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1. Introduction

The study of vertex-transitive graphs has a long and rich history in
discrete mathematics. Prominent examples of vertex-transitive graphs are
Cayley graphs which are important in both theory as well as applications. For
example, Cayley graphs are good models for interconnection networks.
Articles [1] and [9] give a survey. Cayley graphs are useful for studying
structure of groups and the relationships between elements with respect to
subsets of these groups. Cayley graphs are also useful in semigroup theory,
for establishing which elements are £ and R related. In this paper, we
introduce a class of Cayley fuzzy graphs induced by groups. We prove that
all Cayley fuzzy graphs are vertex-transitive graphs. We also discuss some
fuzzy graph properties in terms of algebraic properties. Whenever the word
graph is used in this paper, it will be referring to a digraph unless otherwise
stated. We follow [11] for standard terminology and notation in fuzzy set
theory. Here, we need the following:

Let X be any set. Then a fuzzy subset A of X is a function
A: X — [0, 1]. For a fuzzy subset A of X and for a € [0, 1], {x : A(X) > o}

is called a-cut of A and {x : A(X) > a} is called the strong a-cut of A. They

are, respectively, denoted by A, and Al. For a fuzzy subset A of X, the
support of A is the set {x € X : A(x) > 0} and is denoted by supp(A). It can

be noted that supp(A) = A;.
Let S and T be two sets and let u and v be fuzzy subsets of S and T,

respectively. Then a fuzzy relation p from p to v is a fuzzy subset of S x T

such that p(X, y) < w(x) A v(y) forall x e S and y e T [I1].

1.If S =T and p = v, then p is said to be a fuzzy relation on p.

2.1f w(x) =1 forall xe S and v(y) =1 forall y e T, then p is said
to be a fuzzy relation from S into T.
3.If S=T and pu(x) = v(x) =1 for all x € X, then p is said to be a

fuzzy relation on S.
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Let p be a fuzzy relation from a fuzzy subset p of S into a fuzzy subset v
of T and ® be a fuzzy relation from v into a fuzzy subset & of U. Then the

composition of p and ® denoted by (p o ®) is a fuzzy relation from p into §
defined by (po®)(X, 2) = v{p(X, y)va(y, z):yeT} forall xe S and
zeU. Forall neN, p"' =p"op, and p® is defined by p™(X, y) =
v {pk(x, y):k=12,..} forall x,yeS. For any fuzzy relation p on S,

we define p~! as the fuzzy relation given by p_l(x, y) = p(y, x) for all
X, ¥ € S. Let p be a fuzzy relation on a fuzzy subset p of S. Then p is said to

be:
(1) reflexive if p(x, x) = u(x) forall x € S;
(2) symmetric if p(x, y) = p(y, x) forall X, y € S;
(3) antisymmetric if p(x, y) = p(y, X) ifand only if X = y;
(4) transitive if p2 <p;
(5) a fuzzy preorder if it is reflexive and transitive;

(6) a fuzzy partial order if it is reflexive, antisymmetric and transitive;

(7) a fuzzy equivalence relation if it is reflexive, symmetric and
transitive;

(8) a fuzzy linear order if it is a partial order and (p v p_l)(x, y)>0
forall X, y € S.

A fuzzy directed graph (fuzzy digraph) G is a triplet (V, pw, p), where V

is a non-empty set, 1 is a fuzzy subset of V and p is a fuzzy relation on p. In

case | = yy, where yy is the characteristic function on V, then the fuzzy
digraph (V, p, p) is simply denoted by G = (V, p). Furthermore, G is said
to be a fuzzy graph if the fuzzy relation is symmetric. In this sequel, we
consider fuzzy digraphs of the form G = (V, p). Let G =(V, p) and G' =

(V', p') be two fuzzy digraphs. Then G is said to be isomorphic to G’ if
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there is a bijection f :V — V' such that for all u,veV, pu,v)=
p'(f(u), f(v)). Here f is called an isomorphism from G into G'. An
isomorphism from a fuzzy digraph G onto itself is called an automorphism.
Observe that, if (V, *) is a group and v is a fuzzy subset of V, then
R:V xV —[0,1] defined by R(X, y)=v(x'y) for all Xx,yeV is a
fuzzy relation on V.

Let G = (V, p) be a fuzzy digraph. If u €V, then the in-degree of u,
denoted by ind(u), is defined by

ind(u) = Y p(v, u).

veV

Similarly, the out-degree of u, denoted by outd(u), is defined by

outd(u) = Z p(u, v).

veV

A fuzzy digraph in which each vertex has the same out-degree r is called an
out-regular digraph with index of out-regularity r. In-regular digraphs are
similarly defined. Let G = (V, R) be a fuzzy digraph. Let k and k' be two
positive numbers. Then G is said to be (k, k') -regular if ind(u) = k and
outd(u) = k" for all u e V. A fuzzy digraph is said to be regular if it is
(k, k)-regular for some positive number k. Let G = (V, R) be a fuzzy
digraph. Then a path (directed path) of length n in G from a vertex X to a

vertex Y is a sequence of distinct vertices X = Xy, X{, ..., X, = Y such that
R(Xj_1, Xj) >0 for 1 <i < n. A fuzzy digraph G = (V, R) is said to be: (i)
connected (strongly connected) if for all x, y €V, there is a directed path
from X to y, (ii) weakly connected if G’ = (V, R v R™!) is connected, (iii)
semi-connected if for all x, y €V, there is a directed path from X to y or

there is a directed path from y to x in G, (iv) locally connected, if for any
X, y €V, there is a directed path from X to y whenever there is directed path

from y to X in G, (v) quasi-connected (quasi-strongly connected) if for every
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pair X, y €V, there is some z € V such that there is a directed path from z

to X and there is a directed path from z to y, (vi) Hasse diagram, if G is
connected and for any path Xg, X, ..., X;, N =2 from X, to X, in G,

R(Xg, Xn) = 0 and (vii) complete if R(x, y) =1 forall x, y € V. A vertex X

in G is said to be a source in G if there is a directed path from X to every
other vertex in G.

Let G = (V, R) be a fuzzy graph. The distance between two points U
and v in G, d(u, v), is the length of the shortest path from u to v. If there is
no path from u to v, then we define d(u, v) = . The diameter of a fuzzy
graph G = (V, R), denoted by diam(G), is defined as

diam(G) = sup{d(u, v) : u, v e V}.

Let (V, *) be a group and A be any subset of V. Then the Cayley graph
induced by (V, *, A) is the graph G =(V, R), where R = {(x, y): X"y € Al

2. Cayley Fuzzy Graphs

In this section, we introduce Cayley fuzzy graph and prove that all

Cayley fuzzy graphs are vertex-transitive and hence regular.
We start with the following:
Definition 2.1. Let (V, *) be a group and v be a fuzzy subset of V. Then

the fuzzy relation R defined on V by R(X, y) = v(x "' *y) forall X, y eV
induces a fuzzy graph G = (V, R) called the Cayley fuzzy graph induced by
the triple (V, *, v).

Example 1. Let us consider the group Z,4 and take V = {0, L, 2, 3}.
Define v:V — [0, 1] by v(0) =1, v(1) = %, v(2) = % and v(3) = 0. Then

the Cayley fuzzy graph G = (V, R) induced by (Z4, v) is given by the
following table and Figure 1.
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174

Figure 1. The fuzzy Cayley graph G = (V, R).

Observe that Cayley fuzzy graphs are actually fuzzy digraphs.
Furthermore, the relation R in the above definition describes the strength of
each directed edge. We define a fuzzy graph G to be vertex-transitive, if for
X, y €V, there is an automorphism f on G such that f(x)=y. Let G denote

fuzzy graph G = (V, R) induced by the triple (V, *, v). First, we will show

that G is vertex-transitive.

Theorem 2.2. The Cayley fuzzy graph G is vertex-transitive.

Proof. Let a,beV. Define y:V -V by y(x) =ba~'x forall x V.

Clearly, v is a bijection onto itself.

Furthermore, we have, for each x, y € V,

R(w(x), w(y)) = R(ba~'x, ba™'y)
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= v((ba~'x) " (ba”"y))

= v(x'y)
= R(X, y).
Thus, y is an automorphism on G. Also, y(a) = b. Hence G is vertex-
transitive. This completes the proof. U
Theorem 2.3. Every vertex-transitive fuzzy graph is in-regular and out-
regular.

Proof. Let G=(V,R) be any vertex-transitive fuzzy graph and
U,v eV. Then there is an automorphism f on G such that f(u) = v. Note
that

ind(u) = Z R(x, u)

xeV

= D R(F(x), F(u)

xeV

= > R(f(x),v)

f(x)eV
= > R(y, V) = ind(v).
yeV
Similarly, we can prove that outd(u) = outd(v). Hence G is in-regular and

out-regular. O
From Theorems 2.2 and 2.3, we have the following.
Theorem 2.4. Cayley fuzzy graphs are in-regular and out-regular.

2.1. Basic results

In this subsection, we express many algebraic properties in terms of

fuzzy graph properties. Let G denote fuzzy graph G = (V, R) induced by the

triple (V, *, v). Then we have the following results.
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Theorem 2.5. The fuzzy relation R is reflexive if and only if v(1) = 1.

Proof. Observe that R is reflexive if and only if R(X, X) =1 for all

x e V. Now R(x, X) = v(x"'x) = v(1) forall x V. Therefore, R is reflexive

if and only if v(1) = 1. O
Theorem 2.6. The fuzzy relation R is symmetric if and only if
v(x) = v(x7h) forall x e V.
Proof. Suppose that R is symmetric. Then, for any X € V,
v(x) = v(x '%%) = R(x, x?) = R(x%, X) = v(x x7'x) = v(x 7).
Conversely, suppose that v(X) = v(x ') for all x € V. Then, forall X, y €V,

R(x, ¥) = v(x"'y) = v(y'x) = R(y, X).

This implies that R is symmetric. O

Theorem 2.7. The fuzzy relation R is antisymmetric if and only if

x:v(x) = v(x ")} = {1

Proof. Suppose that R is antisymmetric and let x € V. Then v(x) =
v(x7!) implies that R(I, X) = R(x, 1) and hence X =1. Thus, {X: v(X) =
v(x~1)} = {1. Conversely, suppose that {x : v(x) = v(x_!)} = {1}. Then, for
any X, y €V,

R(x, ¥) = R(y, X) & v(x'y) = v(y™'x).

This implies that v(x'y) = v((x"'y)™). That is, x'y = 1. Equivalently,
X =Y. Hence R is antisymmetric. g

Definition 2.8. Let (S, *) be a semigroup. Let A be a fuzzy subset of S.

Then A is said to be fuzzy sub-semigroup of S if for all a, b € S, A(ab) >
A(a) A A(b).
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Theorem 2.9. The fuzzy relation R is transitive if and only if v is a fuzzy
sub-semigroup of (V, *).

Proof. Suppose that R is transitive and let X, y € V. Then R? cR.
Also, we have R(1, x) = v(x). This implies that

VIR(L, 2) AR(z, Xy): z €V} = R3(1, xy) < R(1, xy) = v(xy).

That is, v{v(z) A vzl (xy)): z e V} < v(xy). Hence v(X) A v(y) < v(xy).
Thus, v is a fuzzy sub-semigroup of (V, *).

Conversely, suppose that v is a fuzzy sub-semigroup of (V, *). That is,

v(xy) > v(X) A v(y) forall X, y € V. Then, forany X, y € V,
R2(x, y) = V{R(X, 2) AR(z, y): 2 e V}
=viv(x'2)av(z7ly):zeV}
< v(x7ly) = R(x, y).
Thus, R2 c R and hence R is transitive. O

Theorem 2.10. The fuzzy relation R is a partial order if and only if v is a
fuzzy sub-semigroup of (V, *) satisfying:

(i) v(1) =1 and

(i) {x : v(x) = v(x 1)} = {1L.

Theorem 2.11. The fuzzy relation R is a linear order if and only if v is a
fuzzy sub-semigroup of (V, *) satisfying:

i v) =1,
(i) {x : v(x) = v(x ")} = {1} and

(iii) {x: v(X) v v(x 1) > 0} = V.
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Proof. Suppose that R is a linear order. Then, by Theorem 2.10, the
conditions (i) and (ii) are satisfied. Now, for any x €V, (Rv R7)(1, x)
> 0. This implies that R(I, X) v R(x, 1) > 0. Hence v(x)v v(x') > 0.

Conversely, suppose that the conditions (i), (ii) and (iii) hold. Then,
by Theorem 2.10, R is a partial order. Now, for any X, y € V, we have
(x71y), (y'x) € V. Then, by condition (iii), v(x"'y)v v(y~'x) > 0. That
is, R(x, y)v R(y, X) > 0. Hence (Rv R7!)(x, y) > 0. Thus, R is a linear
order. O

Theorem 2.12. The fuzzy relation R is an equivalence relation if and
only if v is a fuzzy sub-semigroup of (V, *), satisfying:

(i) v(1) =1 and

(i) v(x) = v(x 1) forall x e V.

Theorem 2.13. G is a Hasse diagram if and only if G is connected and
V(XX Xy) = 0

for any collection Xy, X, Xo, X3, ..., X, Of vertices in V with n>2 and

v(x)>0fori=12,..,n.

Proof. Suppose that G is a Hasse diagram and let X;, X,, ..., X, be
vertices in V with n > 2 and v(x;) > 0 for i =1, 2, ..., n. Then it is obvious
that R(XXp -+ Xj_1, X{ X -+ %) = V(%) >0 for i =1, 2, ..., n, where Xy = I.
Thus, (1, X;, X;X9, ..., X{X -+ X ) is a path from 1 to X;X, -+- X,. Since G is a
Hasse diagram, we have R(1, X;X, -+ X ) = 0. This implies that v(X;X -+ X)
=0.

Conversely, suppose that for any collection X;, X, ..., X of vertices in
V with n > 2 and v(X;) > 0 for i =1, 2, ..., n, we have v(X;X; - Xy) = 0.

Let (Xg, X|, X, ..., Xy) be a path in G from X, to X, with n > 2. Then
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R(Xj_1, Xj)>0 for i=1,2,...,n. Therefore, v(Xi__llxi) >0 fori=12,..n
Now consider the elements X, 1Xl, x| IXZ, v Xﬁllxn in V. Then, by
assumption, v(Xg'X X[ Xy, ..., X0 11X, )=0. That is, v(Xg'x,)=0. Hence,

R(Xg, Xp) = 0. Thus, G is a Hasse diagram. O

Theorem 2.14. For all u, v e V, we have

ind(u) = ZVEV v(v) = outd(u).

That is, Cayley fuzzy graphs are regular.

Proof. By Theorem 2.4, it suffices to consider the in-degree and out-
degree of the vertex 1. Observe that

ind(1) = D RV, )= > v(v"') = D v(v) = Y R(L, v) = outd(l).

veV veV veV veV
This completes the proof. OJ
Theorem 2.15. G is complete if and only if v > yy 1, where xy 1 is
the characteristic function of V — {1}.

Proof. Suppose that G is complete. Then, for every X, y eV, x # Y,

R(X, y) = 1. This implies that v(x'y) =1 for all X, y €V with X # .
Therefore, for any x € V with x # 1, v(x) = v(Ix) = 1. Thus, v > 3y _q).

Conversely, suppose that v > yy_r. Then, for any X,y eV with
X # Y, we have R(X, y) = v(x_'y) = 1. Hence G is complete. O

Theorem 2.16. Let G be finite and connected. Then diam(G) is the least
positive integer n such that for any x €V, there exist X, X, ..., X, € V

with v(xj) >0 fori=1,2,..,nand X = XXy -+ X,.

Proof. Suppose n is the least positive integer such that for any X € V,

there exist elements X;, X5, ..., Xy €V with v(x;) >0 for i =1, 2, ..., n and
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X = X{X ---Xp. Note that, for any X, y € V, we have X_ly € V. Then, by

assumption, there exist X, Xy, ..., X, € V. with v(x;) >0 for i =1,2, .., n

and X_ly = XXy -+ Xy Therefore, y = XXX, --- X,. Consider the sequence
Xy XX[5 coey XX+ X = VY. €]

Observe that R(XX{ -+ Xj_1, XX -++Xj) = v(¥;) >0 for i =1, 2, ..., n, where
Xo = X. Thus, (1) represents a path of length n from X to y. Since X and y are
arbitrary, diam(G) < n. Since n is the least positive integer such that for any
X €V, there exist X, Xp, ..., Xy €V with v(¥) >0 for i =1, 2, ..., n and
X = X|Xy ---Xy. It is clear that there exists an X €V such that for any
collection of n—1 elements, say X, Xy, ..., Xp_; With v(Xj) > 0 for i =

1, 2, ..., n—1, we have
X # XX+ Xn_|- )

Suppose that diam(G) < n—1. Then there is a path 1, X, X5, ..., X
from 1 to X of length m, where m < n—1. Then v(x_%)=R(X_, X)> 0
for i=1,2,..,m, where X =1. Also, note that (X;)(X{ X )---(Xm1Xm ) = X.

-1 -1
Thus, X = (X)) (X X))+ (Xm—1Xm ) Xm41°** Xn—1, Where Xpj =Xmyp =+ =
Xn—1 = 1, a contradiction to (3). Thus, diam(G) > n—1. Since diam(G) < n,

it follows that diam(G) = n. O

3. Cayley Graph Induced by Cayley Fuzzy Graphs

Let (V, *) be a group, v be a fuzzy subset of V and G = (V, R) be the
Cayley fuzzy graph induced by (V, *, v). Also, for any a € [0, 1], let v,

be the a-cut of v and v, be the strong a-cut of v. Define S, and S , as
03 VO[

Sy, =% y)eVxV: x“ly ev,} and
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S+ = {(x, y)eV xV :xlyevil
o

Then it is clear that for any o € [0, 1], the Cayley fuzzy graph induced by
(V, *, v) induces the Cayley graphs (V, S, ) and (V, S + ).
o

Now it can be noted that for any a € [0,1], S, =R, and S+ = Ry
o

Thus, for any a € [0, 1], the Cayley fuzzy graph (V, R) induces the Cayley
graphs (V, Ry ) and (V, Ry). O

Remark 1. Let G = (V, R) be any fuzzy graph. Then G is connected
(weakly connected, semi-connected, locally connected or quasi-connected) if

and only if the induced graph (V, Ry ) is connected (weakly connected,

semi-connected, locally connected or quasi-connected).

We now observe the following definition and lemma to study different

types of connectedness of G.

Definition 3.1. Let (S, *) be a semigroup and let A be a fuzzy subset of

S. Then the fuzzy sub-semigroup generated by A is the smallest fuzzy sub-
semigroups of S which contains A and is denoted by (A).

Example 2. Consider S = Z4 and v as in Example 1. Then (v) is given
by (v)(0) =1, and {v)(y) = % for y =1, 2, 3.

Remark 2. Let (S, *) be a semigroup and let A be a fuzzy subset of S.

Then the fuzzy sub-semigroup generated by A is the meet of all fuzzy sub-
semigroups of S which contains A.

Lemma 3.2. Let (S, *) be a semigroup and v be a fuzzy subset of S.

Then the fuzzy subset (v) is precisely given by
(V) (X) = v{v(X)) A V(X)) A - AV(Xp) T X = X(X; -++ X With a finite
positive integern, x; € S and v(x;) >0 for i =1, 2, ..., n}

forany x € S.
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Proof. Let v’ be the fuzzy subset of S defined by (V')(x)=
VIV(X) A V(X)) Ao AV(Xp) D X = X(Xp -+ X, with a finite positive integer
n, X;eS and v(x) >0 for i=1,2,..,n} forany xeS. If ye S and
v(y) > 0, then by definition of V', it is clear that v'(y) > v(y). Thus, we
have

v <V, 3)
Let x,yeS. If v(x)=0 or v(y)=0, then v(x) A v(y)=0. Therefore,
V'(xy) = v(x) A v(y). Again, if v(x) # 0 and v(y) # 0, then by definition
of v/, we have v'(xy) > v(x) A v(y). Hence V' is a fuzzy sub-semigroup of

S containing v. Now let A be any fuzzy sub-semigroup of S containing v.

Then, for any X € S with X = XX, --- X, with a finite positive integer n,
Xj € S and v(xj) > 0 for i =1, 2, ..., n, we have
A(X) = A(X)) A A ) Ao A AXR) = V(X ) A V(X)) A A V(X ).

Thus, A(X) = v{v(¥) A V(Xo) A= AV(Xn) i X = XXp -+ X, with a finite
positive integer n, X; € S and v(x;) >0 for i =1, 2, .., n} forany X € S.
Hence A(x) > V'(x) forall x € S. Thus, v' < A Thus, v’ is the meet of all

fuzzy sub-semigroups containing v. O

Theorem 3.3. Let (S, *) be a semigroup and v be a fuzzy subset of S.
Then, for any a. €[0,1], (v,) =(v), and (vg) = (v)., where (v,) denotes
the sub-semigroup generated by v, and (v) denotes the fuzzy sub-semigroup

generated by v.

Proof. Observe that

X € (vy) < there exist X, Xy, ..., Xy in vy such that X = XX, -+ Xy,
< there exist X;, Xy, ..., X in S such that v(xj) > o for all

i = 15 23 e N and X = X1X2...Xn
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< (V)(X) 2 a

& X e (V).

Therefore, (vq) = (v),,. Similarly, we have (v§) = (V). . O

Remark 3. Let (S, *) be a semigroup and v be a fuzzy subset of S.

Then, by Theorem 3.3, we have (supp(v)) = supp(v).

4. Connectedness in Cayley Fuzzy Graphs

Let G denote the Cayley fuzzy graph G = (V, R) induced by the triple

(V, *, v). Then we have the following results.

Theorem 4.1. Let A be any subset of a set V' and G' = (V', R") be the
Cayley graph induced by the triplet (V', *, A). Then G’ is connected if and
only if (A) oV —{1}.

Theorem 4.2. G is connected if and only if supp({v) oV —{1}.
Proof. By Remarks 1, 3 and by Theorem 4.1,
G is connected <> (V, Ry) is connected
< (vg) 2V - {1}
& (supp(v)) 2V - {1}
< supp(v) oV - {1}.
This completes the proof. g

Theorem 4.3. Let A be any subset of a set V' and G' = (V', R") be the
Cayley graph induced by the triplet (V', *, A). Then G’ is weakly connected

ifand only if (AU A™) oV — {1}, where A™! = {x"!: x e A}.
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Definition 4.4. Let (S, *) be a group and A be a fuzzy subset of S. Then

we define A as the fuzzy subset of S given by A~'(x) = A(x™!) for all
X e S.

Theorem 4.5. G is weakly connected if and only if

supp({v v v_l>) oV {1}

Proof. By Remarks 1, 3 and by Theorem 4.3,
G is weakly connected <> (V, Ry) is weakly connected
& (viUvg) )2V -1
< (supp(v) Usupp(v) ™)) 2V — {1}
& (supp(v v (v} 2V - {1}
< supp((v v v_l>) oV —{l}.
This completes the proof. O

Theorem 4.6. Let A be any subset of a set V' and G' = (V', R’) be the
Cayley graph induced by the triplet (V', *, A). Then G’ is semi-connected if

and only if (A) U (A™) oV — {1}, where A™' = {x"!: x e A}.
Theorem 4.7. Let G be semi-connected if and only if
supp((v) v (v'1)) 2V — {1},
Proof. By Remarks 1, 3 and by Theorem 4.6,

G is semi-connected <> (V, Ry) is semi-connected
—1
< (voyU{vg) ) 2V - {1}

& (supp(v)) U (supp((v) ")) 2V - {1}
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< supp(v) U supp(v!) 2V — {1}

& supp(V) v (v oV - {1l
This completes the proof. g

Theorem 4.8. Let G’ = (V', R") be the Cayley graph induced by the
triplet (V', %, A). Then G’ is locally connected if and only if (A) = (A™1),
where A™' = {x!: x e Al

Theorem 4.9. Let G be locally connected if and only if

supp((v)) = supp((v"")).

Proof. By Remarks 1, 3 and by Theorem 4.8,

G is locally connected <> (V, Ry) is locally connected
-1
< (vo) =((vo)")
< (supp(v) = (supp((v) ™)

< supp(v) = supp(v ).
This completes the proof. g

Theorem 4.10 [12]. A finite digraph G’ has a source if and only if it is
quasi-connected.

Theorem 4.11. Let G' = (V', R’) be the Cayley graph induced by the
triplet (V', *, A), where V' is finite. Then G’ is quasi-connected if and only

if it is connected.

Proof. We know that every connected graph is quasi-connected. Thus,
we have to prove only the other part. First, note that G’ is finite. Thus, by
Theorem 4.10, G’ has a source, say z. Then, for any x € V' with x # z,

there is a directed path from z to X. Thus, it is clear that 2 'x e (A) for every
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x eV with X # z. Hence (A) oV — {l}. Hence, by Theorem 4.1, G’ is

connected. O

Theorem 4.12. A finite Cayley fuzzy graph G is quasi-connected if and
only if it is connected.

Proof. By Remarks 1, 3 and by Theorem 4.11,

G is quasi-connected <> (V, Ry ) is quasi-connected

< (V, Ry) is connected
< G is connected.

This completes the proof. n

5. Strength of Connectedness in Cayley Fuzzy Graphs

In this section, we introduce the concepts: a-connectedness, weakly
a-connectedness, semi o-connectedness, locally o-connectedness, quasi-a-
connectedness and strength of connectivity of fuzzy graphs.

Definition 5.1. Let P =(Xg, X, ..., X;) be a path in a fuzzy graph
G =(V, p). Then the strength of a path P in G, denoted strength(P), is
defined as [10]

strength(P) = AL p(Xi_1, X;).
Let a € (0, 1]. Then we define the following:
Definition 5.2. Let G = (V, p) be a fuzzy graph. Then G is said to be:

(i) a-connected if for every pair of vertices X, ¥ € G, there is a path P from

X to Yy such that strength(P) > a., (ii) weakly a-connected if the fuzzy graph

V,Rv R_l) is a-connected, (iii) semi a-connected if for every X, y € V,

there is a path of strength greater than or equal to o from X to y or from y to X
in G and (iv) locally a-connected if for every pair of vertices X and Y, there is
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a path P of strength greater than or equal to o from X to y whenever there is a
path P’ of strength greater than or equal to o from y to X. (v) quasi a-
connected if for every pair X, y € V, there is some z € V such that there is

a directed path from z to x of strength greater than or equal to o and there is a
directed path from z to y of strength greater than or equal to a.
Observe that if o, B € (0, 1], o < B and G is B-connected, then G is also

a-connected. Thus, a finite fuzzy graph G is connected if it is a-connected

for some o € (0,1]. But for infinite fuzzy graphs, this is not true. For
example, consider the graph G = (N, R), where R(m, n) = % ifn-m=1,

R(m,n)=1 if m=n and R(m, n)=0 otherwise. Then G is not -
connected for any a € (0, 1] but it is connected. A fuzzy graph G = (V, R)
is said to be a-complete if R(x, y) > a for all X, y € V. Observe that any
complete fuzzy graph is a-complete for all a € [0, 1].

Definition 5.3. Let G = (V, p) be a fuzzy graph and let x, y € V. Let
(X, y) denote the set of all paths in G from X to y. Then the strength of
connectedness between X and y, denoted CONNg (X, V), is defined as

CONNg(x, y) = \/  strength(P).
pess(xY)
We define the strength connectivity of G as

SC(G)= A\ CONNg(x, y).
X, yeVv

5.1. Different types of a-connectedness in Cayley fuzzy graphs

In this subsection, we prove the following theorems based on different

types of a-connectedness. Let (V, *) be a group, v be a fuzzy subset of V
and G = (V, R) be the Cayley fuzzy graph induced by (V, *, v). Also, for
any a € [0, 1], let v, be the a-cut of v. Then

Ry ={(X, ) eV xV :xlyev,}
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Remark 4. Let G = (V, R) be any fuzzy graph. Then G is a-connected

(weakly o-connected, semi a-connected, locally o-connected or quasi o-

connected) if and only if the induced graph (V, R, ) is connected (weakly

connected, semi-connected, locally connected or quasi-connected).

Theorem 5.4. The Cayley fuzzy graph G is a-connected if and only if
(V) 2V - {1}.

Proof. By Remark 4 and by Theorems 3.3, 4.1, we have

G is a-connected < (V, R, ) is connected
& (vg) 2V -{lj
= (v), 2V - {1}
This completes the proof. g

Theorem 5.5. Let x and y be any two vertices of the Cayley fuzzy graph
G = (V, R) induced by (V, *, v). Then CONNg(X, y) = (v)(x_ly).

Proof. Let a € (0, 1]. Suppose that CONNg(X, y) = a. Then, for any
g > 0, there exists a path, say P = (X, X{, Xy, ..., X, ¥) from X to y in G

such that strength (P) > o — €. This implies that
R(Xj_1, Xj) >a—¢ forall i =1,2,..,n+1,

where Xy = X, Xp4 = Y. This implies that v(x %) > o —¢ for all i =

1, 2, ..., n + 1. Observe that X_ly can be written as
X7y = () (5 %)+ ().
Then (v)(X1y) = v(X 1X) A -+ A V(X3 'y) > o — &. Since & is arbitrary,
(v)(x"'y) = o = CONNg(x, y). 4

Since X_ly eV, by Lemma 3.2, there exist X;, Xy, ..., Xy € V such that
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XY = X+ X
and (v)(x"1y) = v(X) A -+ A V(X,). Consider the sequence
Yo = X, Y] = XX, Yo = XXX, ey Yy = XK Xo oo Xp.
Then
AL RO Vi) = V) Ao A v(xg)
= (W) (x'y) = 0.

This implies that P" = (Yq, Yy, ..., Yn) is a path in G from X to y. Note that

CONNg(x, y)= \/  strength(P) > strength(P’) = (v)(x_ly). (%)
PG»’/G(X, y)

From equations (4) and (5), we have CONNg(x, y) = (V) (x71y).
If CONNg(x, y) =0, then there is no path from X to y in G. If
(v) (X_ly) # 0, then there is a path from X to y in G of non-zero strength.
This is impossible. Hence (v)(x™'y) = 0. Hence
CONNg (%, y) = (v)(x'y). O

Remark 5. For the Cayley fuzzy graph G = (V, R) induced by (V, *, v),

CONNg(x, y) gives the membership grade of x~ly with respect to the

fuzzy semigroup generated by v.

Theorem 5.6. If SC(G) = a, then (v), 2V — {1}, that s,

Msce) 2V ~ 11}
Proof. The theorem is trivial when o = 0. So, assume that o # 0.

From the definition of SC(G), it is obvious that CONNg(X, y) > o for
all x, y eV. In particular, CONNg (1, X) > a for all x € V. This implies
that there exits a path, say P from 1 to X such that strength (P) > o. Then one



36 Madhavan Namboothiri N. M. et al.
can easily verify that for x # 1, (v)(x) > a. This implies that x € (v) for
all but x = 1. Consequently, (v), 2V —{I}. O
Theorem 5.7. For any Cayley fuzzy graph G,
SC(G) = Agefo,1]{or : (V) S V1.
Proof. Let o €[0,1]. If (v),CV, then there exist X, y €V such

that every path from X to y has strength less than a. This implies that
CONNg (X, y) < a. Consequently, SC(G) < a. Hence

SC(G) < Aael0, 1] {o: (v)a =V} (6)

Suppose that there is a B such that SC(G) < B < Age[o,1it 1 (V) # V-
This implies that (v)5 =V,

(v)(x) = B forall x eV. (7)

Let x and y be two elements in V. Then, by equation (7), we have
(v) (x~'y) = B. This implies that there exists a path from X to y of strength
greater than or equal to 3. That is, CONNg(x, y) > for all x, y e V. In
other words, SC(G) > B. This contradiction completes the proof. g

Theorem 5.8. The Cayley fuzzy graph G is weakly a-connected if and
only if
(vv v_1>a oV -{l}.

Proof. By Remark 4 and by Theorems 3.3, 4.3, we have

G is weakly a-connected < (V, R, ) is weakly connected
& (Ve Uvg) 2V - {1}
& (v v 2V - )
< (vv v_1>a oV - {1}.

This completes the proof. n
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Theorem 5.9. The Cayley fuzzy graph G is semi a-connected if and
only if

-1
(V) UvT),) 2V = 1.
Proof. By Remark 4 and by Theorems 3.3, 4.6, we have

G is semi o-connected < (V, R, ) is semi-connected
& (vo)U(va') 2V - i
< (v), U <V_1>a oV —{1}.

This completes the proof. g
Theorem 5.10. The fuzzy graph G is locally a-connected if and only if
Mo =V g

Proof. By Remark 4 and by Theorems 3.3, 4.8, we have
G is locally a-connected < (V, R,) is locally connected
& (Vo) = (va)
(V) = (v_1>a.
This completes the proof. O

Theorem 5.11. A finite Cayley fuzzy graph G is quasi a-connected if and
only if it is a-connected.

Proof. By Remark 4 and by Theorems 3.3 and 4.11,
G is quasi a-connected <> (V, Ry) is quasi-connected
< (V, RY) is connected
< G is a-connected.

This completes the proof. g
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Theorem 5.12. The fuzzy graph G is a-complete if and only if v, o

vV - {1}.
Proof. Suppose that G is a-complete. Then, for every X, y €V with
X #Y, R(X, y)> o. In particular, v(x) = R(1, X) > a for all x # 1. This
implies that x € v, forall x # 1. Since X is arbitrary, v, oV —{1}.
Conversely, suppose that v, oV —{l}. Then, for every X, yeV,
x'y V. This implies that x "'y e v, for x#y. That is, R(X, y)=
v(x7'y) > a forall X # y. Hence G is a-complete. O

Theorem 5.13. If v is a semigroup and «, B € [0, 1] such that G is a-
complete and not B-complete, then either oo < SC(G) < B or a. < SC(G)<p.

Proof. Since G is a-complete and not B-complete, it is clear that o < .

Now v is a semigroup implies that v = (v). Then, by Theorem 5.7,
SC(G) = Aycfo.npty 1 (v), SV —{I}}
— Aol v SV 1)
= Ayefo,ilY : G is not y-complete;.

Thus, since G is not B-complete, we have SC(G) < B. Also, note that since

G is a-complete, CONN(X, y) > a forall x, y € V. Hence SC(G) > a.

From these arguments, it is clear that either o < SC(G) < B or a <

SC(G) < B. O
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