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Abstract

We characterize some real hypersurfaces in a complex space form
Mpn(c), ¢ # 0 interms of the structure Lie operator L.

1. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic
sectional curvature ¢ is called a complex space form, which is denoted by
Mp(c). As is well-known, a complete and simply connected complex space

form is complex analytically isometric to a complex projective space P,(C),

©2012 Pushpa Publishing House
2010 Mathematics Subject Classification: Primary 53C40; Secondary 53C15.
Keywords and phrases: real hypersurface, totally n-umbilical, Hopf hypersurface.

Received May 24, 2012



236 Dong Ho Lim and Woon Ha Sohn

a complex Euclidean space C" or a complex hyperbolic space H,(C),

accordingto ¢ >0, ¢ =0 or ¢ < 0.

In this paper, we consider a real hypersurface M in a complex space form

M,(c), ¢ # 0. Then M has an almost contact metric structure (¢, g, &, 1)
induced from the Kaehler metric and complex structure J on M, (c). The
structure vector field & is said to be principal if AE = a& is satisfied, where
A is the shape operator of M and o = n(4E). In this case, it is known that o
is locally constant ([7]) and that M is called a Hopf hypersurface.

Takagi [13] completely classified such hypersurfaces as six model
spaces which are said to be 4, 4,, B, C, D and Berndt [1] classified all
homogeneous Hopf hypersurfaces in H,(C) as four model spaces which are
said to be Ay, 4;, Ay and B. A real hypersurface of type 4 or 4, in P,(C)
or type Ay, 4; or 4y in H,(C), then M is said to be of type A for
simplicity.

As a typical characterization of real hypersurfaces of type 4, the
following is due to Okumura [12] for ¢ > 0, and Montiel and Romero [10]

for ¢ < 0.

Theorem A ([10, 11]). Let M be a real hypersurface of M,(c), ¢ # 0,
n > 2. It satisfies Ap — ¢4 = 0 on M if and only if M is locally congruent to
one of the model spaces of type A.

The totally umbilical on M is defined by A = al, where [ is an identity.
From a result of Tashiro and Tachibana [14], we see that there are no totally
umbilical hypersurfaces in M,(c). So we consider the notion of totally
n-umbilical hypersurfaces. A real hypersurface M is said to be totally
n-umbilical if shape operator 4 is of the form 4 = a + bn ® &, where a and
b are scalar functions on M. The classification of totally m-umbilical real

hypersurfaces in a complex projective space and complex hyperbolic space is
determined by Kon [7] and Montiel [9].
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The induced operator Lg on a real hypersurface M from the 2-form L¢g
is defined by (L:g) (X, Y) = g(LX, Y) for any vector field X and ¥ on M,
where L denotes the operator of the Lie derivative with respect to the
structure vector field &. This operator L is given by
Le = ¢4 — A
on M, and the structure vector field & is Killing if L = 0. Then we call Lg
structure Lie operator of M.

In this paper, we shall study a real hypersurface in a nonflat complex

space form M, (c) whose structure Lie operator L has totally n-umbilical
and in terms of the shape operator 4, the structure tensor ¢ and the structure
Lie operator Lg with respect to &. More specifically, we prove the following:

Theorem 1. Let M be a real hypersurface in a complex space form
M(c), ¢ # 0. If M has L:X = pX +on(X)E, where p and & are scalar

functions, then M is a locally congruent to a real hypersurface of type A.

Theorem 2. Let M be a real hypersurface in a complex space form
My(c), ¢ # 0. If M has LA = A¢Le, then M is a locally congruent to a

real hypersurface of type A.

All manifolds in the present paper are assumed to be connected and of

class C* and the real hypersurfaces supposed to be orientable.
2. Preliminaries

Let M be a real hypersurface immersed in a complex space form M, (c),

and N be a unit normal vector field of M. By V, we denote the Levi-Civita
connection with respect to the Fubini-Study metric tensor g of M, (c). Then

the Gauss and Weingarten formulas are given, respectively, by

VyY =VyY+g(4AX,Y)N, VN =-4X
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for any vector fields X and Y tangent to M, where g denotes the Riemannian

metric tensor of M induced from g, and A is the shape operator of M in

M ,(c). For any vector field X on M, we put
JX = ¢X +n(X)N, JN = -,

where J is the almost complex structure of M, (c). Then we see that M

induces an almost contact metric structure (¢, g, &, 1), that is,

O*X =X +n(X)g, ¢g=0, nE)=1
g(0X, ¢Y) = g(X, ¥) —n(X)n(Y), n(X)=g(X, &)
for any vector fields X and Y on M.

Since the almost complex structure J is parallel, we can verify from the

Gauss and Weingarten formulas the following:
Vx€ = ¢4X, (2.1)
(Vx§)Y =n(Y)4AX - g(4X, Y)& (2.2)

Since the ambient manifold is of constant holomorphic sectional

curvature ¢, we have Codazzi equations:

c

(Va )Y = (Vyd)X = 7 n(X)oY - n(Y)$X - 2g(¢X, Y)&}  (2.3)
for any vector fields X, ¥ and Z on M, where R denotes the Riemannian
curvature tensor of M.

Let W be a unit vector field on M with the same direction of the vector
field — ¢V, and let p be the length of the vector field —¢V & if it does not

vanish, and zero (constant function) if it vanishes. Then it is easily seen from
(2.1) that

AE = of + v, (2.4)

where o = n(A4E). We notice here that W is orthogonal to &. We put
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Q={peMlu(p)# 0}

Then Q is an open subset of M.
3. Proof of Theorems

In this section, we shall prove that & is principal under the our
assumptions.

Proof of Theorem 1. Let M be a real hypersurface in complex space
form M, (c), ¢ # 0 satisfying Lz X = pX + on(X)E&. This condition implies

that
(¢4 - 49) X = pX +on(X)E (.1
for any vector field X on Q.

If we put X = & into (3.1) and make use of (2.4), then we have
p=0and p+oc=0. (3.2)

Thus M is a Hopf hypersurface and p+ o =0. Since M is a Hopf
hypersurface and p + ¢ = 0, it follows from (3.2) that

(94 — 49) X = p(X - n(X))E. 3.3)
Putting X = W into (3.3), we obtain
(94 — AQ)W = pW (3.4)
and by putting X = ¢# into (3.3) and make use of (2.1), we have
—AOW + QAW = —pW. (3.5)
From (3.4), (3.5) and (3.3), we have
p=0and o =0. (3.6)
Therefore, we have Lg = ¢4 — A¢ =0 on M. The statement Theorem 1

follows immediately from Theorem A. U
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Proof of Theorem 2. Let M be a real hypersurface in complex space
form M, (c), ¢ # 0 satisfying LepA = APLe. This condition implies that

(0APA + APAD + 24%) X = 2n(AX) 4E. (3.7)
If we put X = & into (3.7) and make use of (2.4), then we have
LAGW + 2udW = 0. (3.8)

Taking inner product of (3.8) with £ and using (2.4), we get p = 0 on Q, and

it is a contradiction. Thus M is a Hopf hypersurface. Thus, the assumption
Le9Ad = AL is equivalent to

(0ADA + ApAd + 24%) X = 20°n(X)E. (3.9)

On the other hand, if we differentiate A = af covariantly and make use of

equation (2.3) of Codazzi, then we have
o ¢
A¢A—7(¢A+A¢)—Z¢=O. (3.10)

For any vector field X on M such that AX = AX, it follows from (3.10) that

(x—%)/nbx:%( x+§)¢x. (3.11)

We can choose an orthonormal frame field

(Xo =& Xi, Xoy oy X gy 0X1, s 0X,, 1}

on M such that AX; =1 X; for 1<i<(n-1). If kii% for 1<

< (n —1), then we see from (3.11) that ¢.X; is also a principal direction , say

AdX; = p;0X;. From (3.9) and (3.11), we have

A —u;) = 0. (3.12)
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_<
200"

Therefore, since M has at most three distinct principal curvatures, M is

If X; =0, then by the assumption, we obtain o # 0 and p; =

locally congruent to either one of type 4, or type B. In M, (c), if A; =0,

then o = 0 or a is not defined. Since we have a does not vanish, it is a
contradiction. From (3.12), we have A; = p; and hence A4¢X; = ¢4X; for

1<i<(n=1).If&; # % and A ; = %, then we can choose an orthonormal

frame field {XO = a, Xl’ Xz, ceey Xp’ (I)Xl, ceey (I)Xp, X2p+1’ ceey XQ(H—I)} on

M such that AX; = A X;, A¢X; = p;¢X; and 4X; = %Xj for 1<i<p

and p+1< j <2(n-1). Then it follows from (3.9) that
(0494 + APAd +24%) X ; = 0. (3.13)

Taking inner product of (3.13) with X;, we obtain

i»

ik — 1) g(9X 5, X;) = 0. (3.14)
Also, from (3.11), we obtain ¢ = —o2. If p; =0, then we have A; = %.
But by the assumption A; # %, it is a contradiction. If A; = p; and using

(3.11), then we have A; =p; =%. By the virtue of A; # %,

contradiction. Thus the vector field ¢X; is expressed by the linear

it is a

combination of X ;’s only, which implies A¢X ; = %d)X j=04X; I =

% for 1< j <2(n—1), then it is easily seen that A¢Xj = ¢AXj for all ;.
Therefore, we have L = ¢4 — A9 =0 on M. The results of Theorem 2

follow immediately from Theorem A. U
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