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Abstract

Suppose that A and B are positive irrational numbers. In this paper, we

find the criterion that A + B, % and AB are all irrational numbers.

1. Introduction

Let aj, ap, ag, ...; by, by, bs, ... be integers with g >0, a, >0,
a3 >0,---;b>0,by >0, by >0, - all along this note. Nettler [1] proved
the following theorem:

For

A=a1+i i andB:leri i ,
dp + Az +--- b2+ b3 +ee
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2
if a, >b, > ag”__ll) for all n sufficiently large, then A, B, A+ B,

AB are all trancendental numbers.

— and

The aim of this note is to prove the following theorem that is relevant to

the above theorem.

Theorem. Let ay, ay, as, ...; by, by, by, ... be integers with g > 0,

ap >22,a3>0a,>0,--;2>20,bp >0,b3>0,---. For

1 1 1 1
A=agy+— — andB=b+— —
as + ag +-- b2+ b3 +oe

if a, > b, > ag(_”l_l) for all positive integer n > 3, then A+ B,

are all irrational numbers, where y is any constant such that y > 8.

A and AB

We give an elementary proof of this theorem using the method of

Nettler.
2. Lemmas

Lemma 1. If

a
A(n) =g + 11 1 P
A+ ag+-+ay 2Q,

b

1 1 1 R
Bn)=h +— — — n
() bl b2+ b3+~~+ bn an

then, for all n > 1, we have

dp + b2 a2b2 F3 E3F4
ahy + Eg—F+ B4 —Fy+

A(N)+B(n)=a; + b +

EqFs En_1Fn
Es —Fg+.+ Ep —Fy

M)

)
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b b b
En ZaQn Qn(aQn—ZaQn—l +°Qn_2 Qn-1),
b b
Fn :aQn—Z Qn—Z(aQn—laQn "‘an—l Qn), (3)

dy —b2 a2b2H3 G3H4
a2b2 + G3—H3+ G4—H4+

B(n) - A(n) = by —a +

GyHs Gp_1Hn
Gs —Hg++ Gy —Hp '

Gn :aanQn(aQn—ZaQn—l —an—Zan—l)-
Hn =2Qn_2"Qn_2(?Qn_1*Qn ~"Qn_1"Qn), )

AN _a by —aay  ahy(biby +1)33
B(n) b agby(bby +1)+ I3-J3  +

I3J4 14J5 In-1Jn
lg—Jdg+ lsg—Jg 4t 1y =3,

b b b
In :aQn Pn(aQn—ZaPn—lJr Qn—2 Pr-1),

b b
JIn =ElQn—2 Pn—Z(aQnaPn—l +an Pa-1), ®)
A(n)B(n) _ albl 4 djay + b_]_bz +1 a2b2L3
a2b2 + K3 = L3 +
Ksla Kals Kn-1ln

Ky —Lg+ Kg—Lg++ Ky =Ly~
b b
Kn :aQn Qn(aQn—ZaPn—l "‘an—l Ph-2),

Ly =%Qn-2"Qn-2(*Qn?Pr-1 +"Qn-1"Ry). ®)
Proof. See Theorem 2.1 in [2].

Lemma 2. Let
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be the continued fraction expantion, given in Lemma 1, for either A = B,

w| >

or AB. And let

c
B gD &

n

€ + B3+t €

If a, > by, for sufficient large n, then °Q, <2QY", where a. is any constant
such that o > 8.

Proof. From (3), (4), (5) and (6), we have the following inequalities

“Qn = €1 Qn-1 + dn“Qn—2 <“Qn_a(dy +ep)
n n
<< H(di +g)< H Q™ <*Qp"
i=2 i=2

for all n sufficient large.

2. Proof of the Theorem

Now let
A+B=C=e1+d—2 g3
€y + €3+
and
a b c
aP”+bP”:CP” for n > 1.
Qn  Qn Qn

Let n be a sufficiently large integer to ensure the validity of the later
argument. We have

ap bp. 1 1
a b an a oAb
Qn Qn Qn Qn+1 Qn Qn+1
2 - 2 - 2
bA b b~2 bA2
Qn Qns1 by Qn agn “Qp

<|A- B

c
‘C— P +

“Qn

<
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And we have

n
aQn < (an + 1) 'aQn—l < (Zan) ‘aQn—l < H(zai) = 2n_132a3 rdp
=2

14 L t— L ot —— 1
g 0D 2002 " HeD)n-2)-32

where & is any constant such that 8 < § < y. Hence

0 a~on
o n
an > 2n(n-1)
From Lemma 2, we obtain
c
C_an< 2b2 < 2b2 :cl '
Qn an~on Qn CQ Qn QnMn
n oon(n-1) n oon(n-1)

1 PQ? .
Where Mn = §W And we Obtaln

b b n-1) b n-1,n-2 2
Qn > by Qg > aﬁ(_l ). Qn-1 > - > (ap_jan_5 ---a3)"
. (22!+y-3!+y2-4!+---+y”*3.(n—1)!)y S Zy“*Z.(n—l)!'

Then,
. 1
lim =— =0.
n—o IVln
Therefore A+ B is an irrational number. Similarly, it can be proven easily

that A — B is also an irrational number.
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To prove that A is an irrational number, let

B
A=C=e:|_+d—2 %
€y + €3+
and
a b c
aP”/bP” == N for n > 1.
Qn Qn n
As
a bP
<23 and —— <
n 2 Qn
for n > 3.

Let n be an integer with n > 3. We obtain

c Pn
“Qn

A %R /%,
B PR /PQ,

an (A_ aanJr aPn (bpn _BJ
bQ, Q) %Qu\PQ,

C -

B(°Py/"Qn)

a b

A - Pa B - P
a b

By Ql, Q

- B B/(2b,)

4a1b2 +1 1 1
< B . b~ b =0 c as N — oo.
Qn Qn+1 Qn

2a1

Therefore A is an irrational number. Similarly, it can be proven easily that

B
AB is also an irrational number.
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3. Example
Let
a2yt T L
o8 9Bl .y o(2n) ...
and
=25, Lt _1 -

253 55 S5 (2n-1)f, ..

Then A t B, g and AB are all irrational numbers.

Proof. Now we put a, = 2(2n) b, = 25211 Eirst we can see easily

that a, > b, for n > 3. And we have

logh,  _ _ 5-(2n-10 _52n-1)
(n—-1loga, ; (M-1)-(2n-2) n-1 > 10

for n > 2. Therefore b, > arl]g_(ln_l) for n > 3. From the Theorem, A £ B,

w| >

and AB are all irrational numbers.
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