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Abstract 

In this paper, the Adomian decomposition method and the perturbation 
method are used to construct the solution of the initial value problem 
of a system of differential equations. 

1. Introduction 

These last years, the Adomian decomposition method (ADM) is used a 
lot to get an approximation of a solution of several kinds of problems, and 
the perturbation method is too very useful to succeed to this same kind of 
objective. These two methods often drive us to a same result, better again 
they sometimes lead us toward the exact solution. Here, we use both methods 
to investigate a system of perturbed equations. 
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2. About Solution of a System of Perturbed Equations 

Let us consider the following initial value problem of a system of 
differential equations: 
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with ,10 ε<  where β, μ and ω are arbitrary constants independent of ε; 

and ( )txu ,  the unknown function. 

2.1. The Adomian decomposition method 

General properties of the ADM and its applications can be found in 
[1-5]. Suppose that we need to solve the following equation: 

 fAu =  (2.2) 

in a real Hilbert space H, where HHA →;  is a linear or a nonlinear 

operator, Hf ∈  and u is the unknown. The principle of the ADM is based 

on the decomposition of the nonlinear operator A in the following form: 

 ,NRLA ++=  (2.3) 

where RL +  is linear, N nonlinear, L invertible with 1−L  as inverse. Using 
that decomposition, equation (2.2) is equivalent to 

 ,111 NuLRuLfLu −−− −−+θ=  (2.4) 

where θ verifies .0=θL  (2.4) is called the Adomian’s fundamental equation 
or Adomian’s canonical form. We look for the solution of (2.4) in a series 

expansion form ∑
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special polynomials of variables nuuu ...,,, 10  called Adomian polynomials 

and defined by [1-4]: 
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where λ is a parameter used by “convenience”. Thus (2.4) can be rewritten as 
follows: 
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We suppose that the series ∑
+∞

=0n
nu  and ∑

+∞

=0n
nA  are convergent, and obtain 

by identification the Adomian algorithm: 
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In practice, it is often difficult to calculate all the terms of an Adomian 

series, so we approach the series solution by the truncated series: ∑
=

=
n

i
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0
,  

where the choice of n depends on error requirements. 

According to the Adomian decomposition method, we suppose that the 

solution ( )vu,  of (2.1) has the following form: ∑
=

=
n

i
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From (2.1), we have 
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and we obtain the following Adomian algorithm: 
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Finally, we get 
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Let us put 
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Thus 
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what is equivalent to 
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2.2. The perturbation method 

General theory of the perturbation method can be found in [6-8]. 

According to the perturbation theory, we suppose that the solution ( )vu,  

of (2.1) has the following form: 

 .;
0 0
∑ ∑
= =

ε=ε=
n

i

n

i
i

i
i

i vvuu  (2.14) 

Taking (2.14) into (2.1), and collecting equal powers of ε, we obtain a 
system of recurrent initial value problems for ( ),, txun  ( ),, txvn  =n  
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We obtain: 
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Thus we have 
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3. Conclusion 

In this paper, we showed that using the both methods, we get the same 
solution. We have obtained the same results in [9-11]. 
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