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Abstract 

We characterize some real hypersurfaces in a complex space form 
( ),cM n  0≠c  in terms of the structure Lie operator .ξL  

1. Introduction 

A complex n-dimensional Kaehlerian manifold of constant holomorphic 
sectional curvature c is called a complex space form, which is denoted by 

( ).cMn  As is well-known, a complete and simply connected complex space 

form is complex analytically isometric to a complex projective space ( ),CnP  
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a complex Euclidean space nC  or a complex hyperbolic space ( ),CnH  

according to ,0>c  0=c  or .0<c  

In this paper, we consider a real hypersurface M in a complex space form 
( ),cMn  .0≠c  Then M has an almost contact metric structure ( )ηξφ ,,, g  

induced from the Kaehler metric and complex structure J on ( ).cMn  The 

structure vector field ξ  is said to be principal if αξ=ξA  is satisfied, where 

A is the shape operator of M and ( ).ξη=α A  In this case, it is known that α 

is locally constant ([7]) and that M is called a Hopf hypersurface. 

Takagi [13] completely classified such hypersurfaces as six model   
spaces which are said to be ,1A  ,2A  B, C, D and Berndt [1] classified all 

homogeneous Hopf hypersurfaces in ( )CnH  as four model spaces which are 

said to be 210 ,, AAA  and B. A real hypersurface of type 1A  or 2A  in ( )CnP  

or type ,0A  1A  or 2A  in ( ),CnH  then M is said to be of type A for 

simplicity. 

As a typical characterization of real hypersurfaces of type A, the 
following is due to Okumura [12] for ,0>c  and Montiel and Romero [10] 
for .0<c  

Theorem A ([10, 11]). Let M be a real hypersurface of ( ),cMn  ,0≠c  

.2≥n  It satisfies 0=φ−φ AA  on M if and only if M is locally congruent to 

one of the model spaces of type A. 

The totally umbilical on M is defined by ,aIA =  where I is an identity. 

From a result of Tashiro and Tachibana [14], we see that there are no totally 
umbilical hypersurfaces in ( ).cMn  So we consider the notion of totally       

η-umbilical hypersurfaces. A real hypersurface M is said to be totally           
η-umbilical if shape operator A is of the form ,ξ⊗η+= baA  where a and 

b are scalar functions on M. The classification of totally η-umbilical real 
hypersurfaces in a complex projective space and complex hyperbolic space is 
determined by Kon [7] and Montiel [9]. 
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The induced operator ξL  on a real hypersurface M from the 2-form gξL  

is defined by ( ) ( ) YXLgYXg ,, ξξ =L  for any vector field X and Y on M, 

where ξL  denotes the operator of the Lie derivative with respect to the 

structure vector field ξ. This operator ξL  is given by 

φ−φ=ξ AAL  

on M, and the structure vector field ξ is Killing if .0=ξL  Then we call ξL  

structure Lie operator of M. 

In this paper, we shall study a real hypersurface in a nonflat complex 
space form ( )cMn  whose structure Lie operator ξL  has totally η-umbilical 

and in terms of the shape operator A, the structure tensor φ and the structure 
Lie operator ξL  with respect to ξ. More specifically, we prove the following: 

Theorem 1. Let M be a real hypersurface in a complex space form 
( ) .0, ≠ccMn  If M has ( ) ,ξση+ρ=ξ XXXL  where ρ and σ are scalar 

functions, then M is a locally congruent to a real hypersurface of type A. 

Theorem 2. Let M be a real hypersurface in a complex space form 
( ) .0, ≠ccMn  If M has ,ξξ φ=φ LAAL  then M is a locally congruent to a 

real hypersurface of type A. 

All manifolds in the present paper are assumed to be connected and of 

class ∞C  and the real hypersurfaces supposed to be orientable. 

2. Preliminaries 

Let M be a real hypersurface immersed in a complex space form ( ),cMn  

and N be a unit normal vector field of M. By ,~
∇  we denote the Levi-Civita 

connection with respect to the Fubini-Study metric tensor g~  of ( ).cMn  Then 

the Gauss and Weingarten formulas are given, respectively, by 

( ) AXNNYAXgYY XXX −=∇+∇=∇
~,,~  
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for any vector fields X and Y tangent to M, where g denotes the Riemannian 
metric tensor of M induced from ,~g  and A is the shape operator of M in 

( ).cMn  For any vector field X on M, we put 

( ) ,, ξ−=η+φ= JNNXXJX  

where J is the almost complex structure of ( ).cMn  Then we see that M 

induces an almost contact metric structure ( ),,,, ηξφ g  that is, 

( ) ( ) ,1,0,2 =ξη=φξξη+−=φ XXX  

( ) ( ) ( ) ( ) ( ) ( )ξ=ηηη−=φφ ,,,, XgXYXYXgYXg  

for any vector fields X and Y on M. 

Since the almost complex structure J is parallel, we can verify from the 
Gauss and Weingarten formulas the following: 

,AXX φ=ξ∇  (2.1) 

 ( ) ( ) ( ) ., ξ−η=φ∇ YAXgAXYYX  (2.2) 

Since the ambient manifold is of constant holomorphic sectional 
curvature c, we have Codazzi equations: 

( ) ( ) ( ) ( ) ( ){ }ξφ−φη−φη=∇−∇ YXgXYYXcXAYA YX ,24  (2.3) 

for any vector fields X, Y and Z on M, where R denotes the Riemannian 
curvature tensor of M. 

Let W be a unit vector field on M with the same direction of the vector 
field ,ξ∇φ− ξ  and let µ be the length of the vector field ξ∇φ− ξ  if it does not 

vanish, and zero (constant function) if it vanishes. Then it is easily seen from 
(2.1) that 

 ,WA µ+αξ=ξ  (2.4) 

where ( ).ξη=α A  We notice here that W is orthogonal to ξ. We put 
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( ){ }.0≠µ|∈=Ω pMp  

Then Ω is an open subset of M. 

3. Proof of Theorems 

In this section, we shall prove that ξ is principal under the our 
assumptions. 

Proof of Theorem 1. Let M be a real hypersurface in complex space 
form ( ),cMn  0≠c  satisfying ( ) .ξση+ρ=ξ XXXL  This condition implies 

that 

 ( ) ( )ξση+ρ=φ−φ XXXAA  (3.1) 

for any vector field X on Ω. 

If we put ξ=X  into (3.1) and make use of (2.4), then we have 

 0=µ  and .0=σ+ρ  (3.2) 

Thus M is a Hopf hypersurface and .0=σ+ρ  Since M is a Hopf 

hypersurface and ,0=σ+ρ  it follows from (3.2) that 

 ( ) ( )( ) .ξη−ρ=φ−φ XXXAA  (3.3) 

Putting WX =  into (3.3), we obtain 

 ( ) WWAA ρ=φ−φ  (3.4) 

and by putting WX φ=  into (3.3) and make use of (2.1), we have 

.WAWWA ρ−=φ+φ−  (3.5) 

From (3.4), (3.5) and (3.3), we have 

 0=ρ  and .0=σ  (3.6) 

Therefore, we have 0=φ−φ=ξ AAL  on M. The statement Theorem 1 

follows immediately from Theorem A.  
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Proof of Theorem 2. Let M be a real hypersurface in complex space 
form ( ),cMn  0≠c  satisfying .ξξ φ=φ LAAL  This condition implies that 

 ( ) ( ) .22 2 ξη=+φφ+φφ AAXXAAAAA  (3.7) 

If we put ξ=X  into (3.7) and make use of (2.4), then we have 

 .02 =µ+φµ AWWA  (3.8) 

Taking inner product of (3.8) with ξ and using (2.4), we get 0=µ  on Ω, and 

it is a contradiction. Thus M is a Hopf hypersurface. Thus, the assumption 

ξξ φ=φ LAAL  is equivalent to 

 ( ) ( ) .22 22 ξηα=+φφ+φφ XXAAAAA  (3.9) 

On the other hand, if we differentiate αξ=ξA  covariantly and make use of 

equation (2.3) of Codazzi, then we have 

 ( ) .042 =φ−φ+φ
α

−φ
cAAAA  (3.10) 

For any vector field X on M such that ,XAX λ=  it follows from (3.10) that 

 .22
1

2 XcXA φ





 +αλ=φ






 α

−λ  (3.11) 

We can choose an orthonormal frame field 

{ }111210 ...,,,...,,,, −− φφξ= nn XXXXXX  

on M such that iii XAX λ=  for ( ).11 −≤≤ ni  If 2
α

≠λi  for i≤1  

( ),1−≤ n  then we see from (3.11) that iXφ  is also a principal direction , say 

.iii XXA φµ=φ  From (3.9) and (3.11), we have 

 ( ) .0=µ−λλ iii  (3.12) 
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If ,0=λi  then by the assumption, we obtain 0≠α  and .2α−=µ
c

i   

Therefore, since M has at most three distinct principal curvatures, M is 
locally congruent to either one of type 2A  or type B. In ( ),cMn  if ,0=λi  

then 0=α  or α is not defined. Since we have α does not vanish, it is a 

contradiction. From (3.12), we have ii µ=λ  and hence ii AXXA φ=φ  for 

( ).11 −≤≤ ni  If 2
α

≠λi  and ,2
α

=λ j  then we can choose an orthonormal 

frame field { ( )}12121210 ...,,,...,,,...,,,, −+φφξ= nppp XXXXXXXX  on 

M such that ,iii XAX λ=  iii XXA φµ=φ  and jj XAX 2
α

=  for pi ≤≤1  

and ( ).121 −≤≤+ njp  Then it follows from (3.9) that 

 ( ) .02 2 =+φφ+φφ jXAAAAA  (3.13) 

Taking inner product of (3.13) with ,iX  we obtain 

 ( ) ( ) .0, =φµ−λµ ijiii XXg  (3.14) 

Also, from (3.11), we obtain .2α−=c  If ,0=µi  then we have .2
α

=λi  

But by the assumption ,
2
α

≠λi  it is a contradiction. If ii µ=λ  and using 

(3.11), then we have .2
α

=µ=λ ii  By the virtue of ,2
α

≠λi  it is a 

contradiction. Thus the vector field jXφ  is expressed by the linear 

combination of jX ’s only, which implies .2 jjj AXXXA φ=φα=φ  If =λ j  

2
α  for ( ),121 −≤≤ nj  then it is easily seen that jj AXXA φ=φ  for all j. 

Therefore, we have 0=φ−φ=ξ AAL  on M. The results of Theorem 2 

follow immediately from Theorem A.  
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