Far East Journal of Mathematical Sciences (FJMS)
Volume 72, Number 2, 2013, Pages 385-391
Published Online: December 2012
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

ON IRRATIONAL NUMBERS WHOSE SUM, DIFFERENCE, QUOTIENT AND PRODUCT ARE IRRATIONAL NUMBERS

Takeshi Okano

Department of Mathematics
Saitama Institute of Technology
Fukaya, Saitama 369-0293, Japan
e-mail: okano@sit.ac.jp

Abstract

Suppose that A and B are positive irrational numbers. In this paper, we find the criterion that $A \pm B, \frac{A}{B}$ and $A B$ are all irrational numbers.

1. Introduction

Let $a_{1}, a_{2}, a_{3}, \ldots ; b_{1}, b_{2}, b_{3}, \ldots$ be integers with $a_{1} \geq 0, a_{2}>0$, $a_{3}>0, \cdots ; b_{1} \geq 0, b_{2}>0, b_{3}>0, \cdots$ all along this note. Nettler [1] proved the following theorem:

For

$$
A=a_{1}+\frac{1}{a_{2}}+\frac{1}{a_{3}+\cdots} \text { and } B=b_{1}+\frac{1}{b_{2}}+\frac{1}{b_{3}+\cdots}
$$

© 2013 Pushpa Publishing House
2010 Mathematics Subject Classification: 11A55, 11J70, 11J72.
Keywords and phrases: continued fraction, diophantine approximation, irrationality.
Received September 14, 2012
if $a_{n}>b_{n}>a_{n-1}^{(n-1)^{2}}$ for all n sufficiently large, then $A, B, A \pm B, \frac{A}{B}$ and $A B$ are all trancendental numbers.

The aim of this note is to prove the following theorem that is relevant to the above theorem.

Theorem. Let $a_{1}, a_{2}, a_{3}, \ldots ; b_{1}, b_{2}, b_{3}, \ldots$ be integers with $a_{1} \geq 0$, $a_{2} \geq 2, a_{3}>0, a_{4}>0, \cdots ; b_{1} \geq 0, b_{2}>0, b_{3}>0, \cdots$. For

$$
A=a_{1}+\frac{1}{a_{2}}+\frac{1}{a_{3}+\cdots} \quad \text { and } B=b_{1}+\frac{1}{b_{2}}+\frac{1}{b_{3}+\cdots}
$$

if $a_{n}>b_{n}>a_{n-1}^{\gamma(n-1)}$ for all positive integer $n \geq 3$, then $A \pm B, \frac{A}{B}$ and $A B$ are all irrational numbers, where γ is any constant such that $\gamma>8$.

We give an elementary proof of this theorem using the method of Nettler.

2. Lemmas

Lemma 1. If

$$
\begin{align*}
& A(n)=a_{1}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\cdots+\frac{1}{a_{n}}=\frac{{ }^{a} P_{n}}{{ }^{a} Q_{n}} \tag{1}\\
& B(n)=b_{1}+\frac{1}{b_{2}}+\frac{1}{b_{3}}+\cdots+\frac{1}{b_{n}}=\frac{{ }^{b} P_{n}}{{ }^{b} Q_{n}} \tag{2}
\end{align*}
$$

then, for all $n \geq 1$, we have

$$
\begin{aligned}
A(n)+B(n)= & a_{1}+b_{1}+\frac{a_{2}+b_{2}}{a_{2} b_{2}}+\frac{a_{2} b_{2} F_{3}}{E_{3}-F_{3}}+\frac{E_{3} F_{4}}{E_{4}-F_{4}+} \\
& \frac{E_{4} F_{5}}{E_{5}-F_{5}}+\cdots+\frac{E_{n-1} F_{n}}{E_{n}-F_{n}}
\end{aligned}
$$

$$
\begin{align*}
& E_{n}={ }^{a} Q_{n}{ }^{b} Q_{n}\left({ }^{a} Q_{n-2}{ }^{a} Q_{n-1}+{ }^{b} Q_{n-2}{ }^{b} Q_{n-1}\right), \\
& F_{n}={ }^{a} Q_{n-2}{ }^{b} Q_{n-2}\left({ }^{a} Q_{n-1}{ }^{a} Q_{n}+{ }^{b} Q_{n-1}{ }^{b} Q_{n}\right), \tag{3}\\
& B(n)-A(n)=b_{1}-a_{1}+\frac{a_{2}-b_{2}}{a_{2} b_{2}}+\frac{a_{2} b_{2} H_{3}}{G_{3}-H_{3}}+\frac{G_{3} H_{4}}{G_{4}-H_{4}+} \\
& \frac{G_{4} H_{5}}{G_{5}-H_{5}}+\cdots+\frac{G_{n-1} H_{n}}{G_{n}-H_{n}}, \\
& G_{n}={ }^{a} Q_{n}{ }^{b} Q_{n}\left({ }^{a} Q_{n-2}{ }^{a} Q_{n-1}-{ }^{b} Q_{n-2}{ }^{b} Q_{n-1}\right), \\
& H_{n}={ }^{a} Q_{n-2}{ }^{b} Q_{n-2}\left({ }^{a} Q_{n-1}{ }^{a} Q_{n}-{ }^{b} Q_{n-1}{ }^{b} Q_{n}\right), \tag{4}\\
& \begin{array}{c}
A(n) \\
B(n)
\end{array}=\frac{a_{1}}{b_{1}}+\frac{b_{1} b_{2}-a_{1} a_{2}}{a_{2} b_{1}\left(b_{1} b_{2}+1\right)}+\frac{a_{2} b_{1}\left(b_{1} b_{2}+1\right) J_{3}}{I_{3}-J_{3}}+ \\
& \quad \frac{I_{3} J_{4}}{I_{4}-J_{4}+\frac{I_{4} J_{5}}{I_{5}-J_{5}+\cdots+}+\frac{I_{n-1} J_{n}}{I_{n}-J_{n}},} \\
& I_{n}={ }^{a} Q_{n}{ }^{b} P_{n}\left({ }^{a} Q_{n-2}{ }^{a} P_{n-1}+{ }^{b} Q_{n-2}{ }^{b} P_{n-1}\right), \\
& J_{n}={ }^{a} Q_{n-2}{ }^{b} P_{n-2}\left({ }^{a} Q_{n}{ }^{a} P_{n-1}+{ }^{b} Q_{n}{ }^{b} P_{n-1}\right), \tag{5}\\
& A(n) B(n)=a_{1} b_{1}+\frac{a_{1} a_{2}+b_{1} b_{2}+1}{a_{2} b_{2}}+\frac{a_{2} b_{2} L_{3}}{K_{3}-L_{3}+} \\
& \quad \frac{K_{3} L_{4}}{K_{4}-L_{4}+\frac{K_{4} L_{5}}{K_{5}-L_{5}+\cdots+} \frac{K_{n-1} L_{n}}{K_{n}-L_{n}},} \\
& K_{n}={ }^{a} Q_{n}{ }^{b} Q_{n}\left({ }^{a} Q_{n-2}{ }^{a} P_{n-1}+{ }^{b} Q_{n-1}{ }^{b} P_{n-2}\right), \\
& L_{n}={ }^{a} Q_{n-2}{ }^{b} Q_{n-2}\left({ }^{a} Q_{n}{ }^{a} P_{n-1}+{ }^{b} Q_{n-1}{ }^{b} P_{n}\right) . \tag{6}
\end{align*}
$$

Proof. See Theorem 2.1 in [2].
Lemma 2. Let

$$
C=e_{1}+\frac{d_{2}}{e_{2}}+\frac{d_{3}}{e_{3}}+\cdots
$$

be the continued fraction expantion, given in Lemma 1, for either $A \pm B, \frac{A}{B}$ or $A B$. And let

$$
\frac{{ }^{c} P_{n}}{{ }^{c} Q_{n}}=e_{1}+\frac{d_{2}}{e_{2}}+\frac{d_{3}}{e_{3}}+\cdots+\frac{d_{n}}{e_{n}} .
$$

If $a_{n}>b_{n}$ for sufficient large n, then ${ }^{c} Q_{n}<{ }^{a} Q_{n}^{\alpha n}$, where α is any constant such that $\alpha>8$.

Proof. From (3), (4), (5) and (6), we have the following inequalities

$$
\begin{aligned}
& { }^{c} Q_{n}=e_{n}{ }^{c} Q_{n-1}+d_{n}{ }^{c} Q_{n-2}<^{c} Q_{n-1}\left(d_{n}+e_{n}\right) \\
& <\cdots<\prod_{i=2}^{n}\left(d_{i}+e_{i}\right)<\prod_{i=2}^{n}{ }^{a} Q_{i}^{\alpha}<{ }^{\alpha} Q_{n}^{\alpha n}
\end{aligned}
$$

for all n sufficient large.

2. Proof of the Theorem

Now let

$$
A+B=C=e_{1}+\frac{d_{2}}{e_{2}}+\frac{d_{3}}{e_{3}+\cdots}
$$

and

$$
\frac{{ }^{a} P_{n}}{{ }^{a} Q_{n}}+\frac{{ }^{b} P_{n}}{{ }^{b} Q_{n}}=\frac{{ }^{c} P_{n}}{{ }^{c} Q_{n}} \text { for } n \geq 1 .
$$

Let n be a sufficiently large integer to ensure the validity of the later argument. We have

$$
\begin{aligned}
\left|C-\frac{{ }^{c} P_{n}}{{ }^{c} Q_{n}}\right| & \leq\left|A-\frac{{ }^{a} P_{n}}{{ }^{a} Q_{n}}\right|+\left|B-\frac{{ }^{b} P_{n}}{{ }^{b} Q_{n}}\right|<\frac{1}{{ }^{a} Q_{n}{ }^{a} Q_{n+1}}+\frac{1}{{ }^{b} Q_{n}{ }^{b} Q_{n+1}} \\
& <\frac{2}{{ }^{b} Q_{n}{ }^{b} Q_{n+1}}<\frac{2}{b_{n+1} \cdot{ }^{b} Q_{n}^{2}}<\frac{2}{a_{n}^{\gamma n} \cdot{ }^{b} Q_{n}^{2}} .
\end{aligned}
$$

And we have

$$
\begin{aligned}
{ }^{a} Q_{n} & <\left(a_{n}+1\right) \cdot{ }^{a} Q_{n-1} \leq\left(2 a_{n}\right) \cdot{ }^{a} Q_{n-1}<\prod_{i=2}^{n}\left(2 a_{i}\right)=2^{n-1} a_{2} a_{3} \cdots a_{n} \\
& <2^{n-1} \cdot a_{n}^{1+\frac{1}{\gamma(n-1)}}+\frac{1}{\gamma^{2}(n-1)(n-2)}+\cdots+\frac{1}{\gamma^{n-2}(n-1)(n-2) \cdots 3 \cdot 2} \\
& <2^{n-1} \cdot a_{n}^{1+\frac{1}{n-1} \cdot \frac{1}{\gamma-1}<2^{n-1} \cdot a_{n}^{\frac{\gamma}{\delta}},}
\end{aligned}
$$

where δ is any constant such that $8<\delta<\gamma$. Hence

$$
a_{n}^{\gamma n}>\frac{{ }^{a} Q_{n}^{\delta n}}{2^{\delta n(n-1)}}
$$

From Lemma 2, we obtain

$$
\left|C-\frac{{ }^{c} P_{n}}{{ }^{c} Q_{n}}\right|<\frac{2}{{ }^{a} Q_{n}^{\delta n} \frac{{ }^{b} Q_{n}^{2}}{2^{\delta n(n-1)}}}<\frac{2}{{ }^{c} Q_{n} \frac{{ }^{b} Q_{n}^{2}}{2^{\delta n(n-1)}}}=\frac{1}{{ }^{c} Q_{n} M_{n}},
$$

where $M_{n}=\frac{1}{2} \cdot \frac{{ }^{b} Q_{n}^{2}}{2^{\delta n(n-1)}}$. And we obtain

$$
\begin{aligned}
{ }^{b} Q_{n} & >b_{n} \cdot{ }^{b} Q_{n-1}>a_{n-1}^{\gamma(n-1)} \cdot{ }^{b} Q_{n-1}>\cdots>\left(a_{n-1}^{n-1} a_{n-2}^{n-2} \cdots a_{2}^{2}\right)^{\gamma} \\
& >\left(2^{2!+\gamma \cdot 3!+\gamma^{2} \cdot 4!+\cdots+\gamma^{n-3} \cdot(n-1)!}\right)^{\gamma}>2^{\gamma^{n-2}} \cdot(n-1)!
\end{aligned}
$$

Then,

$$
\lim _{n \rightarrow \infty} \frac{1}{M_{n}}=0 .
$$

Therefore $A+B$ is an irrational number. Similarly, it can be proven easily that $A-B$ is also an irrational number.

To prove that $\frac{A}{B}$ is an irrational number, let

$$
\frac{A}{B}=C=e_{1}+\frac{d_{2}}{e_{2}}+\frac{d_{3}}{e_{3}}+\cdots
$$

and

$$
\frac{{ }^{a} P_{n}}{{ }^{a} Q_{n}} / \frac{{ }^{b} P_{n}}{{ }^{b} Q_{n}}=\frac{{ }^{c} P_{n}}{{ }^{c} Q_{n}} \text { for } n \geq 1 .
$$

As

$$
\frac{{ }^{a} P_{n}}{{ }^{a} Q_{n}} \leq 2 a_{1} \text { and } \frac{1}{2 b_{2}} \leq \frac{{ }^{b} P_{n}}{{ }^{b} Q_{n}}
$$

for $n \geq 3$.
Let n be an integer with $n \geq 3$. We obtain

$$
\begin{aligned}
\left|C-\frac{{ }^{c} P_{n}}{{ }^{c} Q_{n}}\right| & =\left|\frac{A}{B}-\frac{{ }^{a} P_{n} /{ }^{a} Q_{n}}{{ }^{b} P_{n} /{ }^{b} Q_{n}}\right| \\
& =\frac{\left|\frac{{ }^{b} P_{n}}{{ }^{b} Q_{n}}\left(A-\frac{{ }^{a} P_{n}}{{ }^{a} Q_{n}}\right)+\frac{{ }^{a} P_{n}}{{ }^{a} Q_{n}}\left(\frac{{ }^{b} P_{n}}{{ }^{b} Q_{n}}-B\right)\right|}{B\left({ }^{b} P_{n} /{ }^{b} Q_{n}\right)} \\
& \leq \frac{\left|A-\frac{{ }^{a} P_{n}}{{ }^{a} Q_{n}}\right|}{B}+\frac{2 a_{1}\left|B-\frac{{ }^{b} P_{n}}{{ }^{b} Q_{n}}\right|}{B /\left(2 b_{2}\right)} \\
& <\frac{4 a_{1} b_{2}+1}{B} \cdot \frac{1}{{ }^{b} Q_{n}{ }^{b} Q_{n+1}}=o\left(\frac{1}{{ }^{c} Q_{n}}\right) \text { as } n \rightarrow \infty .
\end{aligned}
$$

Therefore $\frac{A}{B}$ is an irrational number. Similarly, it can be proven easily that $A B$ is also an irrational number.

3. Example

Let

$$
A=2^{2!}+\frac{1}{2^{4!}}+\frac{1}{2^{6!}}+\cdots+\frac{1}{2^{(2 n)!}}+\cdots
$$

and

$$
B=2^{5 \cdot 1!}+\frac{1}{2^{5 \cdot 3!}}+\frac{1}{2^{5 \cdot 5!}}+\cdots+\frac{1}{2^{5 \cdot(2 n-1)!}}+\cdots
$$

Then $A \pm B, \frac{A}{B}$ and $A B$ are all irrational numbers.
Proof. Now we put $a_{n}=2^{(2 n)!}, b_{n}=2^{5 \cdot(2 n-1)!}$. First we can see easily that $a_{n}>b_{n}$ for $n \geq 3$. And we have

$$
\frac{\log b_{n}}{(n-1) \log a_{n-1}}=\frac{5 \cdot(2 n-1)!}{(n-1) \cdot(2 n-2)!}=\frac{5(2 n-1)}{n-1}>10
$$

for $n \geq 2$. Therefore $b_{n}>a_{n-1}^{18(n-1)}$ for $n \geq 3$. From the Theorem, $A \pm B, \frac{A}{B}$ and $A B$ are all irrational numbers.

References

[1] P. Bundschuh, Transcendental continued fractions, J. Number Theory 18 (1984), 91-98.
[2] G. Nettler, On transcendental numbers whose sum, difference, quotient and product are transcendental numbers, Math. Student 41(3-4) (1973), 339-348.
[3] G. Nettler, Transcendental continued fractions, J. Number Theory 13 (1981), 456-462.
[4] T. Okano, A note on the transcendental continued fractions, Tokyo J. Math. 10(1) (1987), 151-156.

