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Abstract
In this paper, we denote R a near-ring. We initiate a study of
substructures in R, and relationship between them.

Next, we investigate some isomorphic properties of near-rings and
then some characterizations of right ideal structures in near-rings.

1. Introduction

A near-ring R is an algebraic system (R, +, -) with two binary operations
+ and - such that (R, +) is a group (not necessarily abelian) with neutral
element 0, (R, -) is a semigroup and a(b + c) = ab + ac for all a, b, c in R.
We note that obviously, a0 = 0 and a(-b) = —ab for all a, b in R, but in

general, 0a = 0 and (—a)b = —ab.

If R has a unity 1, then R is called unitary. An element d in R is called
distributive if (a + b)d = ad + bd forallaandbinR.
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An ideal of R is a subset I of R such that (i) (I, +) is a normal subgroup
of (R, +), (ii) al = I for all aeR, (iii) (I +a)b—abc | for all a,
b e R. If | satisfies (i) and (ii), then it is called a left ideal of R. If | satisfies
(i) and (iii), then it is called a right ideal of R [4].

On the other hand, an R-subgroup of R is a subset H of R such that
(i) (H, +) is a subgroup of (R, +), (ii) RH < H and (iii) HR = H. If H
satisfies (i) and (ii), then it is called a left R-subgroup of R. If H satisfies
(i) and (iii), then it is called a right R-subgroup of R. In case, (H, +) is

normal in above, we say that normal R-subgroup, normal left R-subgroup
and normal right R-subgroup instead of R-subgroup, left R-subgroup and
right R-subgroup, respectively. Note that the normal left R-subgroups of R
are equivalent to the left ideals of R.

We consider the following substructures of near-rings: Given a near-ring
R, Ry = {a € R|0a = 0} which is called the zero symmetric part of R,

Rc.={aeR|0a=a}={acR|ra=a,forallr e R} ={0a e R|aeR}

which is called the constant part of R, and Ry = {a € R|a is distributive}
which is called the distributive part of R.

A non-empty subset S of a near-ring R is said to be a subnear-ring of R,
if S is a near-ring under the operations of R, equivalently, for all a, b in S,
a—beS and ab € S. Sometimes, we denote ithby S < R.

We note that Ry and R, are subnear-rings of R, Ry is a subsemigroup
of (R, -), but is not a subnear-ring of R. A near-ring R with the extra axiom
O0a =0 forall a e R, thatis R = Ry, is said to be zero symmetric, also, in
case R =R;, R is called a constant near-ring, and in case R = R4, R is
called a distributive near-ring.

Moreover, we note that R is a right ideal of R, but not generally ideal of
R, also R; is an R-subgroup of R, but in general neither a right nor a left
ideal of R.
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Let (G, +) be a group (not necessarily abelian). We may obtain some
examples of near-rings as follows:

First, if we define multiplication on G as xy = y for all x, y in G, then
(G, +, -) is a near-ring, because (xy)z =2z = x(yz) and x(y +2z)=y +z
=Xy + xz, for all x, y, z in G, but in general, 0x =0 and (x+Yy)z =
Xz + yz are not true. These kinds of near-rings are constant near-rings.

For the remainder basic concepts and results on near-rings, we refer to
Pilz [4].

2. Characterizations of Right Ideal Structures in Near-rings
Let R and S be two near-rings. Then a mapping f from R to S is called a
near-ring homomorphism [4] if (i) (a +b) f = af + bf, (ii) (ab) f = afbf,

for all a, b e R. Obviously, Rf <S and Tf * ={aeR|af eT}<R for
any T < S. As in ring theory, Rf is called the image of f which is denoted by

Imf, also, {0}f*={aeR|af =0} is called the kernel of f which is
denoted by Ker f.

We can replace homomorphism by monomorphism, epimorphism,
isomorphism, endomorphism and automorphism, if these terms have their
usual meanings as in ring theory [1].

From now on, we will consider the isomorphism theorem in near-rings
(or, R-groups) which is only mentioned already in [4], we can reprove it
more concretely as follows.

Let f : R > S be a near-ring homomorphism. Then certainly, f : R*
— S™ be a group homomorphism, where R* = (R, +), and so as group
R™/Ker f = R*f.

Putting K := Ker f, (K, +) is a normal subgroup of (R, +) and R/K =
{a + K|a e R}. The addition in R defines an addition in R/K by
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(@+K)+(b+K)=(a+b)+K.

This addition is well defined in group theory.

Would it make

@+K)(b+K)=ab+K

a well defined binary operation? It is affirmative in the following statement:

Lemma 2.1. Let K be the kernel of a near-ring homomorphism f : R
— S. Then (R/K, +, ) = Imf.

Proof. If (a + K)(b + K) =ab+ K is a well defined binary operation,
then easily, (R/K, +, -) is a near-ring.

Suppose that a+ K =a'"+ K and b+ K =b"+ K. Then there exist
X, y € K suchthat a=a'+ x and b = b’ + y. We need to show that ab +
K =a'b’ + K orequivalently, ab —a’b’ € K.

Now, ab = (a"+ x)(b'+ y) = (@' + x)b" + (2’ + x)y. Since (a' + x)y is
in K, putting (@'+x)y =k in K, ab=(a"+x)b’+k and ab-ab’'=
@+ x)b"+k —ab’ = (a + x)b’'—ab’+ k' e K, for some k' € K. Hence,
multiplication is well defined.

As groups, (R/K, +) = (Rf, +), where a mapping F : R/K — Rf which

is defined by (a + K)F = af is the group isomorphism. Now, we have
((@+K)(b+K))F =(ab+ K)F = abf = afbf =(a+ K)F(b+ K)F.
Consequently, F is a near-ring isomorphism. O

We can obtain the following fundamental theorem in near-ring
homomorphism as in ring theory:

Proposition 2.2. Let f : R — S be a near-ring epimorphism with the
kernel K of f, and let = : R — R/K defined by ar = a + K be the natural
epimorphism. Then the isomorphism F : R/K — S which is defined by
(a+ K)F = af isunique such that nF = f.
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Proof. By Lemma 2.1, there exists a near-ring isomorphism f : R — S.

Next, to show that nF = f, let a € R, and we get a(nF) = (an)F =
(a+ K)F = af. Hence, nF = f.

Finally, to show that the “uniqueness”, if F': R/K — S is a near-ring
isomorphism such that nF' = f, then forall a + K e R/K, we have
(@+ K)F' =(an)F' = a(nF') = af = (an)F = (a + K)F. O

Analogously, we can prove the isomorphism theorem and fundamental
theorem for R-groups.

The following are some characterizations of ideal structures of near-
rings, in particular right ideal structures, which are obtained using the fact of
the proof in Lemma 2.1.

Proposition 2.3. Let (R, +, -) be a near-ring. Suppose that (K, +) is a
normal subgroup of (R, +) and K is a left R-subgroup of R. Then the

following conditions are equivalent:
(1) K is the kernel of a near-ring homomorphism.
(2) (x+a)b—-—abc K forall xe K and a, b e R.
3) (@a+x)b—abc K forall xe K and a, b e R.
(4) —ab+(a+ x)b = K forall xe K and a, b e R.
(5) —ab+ (x+a)b = K forall xe K and a, b e R.

(6) K is a right ideal of R.

Proof. (1) = (2) Suppose K is the kernel of a near-ring homomorphism
f:R—> S, thatis, K := Ker f ={a e R|af =0}. Then forall x e K and
a,beR, (x+a)b—ab)f =(xf +af )bf —afbf =0 since xf = 0. Hence

(x+a)b—abc K forall xe K and a, b € R.

(2) = (1) Assume the condition that (x + a)b —ab < K forall x e K
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and a, b € R. Since (K, +) is a normal subgroup of (R, +), there exists a
quotient group (R/K, +) and the natural group epimorphism = : R — R/K
defined by arn = a+ K. Now K = Kern as a group homomorphism. We
need only show that (ab)n = arnbr, that is, ab+ K = (a + K)(b + K). To
do this, we must show that

@+K)(b+K)=ab+K

is a well defined binary operation.

We take that a+ K =a'+ K, b+ K = b" + K. So there exist x, y € K
suchthat a=a’'+ x, b =b"+ y. Hence

ab=@ +x)(b’+y)=@ +x)b'+(@ +x)y
=@ +x)b'—ab’ +ab’ +(a +x)y e K+ah’,

since K is a left R-subgroup of R, (a'+ x)y € K, also, by assumption,
(@' + x)b’ —a’b’ € K. Hence we see that ab — a'h’ € K, equivalently, ab +
K =a'h’ + K. Consequently, (a+ K)(b+ K)=ab+ K is a well defined
binary operation.

(2) & (3) Let xe K and a, b e R. Then from (K, +) is a normal
subgroup of (R, +), x+a € K + a = a + K, so that there exist x" € K such

that x + a = a+ x". Analogously, there exist x" € K such that a+ x =
X" + a.

B) <= (4) Let xeK and a,b e R. Then (a+x)b—abc K < (a+x)b
+K =ab+ K < —ab+(a+ x)b c K, because of —ab + (a + x)b =« K =
—[-(a + x)b + ab] = —[(a + x)(-b) — a(-b) € K].

(2) < (5) can be proved as similar method of the proof of (2) < (3).

(1) < (6) is obviously proved from the definition of right ideal structure.
O
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