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Abstract

This paper considers the solution of the matrix differential models
using quadratic, cubic, quartic, and quintic splines. Also, using the
Taylor’s and Picard’s matrix methods, three illustrative examples are
included.

1. Introduction

The evaluation of matrix functions is frequent in the solution of
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differential systems. So the system

Y(t) = AOY(1), Y(0) =Yy, A=[01] )

where A(t) is matrix and Y, is a vector arising of the parabolic equation.

The matrix differential equation

Y(t) = AOY(@M), Y(0)=Yy, Y(0)=Y, A=[01] @

where A(t) is matrix, Yy and Y; are vectors arising of the hyperbolic

equation. The matrix differential equation

Y(t) = AOY (D) +Y(O)BE), Y(0)=Yy A=[0 1] @)

where A(t) and B(t) are matrices appearing in systems stability and control.
Consider the matrix differential equation in the form

Y(t) = AQ)Y(t) + B(t), Y(0)=D, A=[0,1], @)

where Y(t) e C™9, A(t), B(t), C(t) and D(t) are matrices. Let A be
partition as A = {0 =ty <--- < t, =1}. The set of matrix splines of order m
defined as [1]:

Qlgy, 411 € Plth i€ {L ..., n}

M_C™"(A)n 4 =1Q:A—>C"™;
QeC™(a)

®)
if m =2, the matrix splines are called matrix quadratic splines, m = 3
called matrix cubic splines, m = 4 called matrix quartic splines and m = 5
called matrix quintic splines. A recent paper [2] deals with the construction
of an approximate solution of the first order matrix linear differential
equations using matrix cubic splines. The present paper extends the first
order linear differential equations using different matrix splines and also
approximates the solution by using Picard’s method and Taylor’s method
which are best than all matrix splines.
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2. The Matrix Spline Methods

This section gives the theoretical studies for the matrix differential
equation in the form (4) using the matrix quadratic splines, matrix cubic
splines, matrix quartic splines and matrix quintic splines.

2.1. The matrix quadratic splines

Consider the interval Ag = [0, k], k = At; suppose the solution in the
form

So(t) = Y(0)+ Y (0)t + %aotz, (©)

where Y (0) = D, \F(O) = A(0)Y(0) + Y (0)B(0) + C(0), but to find o, we

suppose that Sy(t) satisfies the matrix differential equation (4) at t = k, so
So(k) = A(k)Sp(k) + B(k). )
From equations (6) and (7), we get

k(l —%A(k))ao _ AGK)(Y(0) + Y(0)K) + B(K) - Y (0), ®)

where | is the identity matrix, from equation (8), we get ag and so Sy(t)
as in (6). Consider A;j = [ik, (i +1)k], 1<i<n-1, suppose the matrix
quadratic solution in the form

Si(t) = Si_a(iK) + Si-a(iK) (t — ik) + 5 ot - k)2 ©)
as above we determine o from the equation

k(l KA +1)k)jai

= A+ DK) (S _4(iK) + Si_a(ik)k) + B((i + k) — Si_a(ik),  (10)

and then S;(t) are determined for all i =1, ..., n. Note that solubility of the
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suggested scheme (10) is guaranteed showing that the matrix coefficient of

aj is invertible. If M = max | At)|, then H I —(I —%A((i +1)k)j <1,

0<t<1

sowe get k < % and then equation (10) has a unique solution o;.

2.2. The matrix cubic splines [2]

Consider the interval Ag = [0, k], suppose the solution in the form

1 t3,

So(t) = Y(0) + Y(0)t + 2 Y ()% + L a (11)

where Y(0)= D, Y(0)= A(0)Y(0)+ B(0), Y (0)= AQ)Y(0)+ A(0)Y(0)

+ B(0) and to determine o, we suppose that Sy(t) satisfies the matrix
differential equation (4) at t = k, so

g@ £ A(k))oco - A(k)(Y(O) FY(0)k + EV(o)sz
+ B(K)=Y(0)— Y (O)k, (12)

and Sg(t) as in (11). Consider A; = [ik, (i +1)k], 1<i<n-1 suppose
the matrix cubic solution in the form

S1(t) = Si4(iK) + Si-a(iK) (t - k) + 5 Sia(ik) (¢ - k) + £ oyt - k)P, (13)
as above we determine a; from the equation

%(I XA +1)k)joci _ A((i +1)k)(si_1(ik) + Sica(ik)k +%s:1(ik)k2j

+ B((i + DK) = Si_1(ik) — Si_g(ik)k, (14)

and then S;(t) are determined for all i =1, ..., n. Note that solubility of the
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suggested scheme (14) is guaranteed showing that the matrix coefficient of

a; is invertible. If M = max | A(t)|, then HI —(I —%A((i +1)k)) <1

0<t<1

sowe get k < % and then equation (14) has a unique solution «;.

2.3. The matrix quartic splines

Consider the interval Ag = [0, k]; suppose the solution in the form

Sot) = Y(0) + YOt + Y2 + 2 ¥ OF + Lagt®,  (15)

for this case, oy can be determined from the equation

k—;(l —%A(k))ao - A(k)(Y(O) FYOKk+ 2V (0K + %.\F.(O)kSJ

£ BK)=Y(0)= Y (0)k — Y (0)K2, (16)

and Sp(t) as in (15). Consider A; = [ik, (k +1)k], 1<i<n -1 suppose
the matrix quartic solution in the form

Si(1) = Si-4(K) + Si-i()(t - 1K) + 5 S 1(ik) (¢ - k)

+%Si_1(ik)(t —ik)? +%ai(t k)4, (17)
as above we determine a; from the equation

k;(l —%A((i +1)1<))0Li

A+ 1)k)(Si_1(ik) + Sica(ik)k +%S:l(ik)k2+%Sri._.l(ik)kﬂ

+ B((i + )K) = Sica(ik) — S 4(ik)k — %Si_l(ik)kz, (18)



126 K. R. Raslan and K. M. Abualnaja

and then S;(t) are determined for all i =1, ..., n. Note that solubility of the
suggested scheme (18) is guaranteed showing that the matrix coefficient of

aj is invertible. If M = max | A(t)|, then H I —(I —%A((i +1)k)j
0<t<1

sowe get k < % and then equation (18) has a unique solution «;.

2.4. The matrix quintic splines

Consider the interval Ag = [0, k]; suppose the solution in the form

1 (1] 1 oo0 1 (X1 1] 1

So(t) = Y(O)+Y(O)t+ Y(O)t +—Y(0)t + 54 Y (0)t* +120a0t (19)

for this case, oy can be determined from the equation

%(I —%A(k)joco

- A(k)(Y(O)+Y(O)k+ VORI 0k 4 Y Ot ]

+B(k) - Y(O) Y(O)k— Y (O)kz— Y (O)k3 (20)

and Sp(t) asin (19). Consider A; = [ik, (i +1)k], 1 <i < n —1; suppose the
matrix quintic solution in the form

Si(t) = S 1(tk)+s. LK) (= ik)+ = > Si l(n<)(t—n<)2+1s (i) (i — k)3

24 Il(lk)(t_lk)4 120 I(t Ik)5 (21)

as above we determine o; from the equation
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%(I K +1)k)jai

A+ 1)k)(si_1(ik) + Sica(ik)k +%S:1(ik)k2

2SOk o é:;(ik)k"'J + B((i +1)k) - Si_a(ik)

— sy (ik)k - %Si_l(ik)kz - % S, _4(ik)KS, 22)

and then S;(t) are determined for all i =1, ..., n. Note that solubility of the
suggested scheme (22) is guaranteed showing that the matrix coefficient of

aj is invertible. If M = max | A(t)|, then H I —(I —%A((i +1)k)j <1,

0<t<1

sowe get k < % and then equation (22) has a unique solution o;.

3. The Matrix Picard’s Method

In this section, we see the Picard’s method for the matrix differential
equation in the form (4), then the first approximation is

Via® = Yol + [ (ADY(©)+ BO) 23

where Yq(t) =D, i =0,1 2, ... Asin ordinary differential equation, we get
a sequence {Y;(t)}|5" which is convergent to the exact solution.
4. The Matrix Taylor’s Method

Suppose the approximate solution for the matrix differential equation (4)
takes the form
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Yol0) = Y(0) + Y(O)t + 2V ) -+ LyOo, (28

where Y(0), Y(0), ...,Y(”)(O) all can be determined from the matrix
differential equation (4).
5. lllustration of the Analysis

In this section, distinct matrix differential equations will be tested by
using the proposed methods.

Example 1. We first consider the matrix differential equation in the form
[6]:
N 2 2
yﬂUJﬁ—l——?tl t3—f—1 J[waq, o<t<1
vt t-t-1l-t-1 +? —t-1)\y)
y1(0)] (1) [yl(t)J 2
= | e C%,
y2(0)) \0 y2(t)

this matrix differential equation has the exact solution [e
te

(25)

t
J, in the following

table, we see the matrix splines methods.

Table 1
[ti, ti_1] Quadratic Cubic Quartic Quintic
[0,0.1] | 3.06573E-4 | 6.33769E-6 | 1.14628E-7 1.7956E-9
[0.1,0.2] | 7.11688E-4 | 6.33769E-6 | 8.81776E-7 | 5.7101E-8
[0.2,0.3] | 12.397E-4 | 8.32925E-6 | 2.2721E-6 | 5.46782E-7

In the following table, we see the approximation solution using quadratic
matrix method in some intervals.
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Table 2

[ti, tiq] Quadratic

1+t + 0.527889t2
[0, 0.1]

t +1.0804t2

0.1, 0.2] 1.00056 + 0.988792t + 0.583926t2

o 0.00172163 + 0.965567t + 1.25257t2

0.2, 03] 1.00304 + 0.964035t + 0.645822t2
A 0.009578 + 0.887004t + 1.44897t>

Example 2. We next consider the matrix differential equation in the form

[6]:

~1-t 0 -—1+e'+t Y1 Yo

Y1 Y2 ¢
vs va|T| ° -t 1t Ys. Y4

2+ (=3+e)t  A-t-t?—el(2+1)
+ t+el@+t) el 4t —(B5+t)T+t?)|,  (26)
1+ tet 1-t(5+t)

this matrix differential equation has the exact solution

1+t el +t
0 145t + t2 ,
t 0

in the following table, we see the matrix splines methods.
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Table 3

[ti, ti_1] | Quadratic Cubic Quartic Quintic Picard Taylor

[0, 0.1] |8.31824E-5 | 1.39565E-6 | 2.09742E-8 |2.79779E-10| 2.77528E-8 | 8.1057E-17

[0.1, 0.2] | 1.66464E-4 | 1.43614E-6 | 1.71722E-7 | 9.09382E-9 | 1.63446E-8 | 5.4655E-18

[0.2, 0.3] | 2.50312E-4 | 1.43614E-6 |5.158566E-7| 9.35249E-9 | 2.20588E-8 |4.74378E-17

In the following table, we see the approximation solution using quadratic
matrix method in some intervals.

Table 4
[ti. tia] Quadratic
1+t 1+ 2t-0.525398t2
[0, 0.1] 0 -1+ 5t+1.00046t>
t —0.000024106t2
1+t —2.095E —15t2 1.005 +1.988t + 0.580t2
[0.1, 0.2]| | 9.69E —18 —1.939E — 16t + 6.699E —18t> —0.999 + 4.999t +1.000t?
t—5.165E —17t2 ~5.580E — 7 +0.00001t — 7E — 5t
1+t +2.08E —15t2 1.002 +1.964t + 0.641t2
[0.2, 0.3]| | ~2.356E —17 +1.386E — 16t +1.382E —16t> —0.999 + 4.99t + 1.0005t
t — 7.413E —18t2 —3.48E — 6 + 4E — 5t —15E —5t2

Example 3. Consider the matrix differential equation in the Sylvester
problem form

. t
yiooy,)_[0 te [Y1 y2]+(y1 Y2J(0 tj
Vs  Va t 0)\Y¥3 Vs y3  ys)\0 O

'@+t —t(e' - e ™)) 27
1-te™ —t
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-t
this matrix differential equation has the exact solution (e OJ, in the
t 1

following table, we see Picard’s method and Taylor’s method, we note that
for this example, we cannot use the matrix spline method since the
multiplication of matrices is not commutative and this is an open problem
which is how the application of the matrix spline method for the nonlinear
matrix differential models of the first order and there is other open problem is
using the suggested methods for higher order matrix differential models.

Table 5

[t, ti_1] Picard Taylor

[0, 0.1] | 6.63265E-13 | 5.09563E-17

[0.1, 0.2] | 7.23197E-13 | 3.02364E-17

[0.2, 0.3] | 2.16118E-12 | 1.83892E-17
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