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Abstract

In this paper, a new iteration process is introduced and some strong
convergence theorems are obtained for the nonexpansive mapping in
Hilbert spaces.

1. Introduction

Let H be a Hilbert space with inner product (-, -) and norm |- |, C be a

closed convex subset of H. Then a mapping T :C — C is said to be
nonexpansive if |T(x)-T(y)|<[x-y] for all x, yeC. A mapping

F :H — H issaid to be n-strong monotone if there exists a constant n > 0

such that (Fx — Fy, x—y) > n|x—y|* forany x, ye H. F:H — H is
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said to be k-Lipschitzian if there exists a constant k > 0 such that | Fx — Fy ||
<k|x-y] forany x, y € H.

The interest and importance of construction if fixed points of
nonexpansive mappings stem mainly from the fact that it may be applied in
many areas, such as imagine recovery and signal processing (see, e.g., [1, 2,
8]). lterative techniques for approximating fixed points of nonexpansive
mappings have been studied by various authors (see, e.g., [1, 3-7, 9-14], etc),
using famous Mann iteration method, Ishikawa iteration method, and many
other iteration methods such as, viscosity approximation method [5] and CQ
method [6].

For reducing the complexity of computation, for a sequence {a} of
real numbers in [0, 1] and an arbitrary point u € C, starting with another

arbitrary initial xg € C, Halpern [3] defined a sequence {x,} as follows:
Xns1 = OpU + (L= 0ty)Txg, N 20, (1.1)

and got some convergence results. Lions [4] improved his results and proved
the strong convergence of {x,} if the sequence {a,} satisfies the following

conditions:

1) lim a, =0;
n—o0

(2) Zan = 0,
n=1

3) lim (an —ang) _ 0.
nN—o0 a%

In 1992, Wittmann [12] proved the strong convergence of {x,}. His

conditions on the parameters {o.,} are (1), (2), and

o0
Q) Z | Olpyg — i | < o0,
n=1
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In 2002, Xu [13] got another strong convergence theorem of {x,} in the
framework of Banach spaces, and conditions on the parameters {a.,} are (1),
(2), and

3)* lim (ot —ang) _

n—o On

For the same aim, Yamada [14] proposed an iteration method as follows:
for arbitrary ug € H,

Ups1 = TUp = ApquF(T(uy)), n >0, (1.2)

where T is a nonexpansive mapping from H to itself, K is the fixed point set
of T, F is an n-strong monotone and k-Lipschitzian mapping on K, {A,,} is a

real sequence in [0,1), and 0 < pu < 2n/k2. Then Yamada got a strong

convergence result as {A,} satisfies the following conditions:

@) lim &, =0;
nN—o0

(2 zxn = ©,
n=1

(3) lim (o = na1) _ 0.

n—oo 7“2n+l

In 2006, Wang [11] defined a sequence {x,} as follows:
X1 = OnXy + (L= o) T 04Ix. n >0, (1.3)
where T* isa mapping from H to itself and defined as follows:
THx = Tx — AuF(TX), VX € H. (1.4)

Then under some suitable conditions, the sequence {x,} is shown to

convergence strongly to a fixed point of T and the necessary and sufficient
conditions that {x,} converges strongly to a fixed point of T are obtained.
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Motivated by the above work, we propose a new explicit iteration
scheme with mapping F to approximate the fixed point of nonexpansive
mapping in Hilbert space.

2. Preliminaries
Let T be a nonexpansive mapping from C into itself, F:H — H an
n-strongly monotone and k-Lipschitzian, {A,} <[0,1), and n a fixed
constant in (0, Zn/kz). Starting with an initial point x5 € H, the explicit
iteration scheme with mapping F is defined as follows:

X4l = 0pU + (1 — ocn)Txf”lxn, n >0, (2.1)

where u is an arbitrary point, and T is a mapping from H to itself and
defined as follows:

T*X = Tx = AuF(TX), VX e H. (2.2)
Note. If A, =0 for any n >1, then scheme (2.1) reduces to the famous
Halpern iteration scheme (1.1).

If we replace Tx, in scheme (2.2) with the mean

n-1
T,(x) = %ZTkX, n>1 xeC,
k=0

then we have
X+l = 0pU + (1 — ocn)Tn}””“Xn, n>0. (2.3)
Notice that T is a nonexpansive mapping, so T, is a nonexpansive mapping
too.
We restate the following lemmas which play crucial roles in our proofs.

Lemma 2.1 [13]. Let {s,} be a sequence of nonnegative real numbers
satisfying
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Snit < (L —opy)sy + opBp + vn, VN >0,

where {o,}, {Bn}, {vn} satisfy the conditions:

M8

(D) {on} = [0, 1],

n=1

(2) limsupB, <0;

n—o0

(3) v = 0(n>0), i"/n < oo,

n=1
Then

lim s, =0.
n—o0

Lemma 2.2 [14]. Let T*x =Tx — MuF(Tx), where T:H - H is a
nonexpansive mapping and F:H — H is an m-strongly monotone and
k-Lipschitzian mapping. If 0 <A, <1 and 0 < p < 2n/k2, then T is a

contraction and satisfies

| T*x=T*y | <@-a1)|x -y, ¥ y e H,

where t =1- \/l— w(2n - pkz).

Lemma 2.3 [9]. Let X be a uniformly smooth Banach space, C be a
closed convex subset of X and T be a nonexpansive mapping such that
F(T) # ¢. Let {z;} € C be defined as follows:

z =tu+(1-1t)Tz, (2.4)

where t € (0, 1). Then the strong tlirrg) z; exists and is a fixed point of T.
_)

Note. If X is a Hilbert space, then the result owes to Browder [1].

Lemma 2.4 [8]. Let E be a real Banach space. Then for arbitrary

X, yeEand J:E > ZE* is a normalized duality mapping, the following
inequality holds:
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I x+y [P <[ x]?+ 20y, j(x+y)).

Lemma 2.5 [15]. If E is a uniform Banach space and C is a bounded

subset of C, then
limsup_ || T(Tp(x)) = Ta(x) | = O.
n—o, XxeC

3. Main Results

Lemma 3.1. Let H be a Hilbert space, C be a closed convex subset of H,
T :C — C be a nonexpansive mapping with F(T)= ¢, and F: H —» H
be an m-strongly monotone and k-Lipschitzian mapping. For any given
Xg € C, {Xn} is generated by (2.1). If the sequences {a}, {An} = [0, 1)

satisfy the conditions:

e8]
1) lim o, =0, Ya, = o, |imwzo;
1) n n
N—>o0 nol n—oo Qn

) ixn < oo;
n=1

(3) 0 < p < 2n/k?,

then
(1) {x,} isbounded, so are {Tx,} and {Fx,};

(2) lim | x, —=Tx, || =0.
n—o0
Proof. (1) For any q € F(T), it follows from (2.1) that
A
I Xne1 = all = otn(u =) + Q= o) (T*1x, — q) |
Sapfu-qf+@Q-oy) Tknﬂxn -ql

where
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| THetxy —q || = | TH12x, = Tig + T7eig — g |
<[ Thnex, —Thnedq |+ || T nig - g |
<@ =20 X0 = df + Apyan] F(a) |-
Thus
I 41 =A< anfu=af+@-an)@=2An0)] X — 0
+ (L= on) nyau| F(@)

<opfu-qf+@=ap)* = af +Aneam] F(@)]-

Then by induction, we get

| % —al < max{lu—ql, % —al}+ulF@] D i
n=1

o0

Since D> An <o, S0 {X,} is bounded, {Tx,} and {F(Tx)} are bounded,
n=1

too.

(2) It follows from (2.1) and (2.2) that
| Xn41 _Txnﬂxn | = anfu _T;Lnﬂxn | =0 (n— ), (3.1)
and
I Xni1 = X || = | otpu + @ = ap )T}Lnﬂxn —opgu — (1~ O‘n—l)T}Lrl Xn—1 |
— 7“n+1 7\n+l kn
=|(op —otng )(U-T Xn—1)+@L—op)(T Xn =T "Xn_1) |
< _ _Txn 1— Tkn+1 _Tkn
< (ap —otpg)f u Xn-a [+ @ —ap) Xn Xn_1 |
A
<lap =opg [ U=T""%q |+ @—=an)| Xn = Xn |

+ (L= ap)u| ApsaF(TXn) = 2 F(Txq-1) |

=@ —an)] Xq = Xn_a [ +]otn = otpyg [M + vy,
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where M = sup||u—T""x,_; | <, By = MM — 0,
n>1 %n

Y = Q= o) ) AnsaF (%) = 2nF(TXq 1) |

o0
satisfies y, >0(n>1) and > y, <. By Lemma 21, we have

n=1
lim | X4 =X, [ =0.
n—oo
Thus,
A
%0 =Txn [| = | Xn = T 01X + ApgquF (Txg) ||

A
= || Xp = Xns1 + Xns1 = T %0 = A quF (Txg) ||

»
< %oz = Xn |+ Xngg = T30 |+ A gap] F(Txp) |-
0
In addition, Y A, <o = lim &, =0. Thus, lim |x, —Tx,|=0.
n=1 n—oo n—oo

The proof is completed.

Theorem 3.2. Let H be a Hilbert space, C be a closed convex subset of
H, T :C — C be a nonexpansive mapping with F(T) = ¢, and F:H — H

be an m-strongly monotone and k-Lipschitzian mapping. For any given
Xg € C, {x,} is generated by (2.1). If the sequences {a,}, {An} < [0, 1)
satisfy the conditions:

[e 0]
1) lima, =0 Yo, = oo, |imwzo;
1) n n
n—o ne1 n—oo On

2 Z_:lkn < o]

(3) 0 < p < 2n/k?,

then the sequence {x,} converges strongly to a fixed point of T.
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Proof. By equation (2.3), we can write
Zt — Xy =tu—x5)+ (@ -t)(Tz; — xp).
It follows from Lemma 2.4 that
2 2 2 -
lze =xn |° < @=1)7) Tzg = %q |° + 28U = X, §(2zt = Xn))
2 2
S@=0)7() Tz = Txq |+ T = X )
+2t(] z¢ = Xn |+ (u =z, J(z = %1))
2
S@+) ze =Xy [+ ] 0 = X0 12 2t = Xp [+ X0 = Xn [)
+2t(u — z¢, j(z¢ — Xp))-
Hence
U=z, j(xq — 7))
t 2 TX, — X
Y P S ML Rt VTP PUTE FA )
2 2t
Taking limsup as n — o yields

limsup(u — z;, j(x, — 7)) < Iimsup%” 7 — %q |
n—oo nN—o0

Letting t — 0, noting the fact that z; — z in norm and the fact that the

duality map j is norm-to-norm uniformly continuous on bounded sets on X,
we get
limsup(u -z, j(x, — z)) <0. (3.2)

n—o0

In addition, from (2.1) and (2.2), we can write
Xna1 —Z =0, ,(u-2)+(1- (xn)(T}‘f‘*lxn - 2).
By Lemma 2.4, we have
| s -2 P

<(@- 0‘n)2|| Txnﬂxn -1 ”2 + 200 (U = 2, j(Xns1 — 2))
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< (L= ap) (| THxy ~Th0edz |4 | Theiz - 7 )2
+ 200 (U =2, j(Xp41 — 2))
<(@-op)(1- 7bn+1T)2|| Xh — 2 "2 +20n(U = 2, J(Xns1 — 2))
+ (L= o) Tz = 2 (2] Th0sdy — Th0sdz |+ THrz — 7 )
< @ an)l % = 2| + 200{u ~ 2, §(h1 - 2)
+ (L= ap)| Tz — 2 (2] THetxy = Thdz || +| Tz - 2 ),

where B = 2(u -z, j(xn41 —2)) satisfies limsupB, <0 by (3.2), and

n—oo

yn = | Tz = 2 |(2) Tty - Thz |+ Thoz — z )

[e 0]
satisfies y, >0, Y v, <oo. Apply Lemma 2.1, we see that lim | x, — z ||
n=1 n—oo

=0, thatis, X, — z. The proof is completed.

Theorem 3.3. Let H be a Hilbert space, C be a closed convex subset of
H, T :C — C be a nonexpansive mapping with F(T) # ¢, and F:H — H
be an n-strongly monotone and k-Lipschitzian mapping. For any given
Xg € C, {Xn} is generated by (2.3). If the sequences {a}, {An} < [0, 1)
satisfy the conditions:

1) lim o, =0, Yo, =
n—oo n=1
0

@) >y <oo;
n=1

(3) 0 < p < 2n/k?,

then the sequence {x,} converges strongly to a fixed point of T.



A New lteration Method for the Fixed Point ... 203

Proof. Forany q € F(T), it follows from (2.3) that

s = Al = || (U = @) + @ = o) (T Hx, - q) |

A
Sapllu-q+@=on)l Ty"™x, —q |,

where
| Ta™ixg = q | = [ Tam+ixy = Ta™lq + Ty ™+iq - q |
<| TamHx, — Tyn+ig I+ Tan+iq - q I
<@ =Apa®)) X0 = Al + Appan] F(@) ]
Thus

I X1 —af < apfu—af+@-on) @~ Aoa)] X, —q
+ (1—0‘n)7“n+1u|| F(Q)"

<apfu—qf+@=ap) Xy = all+Anpan] F(@)]-

Then by induction, we get

| % =l < max{u—ql, [ % —al}+ul F@] D tn.
n=1

Since Y An < o, s0 {X,} is bounded, {T,x,} and {F(T,x,)} are bounded,

n=1
too.

It follows from (2.3) and Lemma 2.4 that
I 2 _Tnkn+1xn ”2
= | (@1 (Tze = Tmwha) + (U = Ta g |2
<(@- t)2” Tz = T(Tgm2xg ) + T(T30xq) = Tam+x, "2

+ 2t(u — Tn7‘”+1xn, z; — Tnx”+1xn)
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< @02 (1 Tz = T(TRx0) [+ T(Ta ) = Tymixg |)°
+2tlu -7z + 74 —Tn7"1+1xn, Z —Tr?‘“+1xn)
<1+ t2)|| 7, — T4y, ||2 + 24U — 7, 7 —Tn7‘n+1xn)
+| T(Trzhmlxn) - Tnknﬂxn I
(2] 7 = Tty ||+ | T(Tam+x, ) = Tan+ix, |).
Hence

(U= 20, Ty = 20) < 3 2~ Tamx, |

| T(Tnknﬂxn) - Tnknﬂxn [

|
* ot

(2] 7 =Ty [ +] T(Thmxg ) = Ta™x, ). (3.3)
Since
A A
[T (T2, ) = Ty ™%y = [T(Txn) = TnXa ] ||
= T(TnXn) = TaXn = T(TpXny = ApaitF (TyXn)) + (TaXn = ApyantF (Toxp)) |
<[ T(Taxn) = T(TaXn = ApgatF (ToXn)) || + Appan] F(TaXq) |
< 2hpiah] F(TaXp) | = 0(n — o),
and
I T(Tn}hnﬂxn) - Tnkn+lxn I=1T(TaxXn) = TnXn ||
< T(Tr%nﬂxn) - Tnknﬂxn —[T(Txn) = Taxa 1
we have

0< lim | T(Tnxmlxn) —Tneran I< lim [[T(ThXy) = TnXq | = 0.
n—o nN—c
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Taking limsup as n — o in (3.3) yields
li _ Tkn+l _ <l L _Tkn+l 2 3.4
imsup(u — z¢, Ty ™1xy — ) < |msup2|| z —Ta™x, |©. (34)
n—oo nN—o0

Letting t — 0, noting the fact that z; — z in norm, we have

limsup(u - z, T@‘”*lxn -2)<0. (3.5)
N—o0

Notice that (d/dt)| x +ty | = 2(y, x +ty), we have
2 2, !
Ix+ty]? =] x| +2jo (y, x + ty)dt, vx, y € H.

It follows that
| Xns1 = 2] = @= o) (Te 2%y = 2) + o (u = 2) |2

< (L= ap) (| Tamtx, — 2 )7
1 A
+ 2oan.0 (u—1z, Q- opn)(Ty"x, — z) + ta, (U — z))dt
<@-ap)(@- 7Vn+1T)|| Xy — 2 ” + 7“n+l“” F(z) ")2
1 A
+ 2anjo (u—1z, Q- op)(Ty"x, — z) + ta, (U — z))dt

< (1 - O‘n)(]- - 7‘n+1t)2" Xn— 2 ”2
2
+ 20y 11t = 1) X — 2 [ F(2) ] + 25507 F(2) |

1
+ ZQnJO (u-z,(1- (xn)(Tnx““Xn - 2) + ta,(u — z))dt

<@=ap)|xy - 2”2 +onBn + vn,
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where

and

Since
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1 S
B, = ZJO U=z, Q- opn)(Ty"x, — z) + ta,(u — z))dt

. 2 2 2
n = 21t = Apat)| Xq = [l F(2) |+ 2,07 F(2) "

(Tnxmlxn - Z) - [(1_ O‘n)(-l—nkmlxn - Z) + to‘n(u - Z)] - O(n - OO)

uniformlyin t e [0, 1], sowe can get

limsup B, = 2limsup{u — z, Tyx, — z) < 0.
n—o0 n—o

Then apply Lemma 2.4 to get lim | x, —z| =0, thatis, x, — z. The
n—oo

proof

(1]

(2]

(3]

[4]

(5]

6]

[7]

is completed.
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