
 

Far East Journal of Mathematical Sciences (FJMS) 
Volume 73, Number 1, 2013, Pages 1-13 
Published Online: December 2012 
Available online at http://pphmj.com/journals/fjms.htm  
Published by Pushpa Publishing House, Allahabad, INDIA 

 

 HousePublishingPushpa2013©  
2010 Mathematics Subject Classification: 47A11, 47A53.

 Keywords and phrases: local spectrum, single-valued extension property, analytic spectral 
subspace. 

∗Corresponding author 
Received September 6, 2012 

ON OPERATORS WITH SINGLE-VALUED 
EXTENSION PROPERTY 

Jong-Kwang Yoo and Hyuk Han∗ 

Department of Liberal Arts and Science 
Chodang University 
Muan 534-701, Korea 
e-mail: jkyoo@chodang.ac.kr 

Department of Liberal Arts 
Industrial Science College 
Kongju National University 
Yesan 340-702, Korea 
e-mail: hyukhan@kongju.ac.kr 

Abstract 

In this paper, we show that if ( )XLT ∈  and ( )YLS ∈  are quasi-

similar, then ( ) ( ) ,ST DD =  where ( ) TT :{: C∈λ=D  fails to have 

SVEP at λ}. In particular, T has the SVEP if and only if S has the 
SVEP. We also study the SVEP for T, S, ST, and TS in the case that T 

and S satisfy the operator equations 2TTST =  and .2SSTS =  
Moreover, we proved that for every T, ( ) ,XLS ∈  ST does not have 

the SVEP at 0 if and only if there exists non-zero ( )TKerSx ∈0  such 

that ( ).0 φ∈ STXSx  
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1. Introduction and Preliminaries 

The single-valued extension property is a unifying theme for a wide 
variety of bounded linear operators. The single-valued extension property 
(abbreviated SVEP) was first introduced by Dunford [8, 9] and has received 
a more systematic treatment in Dunford-Schwartz [10]. It also plays an 
important role in local spectral theory; see the monograph of Colojoarvǎ and 
Foiás [7] and Laursen and Neumann [16]. 

Throughout this paper, let X be a complex Banach space and let ( )XL  

denote the Banach algebra of all bounded linear operators on X, equipped 

with the usual operator norm. For an operator ( ),XLT ∈  let ( ),, TT σ∗  

( ) ( )TT pσρ ,  and ( )TKer  denote the adjoint operator acting on the dual 

space ,∗X  the spectrum, the resolvent set, the point spectrum and the kernel 
of T, respectively. 

The surjectivity spectrum ( )Tsurσ  of ( )XLT ∈  is defined as the set of 

all C∈λ  such that TI −λ  is not surjective. It is well-known that ( ) =σ Tsur  

( ),∗σ Tap  and ( )Tsurσ  is a compact subset of C  that contains the boundary 

of ( ).Tσ  

Definition 1.1. Let X be a complex Banach space and ( ).XLT ∈  The 

operator T is said to have the single-valued extension property at ,0 C∈λ  if 

for every open disc 0λD  centered at 0λ  the only analytic function 
0

: λDf  

X→  which satisfies the equation ( ) ( ) 0=λ−λ fTI  for all 0λ∈λ D  is the 

constant function .0≡f  

An operator ( )XLT ∈  is said to have the single-valued extension 

property if T has the single-valued extension property at every point .C∈λ  

Example 1.2. The unilateral left shift operator L on the Hilbert space 
( )N2A  is an example of an operator without SVEP. 
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Proof. Let { } { }.1:10:: λ<∈λ<λ<∈λ= CC ∪U  We define 

( )N2: A→Uf  by ( ) ∑∞
= +

−λ=λ 0 1
1: n n

n ef  for all 10 <λ<  and ( )λf  

0=  for all .1>λ  Then clearly, f is analytic and 0)()( =λ−λ fLI  for all 

.U∈λ  But ( ) ( ) 01 12 ≠λ−λ=λ −f  on ,10 <λ<  and hence L 

does not have the SVEP. 

The local resolvent set ( )xTρ  of T at the point Xx ∈  is defined as the 

union of all open subsets U of C  such that there exists an analytic function 
XUf →:  which satisfies the equation 

( ) ( ) xfTI =λ−λ    for all .U∈λ  

Note that the resolvent function ( ) ( ) ( )( )TTITR ρ∈λ−λ=λ −1:,  is an 

analytic function, and hence ( ) ( ) xxTRTI =λ−λ ,  for all ( ).Tρ∈λ  This 

means that ( ) ( )xT Tρ⊆ρ  for all Xx ∈  and ( )xTρ  is open. Another 

important consequence of the SVEP is the existence of a maximal analytic 

extension f of ( ) ( ) xTIxTR 1, −−λ=λ  to the set ( )xTρ  for every .Xx ∈  

This function identically verifies the equation 

( ) ( ) xfTI =λ−λ    for every ( )xTρ∈λ  

and ( ) ( ) xTIf 1−−λ=λ  for all ( ).Tρ∈λ  

The local spectrum ( )xTσ  of T at x is the set defined by ( ) =σ :xT  

( ).\ xTρC  Obviously, we have ( ) ( )TxT σ⊆σ  and ( )xTσ  is closed. It is well 

known that if ( ) ( ),TT surσ≠σ  then T does not have the SVEP. 

It is clear that the SVEP is inherited by restrictions on closed invariant 
subspaces, i.e., if ( )XLT ∈  has the SVEP at 0λ  and M is a closed                    

T-invariant subspace, then MT |  has the SVEP at .0λ  Moreover, ( ) ⊆σ xT  

( )xMT |σ  for every .Mx ∈  
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Proposition 1.3. Let X be a complex Banach space and ( ).XLT ∈  If 

( )Tpσ  does not cluster at ,0λ  then T has the SVEP at .0λ  

Proof. Let U be a neighborhood of 0λ  such that TI −λ  is injective for 

every { }.\ 0λ∈λ U  Let XVf →:  be an analytic function defined on a 

neighborhood V of 0λ  such that 

( ) ( ) 0=λ−λ fTI    for all .V∈λ  

We may assume that .UV ⊆  Then ( ) ( ) { }0=−λ∈λ TIKerf  for every 

{ },\ 0λ∈λ V  and hence ( ) 0=λf  for all { }.\ 0λ∈λ V  From the continuity 

of f at ,0λ  we conclude that ( ) .00 =λf  Hence, 0≡f  on V and therefore T 

has the SVEP at .0λ  

The same argument shows that if ( )Tapσ  does not cluster at ,0λ  then T 

has the SVEP at .0λ  Moreover, every operator ( )XLT ∈  has the SVEP at 

an isolated point of the spectrum ( ).Tσ  From these facts it follows that every 

quasi-nilpotent operator has the SVEP. More generally, if ( )Tpσ  has empty 

interior, then T has the SVEP. In particular, any operator with a real spectrum 
has the SVEP. 

For every subset F of ,C  the analytic spectral subspace of T associated 
with F is the set 

( ) ( ){ }.: FxXxFX TT ⊆σ∈=  

For an arbitrary operator ( )XLT ∈  and a closed subset F of ,C  let ( )FTX  

denote the space of all Xx ∈  for which there exists an analytic function 
XFf →\: C  with ( ) ( ) xfTI =λ−λ  for all .\FC∈λ  It is clear that 

( ) ( ){ }∩ .andclosedis: FxFFx TT X∈⊆=σ C  

Evidently, ( )FXT  and ( )FTX  are (not necessarily closed) hyperinvariant 

linear subspaces of X with ( ) ( )FXF TT ⊆X  for every closed .C⊆F  
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It is clear that the zero operator has an empty local spectrum. The 
following proposition shows that if ( )XLT ∈  has the SVEP, then 0 is the 

unique element of X having empty local spectrum. It is found in [16]. 

Proposition 1.4. Let ( )XLT ∈  and F be a closed subset of .C  Then 

( ) { }0=φTX  and ( ) ( )( ).TFF TT σ= ∩XX  Moreover, the following 

assertions are equivalent: 

(a) T has the SVEP. 

(b) ( ) ( )FXF TT =X  for all closed .C⊆F  

(c) ( )φTX  is closed. 

(d) ( ) { }.0=φTX  

For an arbitrary subset ,C⊂F  let ( )FET  denote the largest linear 

subspace Y of X for which 

( ) YYTI =−λ  for all .\FC∈λ  

The spaces ( )FET  are known as the algebraic spectral subspaces of T. 

Recall that a linear subspace Y of X is said to be T-divisible if ( )YTI −λ  

Y=  for all .C∈λ  Evidently, ( )φTE  is the largest T-divisible linear 

subspace. It is easily seen that ( ) ( ) ( )( )TFEFEFX TTT σ=⊆ ∩  for all 

,C⊆F  and ( )( ) .XTE surT =σ  

They were first introduced by Johnson and Sinclair [12] in the context of 
automatic continuity theory, but then proved to be a useful tool in local 
spectral theory as well, [13-16]. In the theory of automatic continuity of 
intertwining linear transformations, it is essential to avoid non-trivial 
divisible subspaces. 

Lemma 1.5. Let ( ),XLT ∈  ( )YLS ∈  and ( )YXLA ,∈  such that 

.ATSA =  Then we have 

(a) ( ) ( )FEFAE ST ⊆  and ( ) ( )FYFAX ST ⊆  for all closed .C⊆F  



Jong-Kwang Yoo and Hyuk Han 6 

(b) ( ) ( )( ).STEAX sursurS σσ⊆ ∩  In particular, if ( ) ( )ST sursur σσ ∩  

∅=  and { }0  is the only S-divisible linear subspace of Y, then A is zero 

operator. 

Proof. (a) Clearly, ( ) ( ) ( )FEFETI TT =−λ  for all .\FC∈λ  Hence, 

we have 

( ) ( ) ( ) ( ) ( )FAEFETIAFAESI TTT =−λ=−λ   for all .\FC∈λ  

By the maximality of ( ),FES  we have 

( ) ( ).FEFAE ST ⊆  

We claim that ( ) ( ).FYFAX ST ⊆  It suffices to show that ( ) ( )xAx TS σ⊆σ  

for all .Xx ∈  Let ( ).xTσ∉λ  Then there exists an analytic function Uf :  

X→  on a neighborhood U of λ which satisfies the equation 

( ) ( ) xfTI =μ−μ   for all .U∈μ  

Thus, we have ( ) ( ) ( ) ( ) AxfTIAAfSI =λ−μ=μ−μ  for all .U∈μ  This 

means that ( )AxSρ∈λ  and hence ( ).AxSσ∉λ  

(b) Clearly, we have 

( )( ) ( )( ) ( ) ( )( ).STETETAEAX sursurSsurSsurT σσ=σ⊆σ= ∩  

If ( )XLST ∈,  satisfy the equations 2TTST =  and ,2SSTS =  then 

clearly, ( ) ( )FXFTE TST ⊆  and ( ) ( )FSEFTE TST ⊆  for all closed .C⊆F  

It is clear that ( ) ( ) ( ) ( ) XTIETIE n
T

n
T −λ⊆φ−λ=φ  for all C∈λ  

and .N∈n  Thus, we have 

( ) ( )∩
CN ∈λ∈

−λ⊆φ
,

.
n

n
T XTIE  

It follows that ( ) { }0=φTE  whenever the operator T is normal, hyponormal, 

generalized scalar, subscalar, or isometry. 
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We have the following corollary: 

Corollary 1.6. Let X be a complex Banach space and ( ).XLT ∈  If 

( ) { },0=φTE  then T has the SVEP. 

Proof. By Proposition 1.4 and Lemma 1.5, it is clear. 

However, the Volterra operator T on the Banach space [ ]( ),1,0: CX =  

defined by 

( ) ( ) ( ) [ ]( ) [ ]∫ ∈∈=
t

tCfdssftTf
0

.1,0and1,0allfor:  

Then T is injective, compact and quasi-nilpotent. It follows that ( ) { }.0=φTX  

By Proposition 1.4, T has the SVEP. On the other hand, it is easy to check 
that 

( ) { [ ]( ) ( )( ) }∩
∞

=

∞ ∈=∈==φ
1

.allfor00:1,0
n

nn
T nfCfXTE N  

Hence ( )φTE  is non-trivial. 

2. Main Results 

For an arbitrary operator ( ),XLT ∈  let 

( ) { }.atSVEPhavetofails:: λ∈λ= TT CD  

Obviously, ( )TD  is empty precisely when T has SVEP. Moreover, it follows 

readily from the identity theorem for analytic functions that ( )TD  is open, 

and therefore contained in the interior of the spectrum ( ).Tσ  Obviously, 

( ) ( ) ( )TTT sur D∪σ=σ  and in particular, ( )Tsurσ  contains the boundary of 

( ).TD  

An operator ( )YXLA ,∈  is said to be a quasi-affinity if A is injective 

and has dense range. Recall that ( )XLT ∈  and ( )YLS ∈  are quasi-similar 
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if there exist quasi-affinities ( )YXLA ,∈  and ( )XYLB ,∈  for which 

ATSA =  and .BSTB =  

Theorem 2.1. Suppose that ( )XLT ∈  and ( )YLS ∈  are quasi-similar. 

Then ( ) ( ).ST DD =  In particular, T has the SVEP if and only if S has the 

SVEP. 

Proof. Let ( )LXLA ,∈  and ( )XYLB ,∈  be quasi-affinities for which 

ATSA =  and .BSTB =  Let ( )TD∉λ0  and let YUf →:  be an analytic 

function defined on an open neighborhood U of 0λ  such that 

( ) ( ) 0=λ−λ fSI    for all .U∈λ  

Then ( ) ( ) ( ) ( )λ−λ=λ−λ= BfTIfSIB0  for all .U∈λ  Since T has the 

SVEP at ,0λ  and ( )λBf  is analytic, we have ( ) 0=λBf  for all .U∈λ  It 

follows from injectivity of B that 0≡f  on U. Thus, S has the SVEP at 0λ  

and hence ( ).0 SD∉λ  Conversely, let ( )SD∉λ0  and let XVg →:  be an 

analytic function defined on an open neighborhood V of 0λ  such that 

( ) ( ) 0=λ−λ gTI   for all .V∈λ  

Then ( ) ( ) ( ) ( )λ−λ=λ−λ= AgSIgTIA0  for all .V∈λ  Since S has the 

SVEP at ,0λ  and ( )λAg  is analytic, ( ) 0=λAg  for all .V=λ  It follows 

from injectivity of A that 0≡f  on V. Thus, T has the SVEP at 0λ  and 

hence ( ).0 TD∉λ  

The case that ( )XLTS ∈,  satisfy the operator equations 

2TTST =   and  2SSTS =  

has been first studied in [20], and more recently it has been investigated by 
some other authors, [2, 19]. In this case, T, S, ST and TS share many spectral 
properties and local spectral properties as decomposability, property (β), 
Dunford’s property (C) and SVEP [4-6]. If ( )XLTS ∈,  satisfy the operator 
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equations ,, 22 SSTSTTST ==  and ( ) ( ),0 ST σσ∉ ∩  then clearly 

.SIT ==  For this reason, we shall assume that T and S are not invertible. 

Theorem 2.2. Let ( )XLST ∈,  be such that 2TTST =  and .2SSTS =  

Then any one of T, S, TS and ST has the SVEP at 0λ  implies they all have 

the SVEP at .0λ  

Proof. It suffices to show that if T has the SVEP at ,0λ  then S, TS and 

ST are have the SVEP at .0λ  Suppose that T has the SVEP at .0λ  At first, 

we claim that ST has the SVEP at .0λ  Let XUf →:  be an analytic 

function defined on an open neighborhood U of 0λ  such that 

( ) ( ) 0=λ−λ fSTI   for all .U∈λ  (1) 

Then ( ) ( ) ( ) ( )λ−λ=λ−λ= TfTIfSTIT0  for all .U∈λ  The SVEP of T 

at 0λ  entails that ( ) 0=λTf  for all ,U∈λ  and hence ( ) 0=λSTf  for all 

.U∈λ  In equation (1), we deduce ( ) 0=λf  for all .0 U∈λ≠  By the 

continuity of f, ( ) 0=λf  for all .U∈λ  Hence, ST has the SVEP at .0λ  

We have to show that TS has the SVEP at .0λ  Let XVg →:  be an 

analytic function defined on an open neighborhood V of 0λ  such that 

( ) ( ) 0=λ−λ gTSI   for all .V∈λ  (2) 

Then ( ) ( ) ( ) ( )λ−λ=λ−λ= SgSTIfTSIS0  for all .V∈λ  It follows from 

the SVEP of ST at 0λ  that ( ) 0=λSg  for all ,V∈λ  and hence ( ) 0=λTSg  

for all .U∈λ  In equation (2), we deduce ( ) 0=λg  for all .0 V∈λ≠  By 

the continuity of ( ) 0, =λgg  for all ,V∈λ  and so ( ) 0=λg  for all .V∈λ  

Hence, TS has the SVEP at .0λ  

Finally, we have to show that S has the SVEP at .0λ  Let XOh →:  be 

an analytic function defined on an open neighborhood O of 0λ  such that 

( ) ( ) 0=λ−λ hSI   for all .O∈λ  (3) 
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Then ( ) ( ) ( ) ( )λ−λ=λ−λ= ShSTIhSIS0  for all .O∈λ  It follows from 

the SVEP of ST at 0λ  that ( ) 0=λSh  for all .O∈λ  In equation (1), we 

deduce ( ) 0=λh  for all .0 O∈λ≠  By the continuity of h, ( ) 0=λh  for all 

.O∈λ  Hence S has the SVEP at .0λ  

Corollary 2.3. Let T, ( )XLS ∈  be such that 2TTST =  and .2SSTS =  

Then the following assertions are equivalent: 

(a) T has the SVEP. 

(b) TS has the SVEP. 

(c) ST has the SVEP. 

(d) S has the SVEP. 

Theorem 2.4. Let T, ( ).XLS ∈  Then ST does not have the SVEP at 0 if 

and only if there exists non-zero ( )TKerSx ∈0  such that ( ).0 φ∈ STXSx  

Proof. Suppose that there exists non-zero ( )TKerSx ∈0  such that 

( ).0 φ∈ STXSx  We may assume that .10 =Sx  It is clear that ∈0Sx  

( ).STK  By definition of ( ),STK  there exists a sequence ( )na  in X and 

0>c  so that 

100 , −== nn aSTaSxa   and  n
n ca ≤  for all .1≥n  

Obviously, .000 == STSxSTa  Let { }.:: 1−<λ∈λ= cU C  Then for every 

,U∈λ  

011 →λ≤λ ++ nn
n

n ca   as ,∞→n  

it follows that 

( ) 01

0
→λ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ−λ +

=
∑ n

n
n

k
k

k aaSTI   as .∞→n  
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So ( ) ∑∞
= λ=λ 0: n n

naf  defines an analytic function on U that satisfies 

( ) ( ) 0=λ−λ fSTI  for all .U∈λ  Since ( ) ,00 0 ≠= Sxf  it follows that ST 

does not have the SVEP at 0. 

In order to prove opposite inclusion, suppose that for every non-zero 
( ),TKerSx ∈  we have ( ) .∅≠σ SxST  By Proposition 3.1 of [5], for every 

non-zero ( ),TKerSx ∈  we have ( ) .∅≠σ xTS  At first, we have to show that 

TS has the SVEP at 0. Let XVf →:  be an analytic function in a 

neighborhood V of 0 such that ( ) ( ) 0=λ−λ fTSI  for every .V∈λ  By 

Lemma 1.2.14 of [16], 

( )( ) ( ) ∅=σ=λσ 0TSTS f   for all .V∈λ  

Since f is analytic, there exists a sequence ( ) Xan ⊆  such that ( ) =λf  

∑∞
= λ0 .n n

na  We claim that 0=na  for all .0≥n  Clearly, ( )00 TSfTSa =  

,0=  so .0 KerTSa ∈  Moreover, from the equalities ( )( ) ( )0TSTS f σ=λσ  

∅=  for every ,V∈λ  we obtain ( )( ) ( ) ,0 0 ∅=σ=σ af TSTS  and therefore 

by assumption we conclude that .00 =a  For every non-zero ,V∈λ  we 

obtain 

( ) ( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ−λλ=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ−λ=λ−λ= ∑∑

∞

=
+

∞

= 0
1

1
0

n
n

n

n
n

n aTSIaTSIfTSI  

and therefore 

( ) 0
0

1 =
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
λ−λ ∑

∞

=
+

n
n

naTSI  for every non-zero .V∈λ  

Since TSI −λ  is continuous, thus we have 

( ) 0
0

1 =
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
λ−λ ∑

∞

=
+

n
n

naTSI  for every non-zero .V∈λ  
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At this point, by using the same argument as in the first part of the proof, it is 
possible to show that ,01 =a  and by iterating this procedure we conclude 

that .032 === "aa  This shows that 0≡f  on V and therefore TS has the 

SVEP at 0. Finally, we have to show that ST has the SVEP at 0. 

Let XWg →:  be an analytic function on a neighborhood W of 0 such 

that 

( ) ( ) 0=λ−λ gSTI   for every .W∈λ  (1) 

Then ( ) ( ) ( ) ( ) .,0 WgSTITTgTSI ∈λ=λ−λ=λ−λ  Now since TS has the 

SVEP at 0, we have ( ) 0=λTg  for all ,W∈λ  and hence ( ) 0=λSTg  for 

every .W∈λ  In equation (1), we deduce that ( ) 0=λg  for all .0 W∈λ≠  

By the continuity of g, ( ) 0=λg  for all .W∈λ  Hence, ST has the SVEP                             

at 0. 
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