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Abstract 

The performance of two often used statistical procedures - the classical 
asymptotic normal approximation and the same method with the 
Hauck-Anderson continuity correction - to test non-inferiority between 
two proportions was studied, recently [1]. That study evaluates the 
performance of these two methods calculating the test sizes by 
enumerating all possible cases rather than through simulation, the 
hypothesis tests approach was used and was done for sample sizes 
until 300; the main conclusion in that work is that for these sample 
sizes, behavior of test sizes is erratic and uncontrolled, and its value is 
nearly always far above the nominal significance level. In that order of 
ideas, we consider important to know the performance of test sizes for 
big sample sizes ( ).300≥n  That is, we extended this analysis in this 

new research, having as our main goal to study numerically the 
performance of test sizes for these two statistical procedures, but now 
considering big sample sizes. Due to the fact the involved test sizes are 
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big, some new additional computational difficulties were presented in 
this work, these difficulties were solved by implementing some 
theoretical properties in a program we wrote, in C++, to compute test 
sizes, especially by incorporating the results obtained in [2]. 

Introduction 

Non-inferiority tests are statistical procedures designed with the 
objective of determining if a new treatment is superior, equal or inferior, by a 
generally small margin to a treatment considered as standard. These tests are 
often used in clinical trials in which generally the new treatment must present 
at least an advantage as for example: cheaper, easier to apply or to have less 
contraindications. Among a great quantity of non-inferiority tests for two 
proportions [3-12], the classical asymptotic or Blackwelder test has an 
outstanding role because it is used very often in practice, probably due to its 
simplicity. 

Asymptotic tests have the problem that not necessarily respect the 
nominal significance level for which they were constructed, for that reason is 
important to study the performance of test sizes. 

On the other hand, test sizes calculation for non-inferiority test is a 
computationally intensive problem due to the presence of a nuisance 
parameter. 

Li and Chuang-Stein [13] made an evaluation of the performance of two 
very often used statistical procedures, the classical asymptotic normal 
approximation and the same method with the Hauck-Anderson continuity 
correction, their evaluation was based on simulation to estimate type I error 
and power. 

Almendra-Arao [1] continued that investigation but doing an exact 
calculation of type I errors and test sizes instead of estimation by simulation. 
As conclusions of work in [1] is that behavior of test sizes is erratic and 
uncontrolled; considering under study configurations ,30030 21 ≤=≤ nn  

for non-inferiority margin 0.10 and 0.15 and nominal significance level 
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0.025 and 0.05, it is natural to ask if for big sizes the behavior is more 
acceptable or not. 

To answer this inquiry, in the present article we made a numerical study 
of the behavior of test sizes for these two noninferiority statistical 
procedures. This new analysis is based on sample sizes 21 nn =  

1000,...50,40,30,  nominal significance levels 0.025 and 0.05 and non-

inferiority margins 0.05, 0.10, 0.15, 0.20; we also consider unbalanced 
designs with sample sizes ( )121 5.1, nnn =  with ;1500...,150,100,50,1 =n  

and ( )221 ,5.1 nnn =  with .1500...,150,100,50,2 =n  

In order to be able to carry out calculations of test sizes for big sample 
sizes in a reasonable time, it was necessary to solve several numerical 
difficulties, as will be seen below. These difficulties were solved by using 
recommendations in [2]. 

Classical Asymptotic Non-inferiority Test 

The notation we will use in this paper is the same as in Almendra-     
Arao [1]. 

Consider two binomial independent random variables 1X  and 2X  with 

parameters ( )11, pn  and ( ),, 22 pn  respectively, where 1p  and 2p  represent 

true response probabilities of the standard and new drug, respectively. And 
consider the hypothesis testing problem 

 0210 : dppH ≥−   vs. ,: 021 dppHa <−  (1) 

where 0d  is a positive known constant. 0d  is referred to as noninferiority 

margin. The corresponding sample space in this situations is { }1...,,0 n=χ  

{ }2...,,0 n×  and the parameter space can be conveniently represented as 

{( ) [ ] }.1,0, 2
21 ∈=Θ pp  

The Blakwelder’s or classical statistic to test (1) is 

 ( ) ,ˆ
ˆˆ

, 021
210 σ

−−
=

dppXXT  (2) 
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where 
i
i

i n
Xp =ˆ  is the maximum likelihood estimator of ip  for 2,1=i  and 

σ̂  is the following estimator of the standard deviation of 

( ) ( ) 21

2
22

1
11

21
ˆ1ˆˆ1ˆˆ,ˆˆˆ ⎟

⎠
⎞

⎜
⎝
⎛ −

+
−

=σ−= n
pp

n
ppppd  

it is known that the statistic 0T  in (2) has normal standard asymptotic 

distribution. 

For a given nominal significance level α, the critical region of the 
asymptotic test is given by 

( ) ( ) ( ){ },,:, 210210 α−<χ∈=α zxxTxxRT  

where αz  is the upper quantile a of the standard normal distribution, in other 

words, ( ) .α=> αzZP  Notation for the critical region ( )α0TR  very often 

will be simplified to ( )α0,0 RRT  or .0R  ( )21,min2
1

nnC =  is the Hauck-

Anderson continuity correction (cc), which will be used in what follows. 

Thus, we have the another test, which consider this cc, its statistic is 
given by 

( ) .ˆ
ˆˆ

, 021
211 σ

+−−
=

CdppXXT  

We will study in this work the tests ,1T  and .0T  For the test ,1T  we will 

use a similar notation as used for .0T  

Test Sizes Calculation 

Let T used to denote either tests, 0T  or .1T  

Thus, we have that the joint likelihood function is 

( ) ( )∏
=

−−⎟
⎠
⎞

⎜
⎝
⎛=

2

1
2121 1,;,

i

xn
i

x
i

i
i iii ppx

nxxppL  
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and the power function is 

( ) ( )
( ) ( )
∑

α∈
=β

TRxx
T xxppLpp

21,
212121 .,;,,  

Therefore, test size is given by ( ),,sup 21
0

ppTβ
Θ∈θ

 where {( )210 , pp=Θ  

}021: dpp ≥−Θ∈  is the null space. 

Since that by definition 

( ) ,
11

,ˆˆ

21

2
2
2

2
2

1
1
1

1
1
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⎟
⎟
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⎛
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⎜
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⎠
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n
X

n
X

n
n
X

n
X

XX  

it is clear that σ̂  is equal to zero in four points and in these points 0T  and 1T  

are undefined. To be able to calculate both tests in these points, Almendra-
Arao [1] suggested a redefinition of ,σ̂  which will be used in what follows. 

As was shown in [1], the above redefinition of σ̂  is essential for the 
critical regions of the statistical tests to conform the following two 
definitions that are necessary to reduce computation of test sizes. 

A critical region TR  for a statistic T is a Barnard convex set if the 

following two properties are satisfied: 

(a) ( ) ( ) .0,1,,1, 22112121 nxnxRxxRxx TT ≤≤≤≤∀∈−⇒∈  

(b) ( ) ( ) .10,0,1,, 22112121 −≤≤≤≤∀∈+⇒∈ nxnxRxxRxx TT  

Calculation of test sizes for non-inferiority is not a trivial problem, 
considered from the computational point of view. Hence in order to do these 
calculations for big sample sizes it is necessary to have on hand theoretical 
results that allows us for reduction of this time. 

Thus, several theoretical results have been established aimed at reduce 
computational time to calculating test sizes for non-inferiority [2, 11, 12,   
14-16], these results imposed by convenience that critical regions be Barnard 
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convex sets. However, that critical regions for non-inferiority tests be 
Barnard convex sets it is not only a convenient condition, it is actually 
necessary in order that non-inferiority test be coherent. 

Another condition that it is useful fulfils critical regions for balanced 
designs it is defined in what follows. 

Let .21 nnn ==  A critical region TR  for a statistic T is said to fulfill the 

condition of symmetry in the same tail if ( ) ( )1221 ,, xnxnRxx T −−⇒∈  

.TR∈  

The calculation of test sizes was carried out following the “procedure 
used to calculate test sizes” presented in Almendra-Arao [2]. We made these 
calculations by using a program we wrote in C++ programming language. 
This program can be obtained from the second author on request. 

Results 

Balanced designs 

In Figures 1 to 4, for 025.0=α  are presented test sizes for different 
configurations for balanced designs. 

 
Figure 1. Test sizes for ,25.0=α  05.00 =d  and balanced designs 

( )nnn == 21  for .1000...,50,40,30,=n  
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Figure 2. Test sizes for ,25.0=α  10.00 =d  and balanced designs 

( )nnn == 21  for .1000...,50,40,30,=n  

 

 

 

 

Figure 3. Test sizes for ,25.0=α  15.00 =d  and balanced designs 

( )nnn == 21  for .1000...,50,40,30,=n  
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Figure 4. Test sizes for ,25.0=α  20.00 =d  and balanced designs 

( )nnn == 21  for .1000...,50,40,30,=n  

In Figures 5 to 8, for balanced designs, test sizes are presented for 
05.0=α  and for several configurations. 

 

Figure 5. Test sizes for ,05.0=α  05.00 =d  and balanced designs 

( )nnn == 21  for .1000...,50,40,30,=n  
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Figure 6. Test sizes for ,05.0=α  10.00 =d  and balanced designs 

( )nnn == 21  for .1000...,50,40,30,=n  

 

 

 

 

Figure 7. Test sizes for ,05.0=α  15.00 =d  and balanced designs 

( )nnn == 21  for .1000...,50,40,30,=n  
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Figure 8. Test sizes for ,05.0=α  20.00 =d  and balanced designs 

( )nnn == 21  for .1000...,50,40,30,=n  

In Figures 1 to 8, it is noted that in all cases that test sizes are above the 
nominal significance level and uncontrolled. 

In Table 1 are presented the percentages of test sizes that belong to the 
interval indicated. For example, the value 87.76 in the fourth column 
corresponds to the percentage of test sizes that belong to the interval 
[ ]1,2.1 α  for 025.0=α  and .10.0=d  Also, the highest values for each case 

are highlighted in bold. 
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Table 1. Percentage of test sizes belonging to specified intervals 

α 0.025 0.05 

Test Size Test Size 
0d  Interval 

0T  1T  0T  1T  

0.05 
[0, α] 
(α, 1.2α) 
[1.2α, 1] 

0.00 
0.00 

100.00 

0.00 
0.00 

100.00 

0.00 
0.00 

100.00 

0.00 
30.61 
69.39 

0.1 
[0, α] 
(α, 1.2α) 
[1.2α, 1] 

0.00 
0.00 

100.00 

0.00 
12.24 
87.76 

0.00 
2.04 

97.96 

0.00 
67.35 
32.65 

0.15 
[0, α] 
(α, 1.2α) 
[1.2α, 1] 

0.00 
0.00 

100.00 

0.00 
43.88 
56.12 

0.00 
28.57 
71.43 

0.00 
85.71 
14.29 

0.2 
[0, α] 
(α, 1.2α) 
[1.2α, 1] 

0.00 
10.20 
89.80 

0.00 
67.35 
32.65 

0.00 
47.96 
52.04 

0.00 
93.88 

6.12 

Unbalanced designs 

In Figures 9 to 11, for unbalanced designs with 121 5.1 nnn ==  for 

,1500...,150,100,50,1 =n  test sizes are presented for 025.0=α  and for 

different configurations. 
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Figure 9. Test sizes for ,025.0=α  05.00 =d  and unbalanced designs 

( )121 5.1,for nnn =  for .1500...,150,100,50,1 =n  

 

 

 

 

Figure 10. Test sizes for ,025.0=α  10.00 =d  and unbalanced designs 

( )121 5.1,for nnn =  for .1500...,150,100,50,1 =n  
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Figure 11. Test sizes for ,025.0=α  15.00 =d  and unbalanced designs 

( )121 5.1,for nnn =  for .1500...,150,100,50,1 =n  

In Figures 12 to 14, for unbalanced designs with 121 5.1, nnn =  for 

1500...,,150,100,501 =n  test sizes are presented for 05.0=α  and for 

different configurations. 

 

Figure 12. Test sizes for ,05.0=α  05.00 =d  and unbalanced designs 

( )121 5.1,for nnn =  for .1500...,150,100,50,1 =n  
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Figure 13. Test sizes for ,05.0=α  10.00 =d  and unbalanced designs 

( )121 5.1,for nnn =  for .1500...,150,100,50,1 =n  

 

 

Figure 14. Test sizes for ,05.0=α  15.00 =d  and unbalanced designs 

( )121 5.1,for nnn =  for .1500...,150,100,50,1 =n  

In Figures 9 to 14, it is noted that in all cases that test sizes are 
uncontrolled and above the nominal significance level. 
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Conclusions 

Analyzing the results presented in Table 1, which was established for 
balanced design, we note that in no case the test size belongs to the interval 
[ ],,0 α  this means that these tests do not preserve test size for configurations 

considered for balance designs. Also, Table 1 shows that the minimum 
percentage of significance levels belonging to the interval ( )αα 2.1,  is 0%, 

and the maximum is 93.88%; this maximum value is obtained for 1T  when 

,05.0=α  and .20.00 =d  While at the same time, the minimum percentage 

for the interval [ ]1,2.1 α  is 6.12% and it is reached by the statistic 1T  when 

05.0=α  and ,20.00 =d  and the maximum is 100%. 

Thus, for balanced designs, from results of Table 1 and Figures 1 to 8, 
we obtain similar conclusions to those attained by Almendra-Arao [1], that 
is, that the behavior of test sizes is liberal, erratic and uncontrolled, and its 
value is nearly always far above from the nominal significance level. 

For unbalanced case, from Figures 9 to 14, we have similar conclusions 
as those for balanced case, in other words, also for unbalanced designs tests 
behave in liberal, erratic and uncontrolled way. 

Previous conclusions mean that although it is known theoretically that 
test sizes converges to nominal significance level, this convergence is very 
slow. In other words, convergence of test sizes to nominal significance level 
is not sufficiently rapid as to guarantee that nominal significance level is 
respected for sample sizes as big as 1000, for balanced designs, and for 
sample sizes as big as 1500, for unbalanced designs. 

Thus, we can say that although the analyzed tests are very simple to use, 
they are not ready to be used in practice in the way that they are. 

With the aim of making these tests adequate for their use in practice, we 
think that future investigation can be carried out to determine the nominal 
significance level to be specified to obtain a given objective significance 
level ( ).α  
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