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Abstract

In this paper, we show that if T € L(X) and S e L(Y) are quasi-
similar, then D(T) = D(S), where D(T) ={\ € C: T fails to have

SVEP at A}. In particular, T has the SVEP if and only if S has the
SVEP. We also study the SVEP for T, S, ST, and TS in the case that T

and S satisfy the operator equations TST =T? and STS =S2
Moreover, we proved that for every T, S € L(X), ST does not have

the SVEP at 0 if and only if there exists non-zero Sxg € Ker(T) such
that SXO S XST ((I))
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1. Introduction and Preliminaries

The single-valued extension property is a unifying theme for a wide
variety of bounded linear operators. The single-valued extension property
(abbreviated SVEP) was first introduced by Dunford [8, 9] and has received
a more systematic treatment in Dunford-Schwartz [10]. It also plays an
important role in local spectral theory; see the monograph of Colojoarvad and
Foias [7] and Laursen and Neumann [16].

Throughout this paper, let X be a complex Banach space and let L(X)
denote the Banach algebra of all bounded linear operators on X, equipped
with the usual operator norm. For an operator T e L(X), let T*, o(T),
p(T), op(T) and Ker(T) denote the adjoint operator acting on the dual

space X, the spectrum, the resolvent set, the point spectrum and the kernel

of T, respectively.

The surjectivity spectrum g, (T) of T € L(X) is defined as the set of
all & e C such that Al — T is not surjective. It is well-known that og, (T) =
Cap (T*), and &g, (T) is a compact subset of C that contains the boundary

of o(T).

Definition 1.1. Let X be a complex Banach space and T e L(X). The
operator T is said to have the single-valued extension property at A, € C, if
for every open disc D, centered at A the only analytic function f : D,
— X which satisfies the equation (Al —T)f(A) =0 forall & € D, is the
constant function f = 0.

An operator T € L(X) is said to have the single-valued extension
property if T has the single-valued extension property at every point A € C.

Example 1.2. The unilateral left shift operator L on the Hilbert space
?5(N) is an example of an operator without SVEP.
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Proof. Let U ={AeC:0<|r|<JU{LeC:1<|L|}. We define

f:U > ((N) by f(A)=>" A"ey,; forall 0<|i|<1 and f(1)

=0
=0 for all |A| > 1. Then clearly, f is analytic and (Al — L) f (L) = 0 for all

heU. But | f(M)|=(rW1-|2*)" 20 on 0<|%|<1, and hence L
does not have the SVEP.

The local resolvent set pt(x) of T at the point X € X is defined as the

union of all open subsets U of C such that there exists an analytic function

f :U — X which satisfies the equation

(M =T)f(X)=x forall L eU.

Note that the resolvent function R(A, T):= (Al —=T)"'(A € p(T)) is an
analytic function, and hence (Al —T)R(A, T)x = x for all A € p(T). This
means that p(T) < pr(x) for all x € X and pr(x) is open. Another
important consequence of the SVEP is the existence of a maximal analytic
extension f of R(A, T)x = (M —=T)'x to the set py () for every X e X.

This function identically verifies the equation

(M =T)f(X)=x forevery A € p7(X)

and f(A)= (M —T) ' forall & e p(T).

The local spectrum o7 (x) of T at x is the set defined by ot (x):=
C\pt (x). Obviously, we have o1(X) < o(T) and o7 (X) is closed. It is well
known that if o(T) # o,(T), then T does not have the SVEP.

It is clear that the SVEP is inherited by restrictions on closed invariant
subspaces, i.e., if T € L(X) has the SVEP at Ay and M is a closed

T-invariant subspace, then T|M has the SVEP at A. Moreover, ot (X) <

ot|m (X) forevery x € M.
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Proposition 1.3. Let X be a complex Banach space and T € L(X). If
(T) does not cluster at A, then T has the SVEP at .

Proof. Let U be a neighborhood of A such that Al —T is injective for
every A e U\{&y}. Let f :V — X be an analytic function defined on a
neighborhood V of A such that

(M =T)f(X)=0 forall A eV.

We may assume that V < U. Then f(A)e Ker(Al —T)={0} for every
L eV\{Lg}, and hence f(L)=0 for all L € V\{Ly}. From the continuity
of fat &, we conclude that f(A()=0. Hence, f =0 onV and therefore T
has the SVEP at 1.

The same argument shows that if G4y (T) does not cluster at A, then T

has the SVEP at A(. Moreover, every operator T € L(X) has the SVEP at
an isolated point of the spectrum o(T ). From these facts it follows that every

quasi-nilpotent operator has the SVEP. More generally, if cp(T) has empty

interior, then T has the SVEP. In particular, any operator with a real spectrum
has the SVEP.

For every subset F of C, the analytic spectral subspace of T associated
with F is the set

X1(F)={xe X :o7(x) < F}.

For an arbitrary operator T e L(X) and a closed subset F of C, let X1 (F)

denote the space of all x € X for which there exists an analytic function
f :C\F > X with (Al =T)f(x)=x forall A € C\F. It is clear that

o7 (X) = ﬂ{F < C: F is closed and x € X1 (F)}.

Evidently, X1 (F) and X1 (F) are (not necessarily closed) hyperinvariant
linear subspaces of X with X1 (F) < X1 (F) for every closed F < C.
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It is clear that the zero operator has an empty local spectrum. The
following proposition shows that if T € L(X) has the SVEP, then 0 is the

unique element of X having empty local spectrum. It is found in [16].

Proposition 1.4. Let T € L(X) and F be a closed subset of C. Then
X1(¢)=1{0} and X7(F)=X7(FNo(T)). Moreover, the following
assertions are equivalent:

(a) T has the SVEP.
(b) X1(F)= Xg(F) forall closed F < C.

(¢) Xt(¢) is closed.

(d) Xr(¢) = {0}.

For an arbitrary subset F < C, let Ey(F) denote the largest linear
subspace Y of X for which

(M —=T)Y =Y forall A € C\F.
The spaces Et (F) are known as the algebraic spectral subspaces of T.

Recall that a linear subspace Y of X is said to be T-divisible if (Al —T)Y
=Y for all A e C. Evidently, Ey(¢) is the largest T-divisible linear
subspace. It is easily seen that X1(F) < Ef(F)=Er(FNo(T)) for all
F < C, and Eg(og,(T)) = X.

They were first introduced by Johnson and Sinclair [12] in the context of
automatic continuity theory, but then proved to be a useful tool in local
spectral theory as well, [13-16]. In the theory of automatic continuity of
intertwining linear transformations, it is essential to avoid non-trivial
divisible subspaces.

Lemma 15. Let T e L(X), SeL(Y) and Ae L(X,Y) such that
SA = AT. Then we have

(a) AE7(F) < Eg(F) and AX1(F) < Ys(F) forall closed F < C.
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(b) AX < Eg(ogy(T)Nogy,r(S)). In particular, if ogy (T)N ogy(S)
= and {0} is the only S-divisible linear subspace of Y, then A is zero

operator.

Proof. (a) Clearly, (\l —T)E;(F)= E7(F) for all A € C\F. Hence,

we have
(M — S)AEr (F) = A(M —T)Eq (F) = AE{ (F) forall % e C\F.
By the maximality of Eg(F), we have
AEr (F) c Es(F).

We claim that AX1(F) < Ys(F). It suffices to show that o5 (Ax) < o1(X)
for all x € X. Let A ¢ o7(x). Then there exists an analytic function f : U

— X on aneighborhood U of A which satisfies the equation
(u =T)f(u)=x forall peU.

Thus, we have (ul —S)Af(n) = A(ul —T)f(A) = Ax for all p eU. This
means that A € pg(Ax) and hence A ¢ og(AX).

(b) Clearly, we have
AX = AET (o5r(T)) < Es(osyr(T)) = Es(osyr (T) N o5y (S)).

If T, S e L(X) satisfy the equations TST =T?2 and STS =S, then
clearly, TEst (F) < X7 (F) and TEgT(F) < EfS(F) forall closed F < C.

It is clear that E1(¢)= (Al —=T)"Er(¢) < (M =T)"X for all A e C

and n € N. Thus, we have

Er@)e [] @-T)x

neN,1eC

It follows that E7(¢) = {0} whenever the operator T is normal, hyponormal,

generalized scalar, subscalar, or isometry.



On Operators with Single-valued Extension Property 7
We have the following corollary:

Corollary 1.6. Let X be a complex Banach space and T € L(X). If
Et (¢) = {0}, then T has the SVEP.

Proof. By Proposition 1.4 and Lemma 1.5, it is clear.

However, the Volterra operator T on the Banach space X := C([0, 1]),
defined by

WO Ot f(s)ds forall f eC([0.1]) and t € [0, 1]

Then T is injective, compact and quasi-nilpotent. It follows that X1 (¢) = {0}.

By Proposition 1.4, T has the SVEP. On the other hand, it is easy to check
that

E1(¢) = ﬁT”X = {f ec®(0,1]): f(M(0) =0 for all n € N}.
n=1

Hence Et(¢) is non-trivial.

2. Main Results

For an arbitrary operator T € L(X), let
D(T):={,L e C:T fails to have SVEP at A}.

Obviously, D(T) is empty precisely when T has SVEP. Moreover, it follows
readily from the identity theorem for analytic functions that D(T) is open,
and therefore contained in the interior of the spectrum o(T). Obviously,
o(T) = o5y (T)U D(T) and in particular, o4, (T) contains the boundary of
D(T).

An operator A e L(X,Y) is said to be a quasi-affinity if A is injective

and has dense range. Recall that T € L(X) and S e L(Y) are quasi-similar
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if there exist quasi-affinities A e L(X,Y) and B e L(Y, X) for which
SA = AT and TB = BS.

Theorem 2.1. Suppose that T € L(X) and S e L(Y) are quasi-similar.
Then D(T) = D(S). In particular, T has the SVEP if and only if S has the
SVEP.

Proof. Let Ae L(X, L) and B € L(Y, X) be quasi-affinities for which
SA = AT and TB =BS. Let Ay ¢ D(T) and let f :U — Y be an analytic

function defined on an open neighborhood U of A such that
(A =S)f(A)=0 forall A eU.

Then 0 =B(Al —S)f(X) = (Al —T)Bf (L) for all A €U. Since T has the
SVEP at A(, and Bf(1L) is analytic, we have Bf (L) =0 for all A e U. It
follows from injectivity of B that f = 0 on U. Thus, S has the SVEP at A,
and hence A ¢ D(S). Conversely, let 1y ¢ D(S) and let g :V — X be an

analytic function defined on an open neighborhood V of A such that
(M -=T)g(x) =0 forall L V.

Then 0 =AM —T)g(X) = (Al —S)Ag(r) for all A eV. Since S has the
SVEP at L, and Ag(}A) is analytic, Ag(r) =0 for all A =V. It follows
from injectivity of A that f =0 on V. Thus, T has the SVEP at A, and
hence A & D(T).

The case that S, T e L(X) satisfy the operator equations

TST =T2 and STS = S?

has been first studied in [20], and more recently it has been investigated by
some other authors, [2, 19]. In this case, T, S, ST and TS share many spectral
properties and local spectral properties as decomposability, property (B),
Dunford’s property (C) and SVEP [4-6]. If S, T e L(X) satisfy the operator
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equations TST =T2,STS =52, and 0¢o(T)No(S), then clearly

T =1 = S. For this reason, we shall assume that T and S are not invertible.

Theorem 2.2. Let T, S e L(X) be such that TST =T?2 and STS = S?.
Then any one of T, S, TS and ST has the SVEP at A implies they all have
the SVEP at A.

Proof. It suffices to show that if T has the SVEP at A, then S, TS and
ST are have the SVEP at A(. Suppose that T has the SVEP at A(. At first,
we claim that ST has the SVEP at Ay. Let f :U — X be an analytic
function defined on an open neighborhood U of A, such that

(M =ST)f(A) =0 forall A e U. (1)

Then 0 = T(M — ST)f(A) = (Al —T)TF(1) for all A € U. The SVEP of T
at A entails that Tf (L) =0 for all A € U, and hence STf(A)=0 for all
A e U. In equation (1), we deduce f(L)=0 for all 0 # X € U. By the
continuity of f, f(A) =0 forall A € U. Hence, ST has the SVEP at A.

We have to show that TS has the SVEP at A,. Let g :V — X be an
analytic function defined on an open neighborhood V of A such that

(. —=TS)g(h) =0 forall A eV. ©)

Then 0 = S(Al —TS) f(X) = (Al — ST)Sg(A) for all A e V. It follows from
the SVEP of ST at A that Sg(A) = 0 for all A €V, and hence TSg(L) = 0
for all A € U. In equation (2), we deduce g(A) =0 for all 0 # A €V. By
the continuity of g, g(A) =0 forall A €V, andso g(A) =0 forall A €V,
Hence, TS has the SVEP at 4.

Finally, we have to show that S has the SVEP at 4. Let h: O — X be

an analytic function defined on an open neighborhood O of A, such that

(A =S)h(X) =0 forall » € O. (3)
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Then 0 = S(Al — S)h(X) = (A1 — ST)Sh(A) for all A € O. It follows from
the SVEP of ST at Ay that Sh(L) =0 for all A € O. In equation (1), we
deduce h(A) =0 forall 0 # A € O. By the continuity of h, h(A) = 0 for all
A € O. Hence S has the SVEP at 4.

Corollary 2.3. Let T, S e L(X) be such that TST = T2 and STS = S?.

Then the following assertions are equivalent:
(a) T has the SVEP.
(b) TS has the SVEP.
(c) ST has the SVEP.
(d) S has the SVEP.
Theorem 2.4. Let T, S € L(X). Then ST does not have the SVEP at 0 if

and only if there exists non-zero Sx, e Ker(T) such that Sx, € Xg7(9).

Proof. Suppose that there exists non-zero SX, € Ker(T) such that
Sxg € Xs7(d). We may assume that | Sxq | =1. It is clear that Sx €
K(ST). By definition of K(ST), there exists a sequence (a,) in X and

¢ > 0 so that
ay = SXg, STa, =a,_; and |a, | <c" forall n>1.

Obviously, STay = STSXy = 0. Let U :== {A € C:|A| < ¢c"'}. Then for every
reU,

|3 a, [ <c"| A" >0 as n— o,

it follows that

n
(Ml — ST)[ZxkakJ =2"la, 50 as n > w.
k=0
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So f(A):= ZC::O \'a, defines an analytic function on U that satisfies

(A =ST)f(A) =0 forall A e U. Since f(0)= Sxq # 0, it follows that ST
does not have the SVEP at 0.

In order to prove opposite inclusion, suppose that for every non-zero
Sx € Ker(T), we have og7(Sx) # &. By Proposition 3.1 of [5], for every
non-zero Sx € Ker(T), we have o1g(X) # . At first, we have to show that
TS has the SVEP at 0. Let f :V — X be an analytic function in a
neighborhood V of 0 such that (Al —=TS)f(X)=0 for every A €V. By
Lemma 1.2.14 of [16],

o1s(f(A)) = o75(0) = forall A eV.

Since f is analytic, there exists a sequence (a,) < X such that f(A)=

Z:O:o A'a,. We claim that a, = 0 for all n > 0. Clearly, TSa, = TSf(0)

=0, so Say € KerT. Moreover, from the equalities org(f (X)) = o15(0)
= for every A €V, we obtain o15(f(0)) = o15(ay) = &, and therefore

by assumption we conclude that ay, = 0. For every non-zero A €V, we

obtain
0=l -TS)f(L)=(al —TS)[ix”an] =Ml —TS)[ix”anHJ
n=1 n=0

and therefore
o0
(A - TS)(Z knanHJ = 0 for every non-zero A € V.
n=0

Since Al — TS is continuous, thus we have

o0
(Al —TS)(Z knanHJ = 0 for every non-zero A € V.
n=0
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At this point, by using the same argument as in the first part of the proof, it is
possible to show that a; = 0, and by iterating this procedure we conclude
that a, = a3 = --- = 0. This shows that f = 0 on V and therefore TS has the
SVEP at 0. Finally, we have to show that ST has the SVEP at 0.

Let g : W — X be an analytic function on a neighborhood W of 0 such
that

(M —ST)g(h) =0 forevery L e W. (1

Then (A —TS)Tg(A) =T(AM —ST)g(X) =0, L € W. Now since TS has the
SVEP at 0, we have Tg(A) =0 for all A € W, and hence STg(L) =0 for
every A € W. In equation (1), we deduce that g(A) =0 forall 0 =X e W.
By the continuity of g, g(A) =0 for all A € W. Hence, ST has the SVEP
at 0.
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