ON THE COMPOSITION OF THE DISTRIBUTIONS

$$
x_{-}^{-s} \ln ^{m} x_{-} \text {AND } x_{+}^{r}
$$

Brian Fisher

Department of Mathematics
University of Leicester
Leicester, LE1 7RH, England
e-mail: fbr@le.ac.uk

Abstract

The neutrix composition $F(f(x))$ of a distribution $F(x)$ and a locally summable function $f(x)$ is said to exist and be equal to the distribution $h(x)$, if the neutrix limit of the sequence $\left\{F_{n}(f(x))\right\}$ is equal to $h(x)$, where $F_{n}(x)=F(x) * \delta_{n}(x)$ and $\left\{\delta_{n}(x)\right\}$ is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$. It is proved that if $G_{s, m}(x)$ denotes the distribution $\left(\ln ^{m+1} x_{-}\right)^{(s)}$, then the neutrix composition $G_{s, m}\left(x_{+}^{r}\right)$ exists and $$
G_{s, m}\left(x_{+}^{r}\right)=\sum_{i=0}^{m+1}\binom{m+1}{i} \frac{(-1)^{r s+s-1} c_{s, i} B_{0, m-i+1}(s, 1)}{r(r s-1)!} \delta^{(r s-1)}(x),
$$ for $r, s, m=1,2, \ldots$, where © 2013 Pushpa Publishing House 2010 Mathematics Subject Classification: 46F10. Keywords and phrases: distribution, Dirac-delta function, neutrix, neutrix limit, neutrix composition of distributions.

Communicated by Massimiliano Ferrara

Received February 23, 2012

$$
c_{s, i}=\int_{0}^{1} v^{s} \ln ^{i} v \rho^{(s)}(v) d v
$$

for $i=0,1,2, \ldots, s$, and B denotes the Beta function.

In the following, we let \mathcal{D} be the space of infinitely differentiable functions φ with compact support and let $\mathcal{D}[a, b]$ be the space of infinitely differentiable functions with support contained in the interval $[a, b]$. We let \mathcal{D}^{\prime} be the space of distributions defined on \mathcal{D} and let $\mathcal{D}^{\prime}[a, b]$ be the space of distributions defined on $\mathcal{D}[a, b]$.

Now let $\rho(x)$ be a function in \mathcal{D} having the following properties:
(i) $\rho(x)=0$ for $|x| \geq 1$,
(ii) $\rho(x) \geq 0$,
(iii) $\rho(x)=\rho(-x)$,
(iv) $\int_{-1}^{1} \rho(x) d x=1$.

Putting $\delta_{n}(x)=n \rho(n x)$ for $n=1,2, \ldots$, it follows that $\left\{\delta_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$. Further, if F is a distribution in \mathcal{D}^{\prime} and $F_{n}(x)=$ $\left\langle F(x-t), \delta_{n}(x)\right\rangle$, then $\left\{F_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to $F(x)$.

Now let $f(x)$ be an infinitely differentiable function having a single simple root at the point $x=x_{0}$. Gel'fand and Shilov defined the distribution $\delta^{(r)}(f(x))$ by the equation

$$
\delta^{(r)}(f(x))=\frac{1}{\left|f^{\prime}\left(x_{0}\right)\right|}\left[\frac{1}{\left|f^{\prime}(x)\right|} \frac{d}{d x}\right]^{r} \delta\left(x-x_{0}\right)
$$

for $r=0,1,2, \ldots$, see [8].
In order to give a more general definition for the composition of distributions, the following definition for the neutrix composition of
distributions was given in [2] and was originally called the composition of distributions.

Definition 1. Let F be a distribution in \mathcal{D}^{\prime} and let f be a locally summable function. We say that the neutrix composition $F(f(x))$ exists and is equal to h on the open interval (a, b) if

$$
N_{n \rightarrow \infty}-\lim _{n \rightarrow \infty}^{\infty} F_{n}(f(x)) \varphi(x) d x=\langle h(x), \varphi(x)\rangle
$$

for all φ in $\mathcal{D}[a, b]$, where $F_{n}(x)=F(x) * \delta_{n}(x)$ for $n=1,2, \ldots$ and N is the neutrix, see [1], having domain N^{\prime} the positive integers and range $N^{\prime \prime}$ the real numbers, with negligible functions which are finite linear sums of the functions

$$
n^{\lambda} \ln ^{r-1} n, \ln ^{r} n: \lambda>0, \quad r=1,2, \ldots
$$

and all functions which converge to zero in the usual sense as n tends to infinity.

In particular, we say that the composition $F(f(x))$ exists and is equal to h on the open interval (a, b) if

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} F_{n}(f(x)) \varphi(x) d x=\langle h(x), \varphi(x)\rangle
$$

for all φ in $\mathcal{D}[a, b]$.
Note that taking the neutrix limit of a function $f(n)$, is equivalent to taking the usual limit of Hadamard's finite part of $f(n)$.

We need the following lemma, which can be easily proved by induction:

Lemma 1.

$$
\int_{0}^{1} t^{i} \rho^{(s)}(t) d t= \begin{cases}0, & 0 \leq i<s, \\ \frac{(-1)^{s} s!}{2}, & i=s\end{cases}
$$

for $s=0,1,2, \ldots$.

The following theorems were proved in [2], [4], [5], [6] and [7], respectively.

Theorem 1. If $F_{\lambda}(x)$ denotes the distribution x_{-}^{λ}, then the neutrix composition $F_{\lambda}\left(x_{+}^{-r / \lambda}\right)$ exists and

$$
F_{\lambda}\left(x_{+}^{-r / \lambda}\right)=\frac{(-1)^{r-1} \pi \lambda \operatorname{cosec}(\pi \lambda)}{2 r(r-1)!} \delta^{(r-1)}(x)
$$

for $\lambda<0, \lambda \neq-1,-2, \ldots$ and $r=1,2, \ldots$.
Theorem 2. If $F_{S}(x)$ denotes the distribution x_{-}^{-s}, then the neutrix composition $F_{S}\left(x_{+}^{r}\right)$ exists and

$$
\begin{equation*}
F_{s}\left(x_{+}^{r}\right)=\frac{(-1)^{r s+s} c(\rho)}{r(r s-1)!} \delta^{(r s-1)}(x) \tag{1}
\end{equation*}
$$

for $r, s=1,2, \ldots$, where $c(\rho)=\int_{0}^{1} \ln t \rho(t) d t$.

Note that in this theorem, the distribution x_{-}^{-S} is defined by

$$
x_{-}^{-s}=-\frac{\left(\ln x_{-}\right)^{(s)}}{(s-1)!}
$$

for $s=1,2, \ldots$.
Theorem 3. If $F_{\lambda, m}(x)$ denotes the distribution $x_{+}^{\lambda} \ln ^{m} x_{+}$, then the neutrix composition $F_{\lambda, m}\left(x_{+}^{\mu}\right)$ exists and

$$
F_{\lambda, m}\left(x_{+}^{\mu}\right)=\mu^{m} x_{+}^{\lambda \mu} \ln ^{m} x_{+}
$$

for $\lambda<0, \mu>0$ and $\lambda, \lambda \mu \neq-1,-2, \ldots$.
Theorem 4. If $F_{s, m}(x)$ denotes the distribution $x_{+}^{-s} \ln ^{m} x_{+}$, then the neutrix composition $F_{s, m}\left(x_{+}^{\mu}\right)$ exists and

$$
F_{s, m}\left(x_{+}^{\mu}\right)=\mu^{m} x_{+}^{-s \mu} \ln ^{m} x_{+}
$$

for $m=0,1,2, \ldots, s=1,2, \ldots, \mu>0$ and $s \mu \neq 1,2, \ldots$.
Theorem 5. If $F_{\lambda, s}(x)$ denotes the distribution $x_{-}^{\lambda} \ln ^{s} x_{-}$, then the neutrix composition $F_{\lambda, s}\left(x_{+}^{-r / \lambda}\right)$ exists and

$$
\begin{aligned}
& F_{\lambda, s}\left(x_{+}^{-r / \lambda}\right)= \\
& \frac{(-1)^{r} \lambda}{r!} \sum_{i=0}^{s} \sum_{j=0}^{i}\binom{i}{j}\binom{s}{i} \frac{c_{m, i} B_{s-i, 0}(\lambda+1, m) B_{0, i-j}(-\lambda, \lambda+m+1)}{(m-1)!} \delta^{(r-1)}(x),
\end{aligned}
$$

for $\lambda<0, \lambda \neq-1,-2, \ldots, r=1,2, \ldots$ and $s=0,1,2, \ldots$, where

$$
c_{m, i}=\int_{0}^{1} v^{m} \ln ^{i} v \rho^{(m)}(v) d v
$$

for $i=0,1,2, \ldots, s$ and $-m-1<\lambda<-m$, for $m=1,2, \ldots$.
In the particular case $m=0$, we have

$$
F_{\lambda, s}\left(x_{+}^{-r / \lambda}\right)=\frac{(-1)^{r} \lambda}{r!} \sum_{j=0}^{s}\binom{s}{j} c_{0, j} B_{0, s-j}(-\lambda, \lambda+1) \delta^{(r-1)}(x)
$$

In the following, the distribution $x_{-}^{-1} \ln ^{m} x_{-}$is defined by

$$
x_{-}^{-1} \ln ^{m} x_{-}=-\frac{\left(\ln ^{m+1} x_{-}\right)^{\prime}}{m+1}
$$

for $m=1,2, \ldots$ and the distribution $x_{-}^{-s-1} \ln ^{m} x_{-}$is defined inductively by the equation

$$
x_{-}^{-s-1} \ln ^{m} x_{-}=\frac{m x_{-}^{-s-1} \ln ^{m-1} x_{-}+\left(x_{-}^{-s} \ln ^{m} x_{-}\right)^{\prime}}{s}
$$

for $s, m=1,2, \ldots$. Note that this is not the same as Gel'fand and Shilov's definition, see [8].

Putting $G_{s, m}(x)=\left(\ln ^{m+1} x_{-}\right)^{(s)}$, for $s, m=1,2, \ldots$, we see that $G_{s, m}(x)$ is of the form

$$
G_{S, m}(x)=\sum_{i=0}^{m} a_{s, m, i} x_{-}^{-s} \ln ^{i} x_{-},
$$

for $s, m=1,2, \ldots$, where $a_{s, m, i}=0$ if $i \leq m-s$.
In particular,

$$
\begin{equation*}
G_{1, m}(x)=-(m+1) x_{-}^{-1} \ln ^{m} x_{-} \tag{2}
\end{equation*}
$$

for $m=1,2, \ldots$ and

$$
\begin{equation*}
G_{s, 1}(x)=2(s-1)!\phi(s-1) x_{-}^{-s}-2(s-1)!x_{-}^{-s} \ln x_{-}, \tag{3}
\end{equation*}
$$

for $s=1,2, \ldots$, where

$$
\phi(s)= \begin{cases}\sum_{i=1}^{s} i^{-1}, & s \geq 1 \\ 0, & s=0\end{cases}
$$

We first of all prove
Theorem 6. The neutrix composition $G_{s, m}\left(x_{+}^{r}\right)$ exists and

$$
\begin{equation*}
G_{s, m}\left(x_{+}^{r}\right)=\sum_{i=0}^{m+1}\binom{m+1}{i} \frac{(-1)^{r s+s-1} c_{s, i} B_{0, m-i+1}(s, 1)}{r(r s-1)!} \delta^{(r s-1)}(x), \tag{4}
\end{equation*}
$$

for $r, s, m=1,2, \ldots$, where

$$
c_{s, i}=\int_{0}^{1} v^{s} \ln ^{i} v \rho^{(s)}(v) d v
$$

for $i=0,1,2, \ldots$, s.
In particular

$$
\begin{equation*}
G_{1, m}\left(x_{+}^{r}\right)=\frac{(-1)^{r}\left(c_{1, m+1}-m c_{1, m}\right)}{r!} \delta^{(r-1)}(x) \tag{5}
\end{equation*}
$$

for $r, m=1,2, \ldots$.

Proof. Putting $G_{n, s, m}(x)=G_{s, m}(x) * \delta_{n}(x)$, we have

$$
\begin{aligned}
G_{n, s, m}(x) & =\left\langle G_{s, m}(x-t), \delta_{n}(t)\right\rangle \\
& =(-1)^{s}\left\langle\ln ^{m+1}(x-t)_{-}, \delta_{n}^{(s)}(t)\right\rangle \\
& = \begin{cases}(-1)^{s} \int_{x}^{1 / n} \ln ^{m+1}(t-x) \delta_{n}^{(s)}(t) d t, & -1 / n<x<1 / n \\
(-1)^{s} \int_{-1 / n}^{1 / n} \ln ^{m+1}(t-x) \delta_{n}^{(s)}(t) d t, & x<-1 / n \\
0, & x>1 / n\end{cases}
\end{aligned}
$$

and it follows that

$$
G_{n, s, m}\left(x_{+}^{r}\right)= \begin{cases}(-1)^{s} \int_{x^{r}}^{1 / n} \ln ^{m+1}\left(t-x^{r}\right) \delta_{n}^{(s)}(t) d t, & 0<x^{r}<1 / n \\ (-1)^{s} \int_{0}^{1 / n} \ln ^{m+1} t \delta_{n}^{(s)}(t) d t, & x<0, \\ 0, & x^{r}>1 / n\end{cases}
$$

Now let φ be an arbitrary function in \mathcal{D}. We may suppose that $\varphi(x)$ is in $\mathcal{D}[a, b]$, where $a<0<b$. By Taylor's Theorem, we have

$$
\varphi(x)=\sum_{k=0}^{r s-1} \frac{\varphi^{(k)}(0)}{k!} x^{k}+\frac{\varphi^{(r s)}(\xi x)}{(r s)!} x^{r s}
$$

where $0<\xi<1$. We therefore need to evaluate

$$
\begin{align*}
N-\lim _{n \rightarrow \infty}\left\langle G_{n, s, m}\left(x_{+}^{r}\right), \varphi(x)\right\rangle= & N_{n \rightarrow \infty}-\lim _{k=0}^{r s-1} \sum^{(k)}(0) \\
k! & \int_{a}^{b} x^{k} G_{n, s, m}\left(x_{+}^{r}\right) d x \tag{6}\\
& +N_{n \rightarrow \infty}-\lim _{n \rightarrow} \int_{a}^{b} \frac{x^{r s} \varphi^{(r s)}(\xi x)}{(r s)!} G_{n, s, m}\left(x_{+}^{r}\right) d x
\end{align*}
$$

If now $n^{-1 / r}<b$, we have

$$
\begin{align*}
\int_{a}^{b} x^{k} G_{n, s, m}\left(x_{+}^{r}\right) d x= & (-1)^{s} \int_{0}^{n^{-1 / r}} x^{k} \int_{x^{r}}^{1 / n} \ln ^{m+1}\left(t-x^{r}\right) \delta_{n}^{(s)}(t) d t d x \\
& +(-1)^{s} \int_{a}^{0} x^{k} \int_{0}^{1 / n} \ln ^{m+1} t \delta_{n}^{(s)}(t) d t d x \\
= & I_{k}(n)+J_{k}(n) . \tag{7}
\end{align*}
$$

Putting $n t=v$, we have

$$
J_{k}(n)=(-1)^{s} n^{s} \int_{a}^{0} x^{k} \int_{0}^{1}(\ln v-\ln n)^{m+1} \rho^{(s)}(v) d v d x
$$

and it follows that

$$
\begin{equation*}
N_{n \rightarrow \infty}-\lim _{k} J_{k}(n)=0, \tag{8}
\end{equation*}
$$

for $k=0,1,2, \ldots$.
Further, putting $n x^{r}=u$, we have

$$
\begin{align*}
I_{k}(n) & =\frac{(-1)^{s} n^{s-(k+1) / r}}{r} \int_{0}^{1} u^{(k+1) / r-1} \int_{u}^{1} \ln ^{m+1}\left(\frac{v}{n}-\frac{u}{n}\right) \rho^{(s)}(v) d v d u \\
& =\frac{(-1)^{s} n^{s-(k+1) / r}}{r} \int_{0}^{1} \rho^{(s)}(v) \int_{0}^{v} u^{(k+1) / r-1} \ln ^{m+1}\left(\frac{v}{n}-\frac{u}{n}\right) d u d v . \tag{9}
\end{align*}
$$

It follows that

$$
\begin{equation*}
N-\lim I_{k}(n)=0 \tag{10}
\end{equation*}
$$

for $k=0,1,2, \ldots, r s-2$.
When $k=r s-1$, we have from equation (9),

$$
\begin{equation*}
N_{n \rightarrow \infty}^{N-\lim } I_{r s-1}=\frac{(-1)^{s}}{r} \int_{0}^{1} \rho^{(s)}(v) \int_{0}^{v} u^{s-1} \ln ^{m+1}(v-u) d u d v . \tag{11}
\end{equation*}
$$

Putting $u=v w$, we have

$$
\begin{align*}
\int_{0}^{v} u^{s-1} \ln ^{m+1}(v-u) d u & =v^{s} \int_{0}^{1} w^{s-1}[\ln v+\ln (1-w)]^{m+1} d w \\
& =v^{s} \sum_{i=0}^{m+1}\binom{m+1}{i} \ln ^{i} v \int_{0}^{1} w^{s-1} \ln ^{m-i+1}(1-w) d w \\
& =v^{s} \sum_{i=0}^{m+1}\binom{m+1}{i} B_{0, m-i+1}(s, 1) \ln ^{i} v \tag{12}
\end{align*}
$$

where $B(\lambda, \mu)$ denotes the Beta function and

$$
B_{i, j}(\lambda, \mu)=\frac{\partial^{i+j}}{\partial^{i} \lambda \partial^{j} \mu} B(\lambda, \mu)
$$

for $i, j=0,1,2, \ldots$ It now follows from equations (11) and (12) that

$$
\begin{align*}
\underset{n \rightarrow \infty}{N-\lim } I_{r s-1} & =\frac{(-1)^{s}}{r} \sum_{i=0}^{m+1}\binom{m+1}{i} B_{0, m-i+1}(s, 1) \int_{0}^{1} v^{s} \ln ^{i} v \rho^{(s)}(v) d v \\
& =\frac{(-1)^{s}}{r} \sum_{i=0}^{m+1}\binom{m+1}{i} c_{s, i} B_{0, m-i+1}(s, 1) . \tag{13}
\end{align*}
$$

When $k=r s$, we have from equation (9) that

$$
\left|I_{r s}(n)\right|=O\left(n^{-1 / n} \ln ^{m+1} n\right)
$$

and so

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{b} x^{r s} \varphi^{(r s)}(\xi x) G_{n, s, m}\left(x_{+}^{r}\right) d x=0 \tag{14}
\end{equation*}
$$

Further, putting $n t=v$ again, we have

$$
\int_{a}^{0} x^{r s} \varphi^{(r s)}(\xi x)(x) G_{n, s, m}\left(x_{+}^{r}\right) d x
$$

$$
\begin{aligned}
& =(-1)^{s} \int_{a}^{0} x^{r s} \varphi^{(r s)}(\xi x)(x) \int_{0}^{1 / n} \ln ^{m+1} t \delta_{n}^{(s)}(t) d t d x \\
& =(-1)^{s} n^{s} \int_{a}^{0} x^{r s} \varphi^{(r s)}(\xi x)(x) \int_{0}^{1}(\ln v-\ln n)^{m+1} \rho^{(s)}(v) d v d x .
\end{aligned}
$$

Thus

$$
\begin{equation*}
N-\lim _{n \rightarrow \infty} \int_{a}^{0} x^{r s} \varphi^{(r s)}(\xi x)(x) G_{n, s, m}\left(x_{+}^{r}\right) d x=0 \tag{15}
\end{equation*}
$$

and so it follows from equations (14) and (15) that

$$
\begin{equation*}
N_{n \rightarrow \infty}-\lim _{a} \int_{a}^{b} x^{r s} \varphi^{(r s)}(\xi x)(x) G_{n, s, m}\left(x_{+}^{r}\right) d x=0 \tag{16}
\end{equation*}
$$

Now using equations (6) to (8), (10), (11), (13) and (16), we have

$$
\begin{aligned}
& N-\lim _{n \rightarrow \infty}\left\langle G_{n, s, m}\left(x_{+}^{r}\right), \varphi(x)\right\rangle \\
= & \sum_{i=0}^{m+1}\binom{m+1}{i} \frac{(-1)^{s} c_{s, i} B_{0, m-i+1}(s, 1) \varphi^{(r s-1)}(0)}{r(r s-1)!} \\
= & \sum_{i=0}^{m+1}\binom{m+1}{i} \frac{(-1)^{r s+s-1} c_{s, i} B_{0, m-i+1}(s, 1)}{r(r s-1)!}\left\langle\delta^{(r s-1)}(x), \varphi(x)\right\rangle
\end{aligned}
$$

for arbitrary $\varphi(x)$ in \mathcal{D} and equation (4) follows.
Equation (5) follows on noting that $c_{1, i}=0$ for $i=0,1,2, \ldots, m-1$ and

$$
B_{0,0}(1,1)=1=-B_{0,1}(1,1)
$$

We now prove the following generalization of equation (1).
Theorem 7. If $F_{s, m}(x)$ denotes the distribution $x_{-}^{-s} \ln ^{m} x_{-}$, then the neutrix composition $F_{s, m}\left(x_{+}^{r}\right)$ exists for $r, s, m=1,2, \ldots$.

In particular,

$$
\begin{equation*}
F_{1, m}\left(x_{+}^{r}\right)=\sum_{i=0}^{m+1}\binom{m+1}{i} \frac{(-1)^{r-1} c_{1, i} B_{0, m-i+1}(1,1)}{(m+1) r!} \delta^{(r-1)}(x) \tag{17}
\end{equation*}
$$

for $r, m=1,2, \ldots$ and

$$
\begin{align*}
F_{s+1,1}\left(x_{+}^{r}\right)= & \sum_{i=0}^{2}\binom{2}{i} \frac{(-1)^{r s+s} c_{s, i} B_{0,2-i}(s, 1)}{2 r(r s-1)!(s-1)!} \delta^{(r s-1)}(x) \\
& +\frac{(-1)^{r s+s} \phi(s-1) c(\rho)}{r(r s-1)!} \delta^{(r s-1)}(x) \tag{18}
\end{align*}
$$

Proof. We note first of all that from equation (2), we have

$$
F_{1, m}\left(x_{+}^{r}\right)=-(m+1)^{-1} G_{1, m}\left(x_{+}\right)
$$

and so equation (17) follows immediately.
Next, it follows from equations (1), (3) and (4) that

$$
\begin{aligned}
G_{s, 1}\left(x_{+}^{r}\right) & =2(s-1)!\phi(s-1) F_{s}\left(x_{+}^{r}\right)-2(s-1)!F_{s, 1}\left(x_{+}^{r}\right) \\
& =\frac{2(-1)^{r s+s}(s-1)!\phi(s-1) c(\rho)}{r(r s-1)!} \delta^{(r s-1)}(x)-2(s-1)!F_{s, 1}\left(x_{+}^{r}\right) \\
& =\sum_{i=0}^{2}\binom{2}{i} \frac{(-1)^{r s+s-1} c_{s, i} B_{0,2-i}(s, 1)}{r(r s-1)!} \delta^{(r s-1)}(x)
\end{aligned}
$$

and equation (18) follows. This completes the proof of the theorem.

References

[1] J. G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math. 7 (1959), 291-398.
[2] B. Fisher, On defining the change of variable in distributions, Rostock. Math. Kolloq. 28 (1985), 75-86.
[3] B. Fisher, On defining the distribution $\delta^{(r)}(f(x))$, Rostock. Math. Kolloq. 23 (1993), 73-80.
[4] B. Fisher, On defining the distribution $\left(x_{+}^{r}\right)_{-}^{-s}$, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 15 (1985), 119-129.
[5] B. Fisher, On the composition of the distributions $x_{+}^{-s} \ln ^{m} x_{+}$and x_{+}^{μ}, Appl. Anal. Discrete Math. 4 (2009), 212-223.
[6] B. Fisher, S. Orankitjaroen, T. Kraiweeradechachai, G. Sritanratana and K. Nonlaopon, On the composition of the distributions $x_{+}^{\lambda} \ln ^{m} x_{+}$and x_{+}^{μ}, EastWest J. Math. 9(1) (2007), 69-79.
[7] B. Fisher and A. Takaci, On the composition of the distributions x_{-}^{λ} and $\left(x_{+}^{-r / \lambda}\right)$, submitted.
[8] I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.

