)}(0)}{k!} x^k + \frac{\varphi^{(rs)}(\xi x)}{(rs)!} x^{rs},$$

where $0 < \xi < 1$. We therefore need to evaluate

$$N_{n\to\infty}^{-\lim} \langle G_{n, s, m}(x_{+}^{r}), \varphi(x) \rangle = N_{n\to\infty}^{-\lim} \sum_{k=0}^{rs-1} \frac{\varphi^{(k)}(0)}{k!} \int_{a}^{b} x^{k} G_{n, s, m}(x_{+}^{r}) dx$$

$$+ N_{n\to\infty}^{-\lim} \int_{a}^{b} \frac{x^{rs} \varphi^{(rs)}(\xi x)}{(rs)!} G_{n, s, m}(x_{+}^{r}) dx. \quad (6)$$

If now $n^{-1/r} < b$, we have

$$\int_{a}^{b} x^{k} G_{n, s, m}(x_{+}^{r}) dx = (-1)^{s} \int_{0}^{n^{-1/r}} x^{k} \int_{x^{r}}^{1/n} \ln^{m+1}(t - x^{r}) \delta_{n}^{(s)}(t) dt dx$$

$$+ (-1)^{s} \int_{a}^{0} x^{k} \int_{0}^{1/n} \ln^{m+1} t \delta_{n}^{(s)}(t) dt dx$$

$$= I_{k}(n) + J_{k}(n). \tag{7}$$

Putting nt = v, we have

$$J_k(n) = (-1)^s n^s \int_a^0 x^k \int_0^1 (\ln v - \ln n)^{m+1} \rho^{(s)}(v) dv dx$$

and it follows that

$$N - \lim_{n \to \infty} J_k(n) = 0, \tag{8}$$

for k = 0, 1, 2,

Further, putting $nx^r = u$, we have

$$I_{k}(n) = \frac{(-1)^{s} n^{s-(k+1)/r}}{r} \int_{0}^{1} u^{(k+1)/r-1} \int_{u}^{1} \ln^{m+1} \left(\frac{v}{n} - \frac{u}{n}\right) \rho^{(s)}(v) dv du$$

$$= \frac{(-1)^{s} n^{s-(k+1)/r}}{r} \int_{0}^{1} \rho^{(s)}(v) \int_{0}^{v} u^{(k+1)/r-1} \ln^{m+1} \left(\frac{v}{n} - \frac{u}{n}\right) du dv. \tag{9}$$

It follows that

$$N - \lim_{n \to \infty} I_k(n) = 0 \tag{10}$$

for k = 0, 1, 2, ..., rs - 2.

When k = rs - 1, we have from equation (9),

$$N - \lim_{n \to \infty} I_{rs-1} = \frac{(-1)^s}{r} \int_0^1 \rho(s)(v) \int_0^v u^{s-1} \ln^{m+1}(v-u) du \, dv. \tag{11}$$

Putting u = vw, we have

$$\int_{0}^{v} u^{s-1} \ln^{m+1}(v-u) du = v^{s} \int_{0}^{1} w^{s-1} [\ln v + \ln(1-w)]^{m+1} dw$$

$$= v^{s} \sum_{i=0}^{m+1} {m+1 \choose i} \ln^{i} v \int_{0}^{1} w^{s-1} \ln^{m-i+1}(1-w) dw$$

$$= v^{s} \sum_{i=0}^{m+1} {m+1 \choose i} B_{0,m-i+1}(s,1) \ln^{i} v, \qquad (12)$$

where $B(\lambda, \mu)$ denotes the Beta function and

$$B_{i,j}(\lambda, \mu) = \frac{\partial^{i+j}}{\partial^i \lambda \partial^j \mu} B(\lambda, \mu)$$

for $i, j = 0, 1, 2, \dots$ It now follows from equations (11) and (12) that

$$N_{n\to\infty}^{-\lim} I_{rs-1} = \frac{(-1)^s}{r} \sum_{i=0}^{m+1} {m+1 \choose i} B_{0, m-i+1}(s, 1) \int_0^1 v^s \ln^i v \rho^{(s)}(v) dv$$
$$= \frac{(-1)^s}{r} \sum_{i=0}^{m+1} {m+1 \choose i} c_{s, i} B_{0, m-i+1}(s, 1). \tag{13}$$

When k = rs, we have from equation (9) that

$$|I_{rs}(n)| = O(n^{-1/n} \ln^{m+1} n)$$

and so

$$\lim_{n \to \infty} \int_0^b x^{rs} \varphi^{(rs)}(\xi x) G_{n, s, m}(x_+^r) dx = 0.$$
 (14)

Further, putting nt = v again, we have

$$\int_{a}^{0} x^{rs} \varphi^{(rs)}(\xi x)(x) G_{n,s,m}(x_{+}^{r}) dx$$

$$= (-1)^{s} \int_{a}^{0} x^{rs} \varphi^{(rs)}(\xi x)(x) \int_{0}^{1/n} \ln^{m+1} t \delta_{n}^{(s)}(t) dt dx$$

$$= (-1)^{s} n^{s} \int_{a}^{0} x^{rs} \varphi^{(rs)}(\xi x)(x) \int_{0}^{1} (\ln v - \ln n)^{m+1} \rho^{(s)}(v) dv dx.$$

Thus

$$N - \lim_{n \to \infty} \int_{a}^{0} x^{rs} \varphi^{(rs)}(\xi x)(x) G_{n, s, m}(x_{+}^{r}) dx = 0$$
 (15)

and so it follows from equations (14) and (15) that

$$N - \lim_{n \to \infty} \int_{a}^{b} x^{rs} \varphi^{(rs)}(\xi x)(x) G_{n, s, m}(x_{+}^{r}) dx = 0.$$
 (16)

Now using equations (6) to (8), (10), (11), (13) and (16), we have

$$\begin{split} N &- \lim_{n \to \infty} \langle G_{n, s, m}(x_{+}^{r}), \varphi(x) \rangle \\ &= \sum_{i=0}^{m+1} {m+1 \choose i} \frac{(-1)^{s} c_{s, i} B_{0, m-i+1}(s, 1) \varphi^{(rs-1)}(0)}{r(rs-1)!} \\ &= \sum_{i=0}^{m+1} {m+1 \choose i} \frac{(-1)^{rs+s-1} c_{s, i} B_{0, m-i+1}(s, 1)}{r(rs-1)!} \langle \delta^{(rs-1)}(x), \varphi(x) \rangle \end{split}$$

for arbitrary $\varphi(x)$ in \mathcal{D} and equation (4) follows.

Equation (5) follows on noting that $c_{1,i} = 0$ for i = 0, 1, 2, ..., m-1 and

$$B_{0,0}(1, 1) = 1 = -B_{0,1}(1, 1).$$

We now prove the following generalization of equation (1).

Theorem 7. If $F_{s,m}(x)$ denotes the distribution $x_-^{-s} \ln^m x_-$, then the neutrix composition $F_{s,m}(x_+^r)$ exists for r, s, m = 1, 2, ...

On the Composition of the Distributions $x_{-}^{-s} \ln^m x_{-}$ and x_{+}^{r} 47

In particular,

$$F_{1,m}(x_+^r) = \sum_{i=0}^{m+1} {m+1 \choose i} \frac{(-1)^{r-1} c_{1,i} B_{0,m-i+1}(1,1)}{(m+1)r!} \delta^{(r-1)}(x)$$
 (17)

for r, m = 1, 2, ... and

$$F_{s+1,1}(x_+^r) = \sum_{i=0}^{2} {2 \choose i} \frac{(-1)^{rs+s} c_{s,i} B_{0,2-i}(s,1)}{2r(rs-1)!(s-1)!} \delta^{(rs-1)}(x) + \frac{(-1)^{rs+s} \phi(s-1) c(\rho)}{r(rs-1)!} \delta^{(rs-1)}(x).$$
(18)

Proof. We note first of all that from equation (2), we have

$$F_{1,m}(x_+^r) = -(m+1)^{-1}G_{1,m}(x_+)$$

and so equation (17) follows immediately.

Next, it follows from equations (1), (3) and (4) that

$$G_{s,1}(x_+^r) = 2(s-1)!\phi(s-1)F_s(x_+^r) - 2(s-1)!F_{s,1}(x_+^r)$$

$$= \frac{2(-1)^{rs+s}(s-1)!\phi(s-1)c(\rho)}{r(rs-1)!}\delta^{(rs-1)}(x) - 2(s-1)!F_{s,1}(x_+^r)$$

$$= \sum_{i=0}^{2} {2 \choose i} \frac{(-1)^{rs+s-1}c_{s,i}B_{0,2-i}(s,1)}{r(rs-1)!}\delta^{(rs-1)}(x)$$

and equation (18) follows. This completes the proof of the theorem.

References

- [1] J. G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math. 7 (1959), 291-398.
- [2] B. Fisher, On defining the change of variable in distributions, Rostock. Math. Kolloq. 28 (1985), 75-86.

- [3] B. Fisher, On defining the distribution $\delta^{(r)}(f(x))$, Rostock. Math. Kolloq. 23 (1993), 73-80.
- [4] B. Fisher, On defining the distribution $(x_+^r)_-^{-s}$, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 15 (1985), 119-129.
- [5] B. Fisher, On the composition of the distributions $x_+^{-s} \ln^m x_+$ and x_+^{μ} , Appl. Anal. Discrete Math. 4 (2009), 212-223.
- [6] B. Fisher, S. Orankitjaroen, T. Kraiweeradechachai, G. Sritanratana and K. Nonlaopon, On the composition of the distributions $x_+^{\lambda} \ln^m x_+$ and x_+^{μ} , East-West J. Math. 9(1) (2007), 69-79.
- [7] B. Fisher and A. Takaci, On the composition of the distributions x_{-}^{λ} and $(x_{+}^{-r/\lambda})$, submitted.
- [8] I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.