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Abstract 

Suppose that A and B are positive irrational numbers. In this paper, we 

find the criterion that B
ABA ,±  and AB are all irrational numbers. 

1. Introduction 

Let ;...,,, 321 aaa  ...,,, 321 bbb  be integers with ,0,0 21 >≥ aa  

,0,0,0;,0 3213 >>≥> bbba  all along this note. Nettler [1] proved 

the following theorem: 
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if ( )21
1
−
−>> n

nnn aba  for all n sufficiently large, then B
ABABA ,,, ±  and 

AB are all trancendental numbers. 

The aim of this note is to prove the following theorem that is relevant to 
the above theorem. 

Theorem. Let ;...,,, 321 aaa  ...,,, 321 bbb  be integers with ,01 ≥a  

.,0,0,0;,0,0,2 321432 >>≥>>≥ bbbaaa  For 
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if ( )1
1
−γ

−>> n
nnn aba  for all positive integer ,3≥n  then B

ABA ,±  and AB 

are all irrational numbers, where γ  is any constant such that .8>γ  

We give an elementary proof of this theorem using the method of 
Nettler. 

2. Lemmas 

Lemma 1. If 
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then, for all ,1≥n  we have 
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Proof. See Theorem 2.1 in [2]. 

Lemma 2. Let  
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be the continued fraction expantion, given in Lemma 1, for either B
ABA ,±  

or AB. And let 
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such that .8>α  

Proof. From (3), (4), (5) and (6), we have the following inequalities 
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for all n sufficient large. 

2. Proof of the Theorem 

Now let 
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Let n be a sufficiently large integer to ensure the validity of the later 
argument. We have 
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And we have 
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Therefore BA +  is an irrational number. Similarly, it can be proven easily 
that BA −  is also an irrational number. 
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To prove that B
A  is an irrational number, let 
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Therefore B
A  is an irrational number. Similarly, it can be proven easily that 

AB is also an irrational number. 
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3. Example 

Let 
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Then B
ABA ,±  and AB are all irrational numbers. 
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