Volume 28, Number 1, 2013, Pages 81-87

Published Online: January 2013

Available online at http://pphmj.com/journals/jpanta.htm Published by Pushpa Publishing House, Allahabad, INDIA

A STUDY ON RIGHT SUBSTRUCTURES IN NEAR-RINGS

Yong Uk Cho

Department of Mathematics College of Education Silla University Pusan 617-736, Korea e-mail: yucho@silla.ac.kr

Abstract

In this paper, we denote R a near-ring. We initiate a study of substructures in R, and relationship between them.

Next, we investigate some isomorphic properties of near-rings and then some characterizations of right ideal structures in near-rings.

1. Introduction

A near-ring R is an algebraic system $(R, +, \cdot)$ with two binary operations + and \cdot such that (R, +) is a group (not necessarily abelian) with neutral element 0, (R, \cdot) is a semigroup and a(b+c)=ab+ac for all a, b, c in R. We note that obviously, a0=0 and a(-b)=-ab for all a, b in R, but in general, $0a \neq 0$ and $(-a)b \neq -ab$.

If R has a unity 1, then R is called *unitary*. An element d in R is called *distributive* if (a + b)d = ad + bd for all a and b in R.

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 16Y30.

Keywords and phrases: right ideal, left ideal, ideal, R-subgroup.

Received December 3, 2012

An *ideal* of R is a subset I of R such that (i) (I, +) is a normal subgroup of (R, +), (ii) $aI \subset I$ for all $a \in R$, (iii) $(I + a)b - ab \subset I$ for all a, $b \in R$. If I satisfies (i) and (ii), then it is called a *left ideal* of R. If I satisfies (i) and (iii), then it is called a *right ideal* of R [4].

On the other hand, an R-subgroup of R is a subset H of R such that (i) (H, +) is a subgroup of (R, +), (ii) $RH \subset H$ and (iii) $HR \subset H$. If H satisfies (i) and (ii), then it is called a *left R-subgroup* of R. In case, (H, +) is normal in above, we say that *normal R-subgroup*, *normal left R-subgroup* and *normal right R-subgroup* instead of R-subgroup, left R-subgroup and right R-subgroup, respectively. Note that the normal left R-subgroups of R are equivalent to the left ideals of R.

We consider the following substructures of near-rings: Given a near-ring R, $R_0 = \{a \in R \mid 0a = 0\}$ which is called the *zero symmetric part* of R,

$$R_c = \{a \in R \mid 0a = a\} = \{a \in R \mid ra = a, \text{ for all } r \in R\} = \{0a \in R \mid a \in R\}$$

which is called the *constant part* of R, and $R_d = \{a \in R \mid a \text{ is distributive}\}$ which is called the *distributive part* of R.

A non-empty subset S of a near-ring R is said to be a *subnear-ring* of R, if S is a near-ring under the operations of R, equivalently, for all a, b in S, $a - b \in S$ and $ab \in S$. Sometimes, we denote it by S < R.

We note that R_0 and R_c are subnear-rings of R, R_d is a subsemigroup of (R, \cdot) , but is not a subnear-ring of R. A near-ring R with the extra axiom 0a = 0 for all $a \in R$, that is $R = R_0$, is said to be *zero symmetric*, also, in case $R = R_c$, R is called a *constant* near-ring, and in case $R = R_d$, R is called a *distributive* near-ring.

Moreover, we note that R_0 is a right ideal of R, but not generally ideal of R, also R_c is an R-subgroup of R, but in general neither a right nor a left ideal of R.

Let (G, +) be a group (not necessarily abelian). We may obtain some examples of near-rings as follows:

First, if we define multiplication on G as xy = y for all x, y in G, then $(G, +, \cdot)$ is a near-ring, because (xy)z = z = x(yz) and x(y + z) = y + z = xy + xz, for all x, y, z in G, but in general, 0x = 0 and (x + y)z = xz + yz are not true. These kinds of near-rings are constant near-rings.

For the remainder basic concepts and results on near-rings, we refer to Pilz [4].

2. Characterizations of Right Ideal Structures in Near-rings

Let R and S be two near-rings. Then a mapping f from R to S is called a near-ring homomorphism [4] if (i) (a+b)f = af + bf, (ii) (ab)f = afbf, for all $a, b \in R$. Obviously, Rf < S and $Tf^{-1} = \{a \in R \mid af \in T\} < R$ for any T < S. As in ring theory, Rf is called the *image* of f which is denoted by Imf, also, $\{0\}f^{-1} = \{a \in R \mid af = 0\}$ is called the *kernel* of f which is denoted by Imf.

We can replace homomorphism by monomorphism, epimorphism, isomorphism, endomorphism and automorphism, if these terms have their usual meanings as in ring theory [1].

From now on, we will consider the isomorphism theorem in near-rings (or, R-groups) which is only mentioned already in [4], we can reprove it more concretely as follows.

Let $f: R \to S$ be a near-ring homomorphism. Then certainly, $f: R^+ \to S^+$ be a group homomorphism, where $R^+ = (R, +)$, and so as group

$$R^+/Ker f \cong R^+f.$$

Putting K := Ker f, (K, +) is a normal subgroup of (R, +) and $R/K = \{a + K \mid a \in R\}$. The addition in R defines an addition in R/K by

$$(a + K) + (b + K) = (a + b) + K.$$

This addition is well defined in group theory.

Would it make

$$(a+K)(b+K) = ab + K$$

a well defined binary operation? It is affirmative in the following statement:

Lemma 2.1. Let K be the kernel of a near-ring homomorphism $f: R \to S$. Then $(R/K, +, \cdot) \cong Imf$.

Proof. If (a + K)(b + K) = ab + K is a well defined binary operation, then easily, $(R/K, +, \cdot)$ is a near-ring.

Suppose that a + K = a' + K and b + K = b' + K. Then there exist $x, y \in K$ such that a = a' + x and b = b' + y. We need to show that ab + K = a'b' + K or equivalently, $ab - a'b' \in K$.

Now, ab = (a' + x)(b' + y) = (a' + x)b' + (a' + x)y. Since (a' + x)y is in K, putting (a' + x)y = k in K, ab = (a' + x)b' + k and $ab - a'b' = (a' + x)b' + k - a'b' = (a' + x)b' - a'b' + k' \in K$, for some $k' \in K$. Hence, multiplication is well defined.

As groups, $(R/K, +) \cong (Rf, +)$, where a mapping $F : R/K \to Rf$ which is defined by (a + K)F = af is the group isomorphism. Now, we have

$$((a+K)(b+K))F = (ab+K)F = abf = afbf = (a+K)F(b+K)F.$$

Consequently, *F* is a near-ring isomorphism.

We can obtain the following fundamental theorem in near-ring homomorphism as in ring theory:

Proposition 2.2. Let $f: R \to S$ be a near-ring epimorphism with the kernel K of f, and let $\pi: R \to R/K$ defined by $a\pi = a + K$ be the natural epimorphism. Then the isomorphism $F: R/K \to S$ which is defined by (a + K)F = af is unique such that $\pi F = f$.

Proof. By Lemma 2.1, there exists a near-ring isomorphism $f: R \to S$.

Next, to show that $\pi F = f$, let $a \in R$, and we get $a(\pi F) = (a\pi)F = (a+K)F = af$. Hence, $\pi F = f$.

Finally, to show that the "uniqueness", if $F': R/K \to S$ is a near-ring isomorphism such that $\pi F' = f$, then for all $a + K \in R/K$, we have

$$(a + K)F' = (a\pi)F' = a(\pi F') = af = (a\pi)F = (a + K)F.$$

Analogously, we can prove the isomorphism theorem and fundamental theorem for R-groups.

The following are some characterizations of ideal structures of nearrings, in particular right ideal structures, which are obtained using the fact of the proof in Lemma 2.1.

Proposition 2.3. Let $(R, +, \cdot)$ be a near-ring. Suppose that (K, +) is a normal subgroup of (R, +) and K is a left R-subgroup of R. Then the following conditions are equivalent:

- (1) *K* is the kernel of a near-ring homomorphism.
- (2) $(x+a)b ab \subset K$ for all $x \in K$ and $a, b \in R$.
- (3) $(a + x)b ab \subset K$ for all $x \in K$ and $a, b \in R$.
- $(4) -ab + (a + x)b \subset K$ for all $x \in K$ and $a, b \in R$.
- (5) $-ab + (x + a)b \subset K$ for all $x \in K$ and $a, b \in R$.
- (6) K is a right ideal of R.

Proof. (1) \Rightarrow (2) Suppose K is the kernel of a near-ring homomorphism $f: R \to S$, that is, $K := Ker f = \{a \in R \mid af = 0\}$. Then for all $x \in K$ and $a, b \in R$, ((x + a)b - ab)f = (xf + af)bf - afbf = 0 since xf = 0. Hence $(x + a)b - ab \subset K$ for all $x \in K$ and $a, b \in R$.

 $(2) \Rightarrow (1)$ Assume the condition that $(x+a)b-ab \subset K$ for all $x \in K$

and $a, b \in R$. Since (K, +) is a normal subgroup of (R, +), there exists a quotient group (R/K, +) and the natural group epimorphism $\pi : R \to R/K$ defined by $a\pi = a + K$. Now $K = Ker \pi$ as a group homomorphism. We need only show that $(ab)\pi = a\pi b\pi$, that is, ab + K = (a + K)(b + K). To do this, we must show that

$$(a+K)(b+K) = ab+K$$

is a well defined binary operation.

We take that a + K = a' + K, b + K = b' + K. So there exist $x, y \in K$ such that a = a' + x, b = b' + y. Hence

$$ab = (a' + x)(b' + y) = (a' + x)b' + (a' + x)y$$
$$= (a' + x)b' - a'b' + a'b' + (a' + x)y \in K + a'b'.$$

since K is a left R-subgroup of R, $(a' + x)y \in K$, also, by assumption, $(a' + x)b' - a'b' \in K$. Hence we see that $ab - a'b' \in K$, equivalently, ab + K = a'b' + K. Consequently, (a + K)(b + K) = ab + K is a well defined binary operation.

- (2) \Leftrightarrow (3) Let $x \in K$ and $a, b \in R$. Then from (K, +) is a normal subgroup of (R, +), $x + a \in K + a = a + K$, so that there exist $x' \in K$ such that x + a = a + x'. Analogously, there exist $x'' \in K$ such that a + x = x'' + a.
- (3) \Leftrightarrow (4) Let $x \in K$ and $a, b \in R$. Then $(a+x)b-ab \subset K \Leftrightarrow (a+x)b+K=ab+K \Leftrightarrow -ab+(a+x)b \subset K$, because of $-ab+(a+x)b \subset K=-[-(a+x)b+ab]=-[(a+x)(-b)-a(-b) \in K]$.
 - $(2) \Leftrightarrow (5)$ can be proved as similar method of the proof of $(2) \Leftrightarrow (3)$.
 - $(1) \Leftrightarrow (6)$ is obviously proved from the definition of right ideal structure.

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
- [2] Y. U. Cho, Generalized bipotent subcommutative conditions, Far East J. Math. Sci. (FJMS) 38(2) (2010), 265-271.
- [3] Y. U. Cho, Quotient substructures of *R*-groups, J. Appl. Math. Informatics 28(1-2) (2010), 345-349.
- [4] G. Pilz, Near-rings, North Holland Publishing Company, Amsterdam, New York, Oxford, 1983.