

ON OPERATORS WITH SINGLE-VALUED EXTENSION PROPERTY

Jong-Kwang Yoo and Hyuk Han*

Department of Liberal Arts and Science Chodang University Muan 534-701, Korea e-mail: jkyoo@chodang.ac.kr

Department of Liberal Arts Industrial Science College Kongju National University Yesan 340-702, Korea

e-mail: hyukhan@kongju.ac.kr

Abstract

In this paper, we show that if $T \in L(X)$ and $S \in L(Y)$ are quasisimilar, then $\mathcal{D}(T) = \mathcal{D}(S)$, where $\mathcal{D}(T) := \{\lambda \in \mathbb{C} : T \text{ fails to have} \}$ SVEP at $\lambda\}$. In particular, T has the SVEP if and only if S has the SVEP. We also study the SVEP for T, S, ST, and TS in the case that Tand S satisfy the operator equations $TST = T^2$ and $STS = S^2$. Moreover, we proved that for every T, $S \in L(X)$, ST does not have the SVEP at 0 if and only if there exists non-zero $Sx_0 \in Ker(T)$ such that $Sx_0 \in X_{ST}(\phi)$.

© 2013 Pushpa Publishing House

2010 Mathematics Subject Classification: 47A11, 47A53.

Keywords and phrases: local spectrum, single-valued extension property, analytic spectral subspace.

*Corresponding author

Received September 6, 2012

1. Introduction and Preliminaries

The single-valued extension property is a unifying theme for a wide variety of bounded linear operators. The single-valued extension property (abbreviated SVEP) was first introduced by Dunford [8, 9] and has received a more systematic treatment in Dunford-Schwartz [10]. It also plays an important role in local spectral theory; see the monograph of Colojoarvă and Foiás [7] and Laursen and Neumann [16].

Throughout this paper, let X be a complex Banach space and let L(X) denote the Banach algebra of all bounded linear operators on X, equipped with the usual operator norm. For an operator $T \in L(X)$, let T^* , $\sigma(T)$, $\rho(T)$, $\sigma_p(T)$ and Ker(T) denote the adjoint operator acting on the dual space X^* , the spectrum, the resolvent set, the point spectrum and the kernel of T, respectively.

The *surjectivity spectrum* $\sigma_{sur}(T)$ of $T \in L(X)$ is defined as the set of all $\lambda \in \mathbb{C}$ such that $\lambda I - T$ is not surjective. It is well-known that $\sigma_{sur}(T) = \sigma_{ap}(T^*)$, and $\sigma_{sur}(T)$ is a compact subset of \mathbb{C} that contains the boundary of $\sigma(T)$.

Definition 1.1. Let X be a complex Banach space and $T \in L(X)$. The operator T is said to have the *single-valued extension property* at $\lambda_0 \in \mathbb{C}$, if for every open disc D_{λ_0} centered at λ_0 the only analytic function $f:D_{\lambda_0} \to X$ which satisfies the equation $(\lambda I - T) f(\lambda) = 0$ for all $\lambda \in D_{\lambda_0}$ is the constant function $f \equiv 0$.

An operator $T \in L(X)$ is said to have the *single-valued extension* property if T has the single-valued extension property at every point $\lambda \in \mathbb{C}$.

Example 1.2. The unilateral left shift operator L on the Hilbert space $\ell_2(\mathbb{N})$ is an example of an operator without SVEP.

Proof. Let $U := \{\lambda \in \mathbb{C} : 0 < |\lambda| < 1\} \cup \{\lambda \in \mathbb{C} : 1 < |\lambda|\}$. We define $f: U \to \ell_2(\mathbb{N})$ by $f(\lambda) := \sum_{n=0}^{\infty} \lambda^{n-1} e_{n+1}$ for all $0 < |\lambda| < 1$ and $f(\lambda) = 0$ for all $|\lambda| > 1$. Then clearly, f is analytic and $(\lambda I - L) f(\lambda) = 0$ for all $|\lambda| = 0$ for all $|\lambda|$

The *local resolvent set* $\rho_T(x)$ of T at the point $x \in X$ is defined as the union of all open subsets U of $\mathbb C$ such that there exists an analytic function $f: U \to X$ which satisfies the equation

$$(\lambda I - T) f(\lambda) = x$$
 for all $\lambda \in U$.

Note that the resolvent function $R(\lambda, T) := (\lambda I - T)^{-1}(\lambda \in \rho(T))$ is an analytic function, and hence $(\lambda I - T)R(\lambda, T)x = x$ for all $\lambda \in \rho(T)$. This means that $\rho(T) \subseteq \rho_T(x)$ for all $x \in X$ and $\rho_T(x)$ is open. Another important consequence of the SVEP is the existence of a maximal analytic extension f of $R(\lambda, T)x = (\lambda I - T)^{-1}x$ to the set $\rho_T(x)$ for every $x \in X$. This function identically verifies the equation

$$(\lambda I - T) f(\lambda) = x$$
 for every $\lambda \in \rho_T(x)$

and
$$f(\lambda) = (\lambda I - T)^{-1}x$$
 for all $\lambda \in \rho(T)$.

The *local spectrum* $\sigma_T(x)$ of T at x is the set defined by $\sigma_T(x) := \mathbb{C} \setminus \rho_T(x)$. Obviously, we have $\sigma_T(x) \subseteq \sigma(T)$ and $\sigma_T(x)$ is closed. It is well known that if $\sigma(T) \neq \sigma_{sur}(T)$, then T does not have the SVEP.

It is clear that the SVEP is inherited by restrictions on closed invariant subspaces, i.e., if $T \in L(X)$ has the SVEP at λ_0 and M is a closed T-invariant subspace, then $T \mid M$ has the SVEP at λ_0 . Moreover, $\sigma_T(x) \subseteq \sigma_{T \mid M}(x)$ for every $x \in M$.

Proposition 1.3. Let X be a complex Banach space and $T \in L(X)$. If $\sigma_n(T)$ does not cluster at λ_0 , then T has the SVEP at λ_0 .

Proof. Let U be a neighborhood of λ_0 such that $\lambda I - T$ is injective for every $\lambda \in U \setminus \{\lambda_0\}$. Let $f: V \to X$ be an analytic function defined on a neighborhood V of λ_0 such that

$$(\lambda I - T) f(\lambda) = 0$$
 for all $\lambda \in V$.

We may assume that $V \subseteq U$. Then $f(\lambda) \in Ker(\lambda I - T) = \{0\}$ for every $\lambda \in V \setminus \{\lambda_0\}$, and hence $f(\lambda) = 0$ for all $\lambda \in V \setminus \{\lambda_0\}$. From the continuity of f at λ_0 , we conclude that $f(\lambda_0) = 0$. Hence, f = 0 on V and therefore T has the SVEP at λ_0 .

The same argument shows that if $\sigma_{ap}(T)$ does not cluster at λ_0 , then T has the SVEP at λ_0 . Moreover, every operator $T \in L(X)$ has the SVEP at an isolated point of the spectrum $\sigma(T)$. From these facts it follows that every quasi-nilpotent operator has the SVEP. More generally, if $\sigma_p(T)$ has empty interior, then T has the SVEP. In particular, any operator with a real spectrum has the SVEP.

For every subset F of \mathbb{C} , the analytic spectral subspace of T associated with F is the set

$$X_T(F) = \{x \in X : \sigma_T(x) \subseteq F\}.$$

For an arbitrary operator $T \in L(X)$ and a closed subset F of \mathbb{C} , let $\mathcal{X}_T(F)$ denote the space of all $x \in X$ for which there exists an analytic function $f: \mathbb{C} \backslash F \to X$ with $(\lambda I - T) f(\lambda) = x$ for all $\lambda \in \mathbb{C} \backslash F$. It is clear that

$$\sigma_T(x) = \bigcap \{ F \subseteq \mathbb{C} : F \text{ is closed and } x \in \mathcal{X}_T(F) \}.$$

Evidently, $X_T(F)$ and $\mathcal{X}_T(F)$ are (not necessarily closed) hyperinvariant linear subspaces of X with $\mathcal{X}_T(F) \subseteq X_T(F)$ for every closed $F \subseteq \mathbb{C}$.

It is clear that the zero operator has an empty local spectrum. The following proposition shows that if $T \in L(X)$ has the SVEP, then 0 is the unique element of X having empty local spectrum. It is found in [16].

Proposition 1.4. Let $T \in L(X)$ and F be a closed subset of \mathbb{C} . Then $\mathcal{X}_T(\phi) = \{0\}$ and $\mathcal{X}_T(F) = \mathcal{X}_T(F \cap \sigma(T))$. Moreover, the following assertions are equivalent:

- (a) T has the SVEP.
- (b) $\mathcal{X}_T(F) = X_T(F)$ for all closed $F \subseteq \mathbb{C}$.
- (c) $X_T(\phi)$ is closed.
- (d) $X_T(\phi) = \{0\}.$

For an arbitrary subset $F \subset \mathbb{C}$, let $E_T(F)$ denote the largest linear subspace Y of X for which

$$(\lambda I - T)Y = Y$$
 for all $\lambda \in \mathbb{C} \backslash F$.

The spaces $E_T(F)$ are known as the algebraic spectral subspaces of T.

Recall that a linear subspace Y of X is said to be T-divisible if $(\lambda I - T)Y$ = Y for all $\lambda \in \mathbb{C}$. Evidently, $E_T(\phi)$ is the largest T-divisible linear subspace. It is easily seen that $X_T(F) \subseteq E_T(F) = E_T(F \cap \sigma(T))$ for all $F \subseteq \mathbb{C}$, and $E_T(\sigma_{sur}(T)) = X$.

They were first introduced by Johnson and Sinclair [12] in the context of automatic continuity theory, but then proved to be a useful tool in local spectral theory as well, [13-16]. In the theory of automatic continuity of intertwining linear transformations, it is essential to avoid non-trivial divisible subspaces.

Lemma 1.5. Let $T \in L(X)$, $S \in L(Y)$ and $A \in L(X, Y)$ such that SA = AT. Then we have

(a)
$$AE_T(F) \subseteq E_S(F)$$
 and $AX_T(F) \subseteq Y_S(F)$ for all closed $F \subseteq \mathbb{C}$.

(b) $AX \subseteq E_S(\sigma_{sur}(T) \cap \sigma_{sur}(S))$. In particular, if $\sigma_{sur}(T) \cap \sigma_{sur}(S)$ = \emptyset and $\{0\}$ is the only S-divisible linear subspace of Y, then A is zero operator.

Proof. (a) Clearly, $(\lambda I - T)E_T(F) = E_T(F)$ for all $\lambda \in \mathbb{C} \backslash F$. Hence, we have

$$(\lambda I - S)AE_T(F) = A(\lambda I - T)E_T(F) = AE_T(F)$$
 for all $\lambda \in \mathbb{C} \backslash F$.

By the maximality of $E_S(F)$, we have

$$AE_T(F) \subseteq E_S(F)$$
.

We claim that $AX_T(F) \subseteq Y_S(F)$. It suffices to show that $\sigma_S(Ax) \subseteq \sigma_T(x)$ for all $x \in X$. Let $\lambda \notin \sigma_T(x)$. Then there exists an analytic function $f: U \to X$ on a neighborhood U of λ which satisfies the equation

$$(\mu I - T) f(\mu) = x$$
 for all $\mu \in U$.

Thus, we have $(\mu I - S)Af(\mu) = A(\mu I - T)f(\lambda) = Ax$ for all $\mu \in U$. This means that $\lambda \in \rho_S(Ax)$ and hence $\lambda \notin \sigma_S(Ax)$.

(b) Clearly, we have

$$AX = AE_T(\sigma_{sur}(T)) \subseteq E_S(\sigma_{sur}(T)) = E_S(\sigma_{sur}(T) \cap \sigma_{sur}(S)).$$

If $T, S \in L(X)$ satisfy the equations $TST = T^2$ and $STS = S^2$, then clearly, $TE_{ST}(F) \subseteq X_T(F)$ and $TE_{ST}(F) \subseteq E_TS(F)$ for all closed $F \subseteq \mathbb{C}$.

It is clear that $E_T(\phi) = (\lambda I - T)^n E_T(\phi) \subseteq (\lambda I - T)^n X$ for all $\lambda \in \mathbb{C}$ and $n \in \mathbb{N}$. Thus, we have

$$E_T(\phi) \subseteq \bigcap_{n \in \mathbb{N}} (\lambda I - T)^n X.$$

It follows that $E_T(\phi) = \{0\}$ whenever the operator T is normal, hyponormal, generalized scalar, subscalar, or isometry.

We have the following corollary:

Corollary 1.6. Let X be a complex Banach space and $T \in L(X)$. If $E_T(\phi) = \{0\}$, then T has the SVEP.

Proof. By Proposition 1.4 and Lemma 1.5, it is clear.

However, the Volterra operator T on the Banach space X := C([0, 1]), defined by

$$(Tf)(t) := \int_0^t f(s)ds$$
 for all $f \in C([0, 1])$ and $t \in [0, 1]$.

Then T is injective, compact and quasi-nilpotent. It follows that $X_T(\phi) = \{0\}$. By Proposition 1.4, T has the SVEP. On the other hand, it is easy to check that

$$E_T(\phi) = \bigcap_{n=1}^{\infty} T^n X = \{ f \in C^{\infty}([0, 1]) : f^{(n)}(0) = 0 \text{ for all } n \in \mathbb{N} \}.$$

Hence $E_T(\phi)$ is non-trivial.

2. Main Results

For an arbitrary operator $T \in L(X)$, let

$$\mathcal{D}(T) := \{ \lambda \in \mathbb{C} : T \text{ fails to have SVEP at } \lambda \}.$$

Obviously, $\mathcal{D}(T)$ is empty precisely when T has SVEP. Moreover, it follows readily from the identity theorem for analytic functions that $\mathcal{D}(T)$ is open, and therefore contained in the interior of the spectrum $\sigma(T)$. Obviously, $\sigma(T) = \sigma_{sur}(T) \cup \mathcal{D}(T)$ and in particular, $\sigma_{sur}(T)$ contains the boundary of $\mathcal{D}(T)$.

An operator $A \in L(X, Y)$ is said to be a *quasi-affinity* if A is injective and has dense range. Recall that $T \in L(X)$ and $S \in L(Y)$ are *quasi-similar*

if there exist quasi-affinities $A \in L(X, Y)$ and $B \in L(Y, X)$ for which SA = AT and TB = BS.

Theorem 2.1. Suppose that $T \in L(X)$ and $S \in L(Y)$ are quasi-similar. Then $\mathcal{D}(T) = \mathcal{D}(S)$. In particular, T has the SVEP if and only if S has the SVEP.

Proof. Let $A \in L(X, L)$ and $B \in L(Y, X)$ be quasi-affinities for which SA = AT and TB = BS. Let $\lambda_0 \notin \mathcal{D}(T)$ and let $f: U \to Y$ be an analytic function defined on an open neighborhood U of λ_0 such that

$$(\lambda I - S) f(\lambda) = 0$$
 for all $\lambda \in U$.

Then $0 = B(\lambda I - S) f(\lambda) = (\lambda I - T) B f(\lambda)$ for all $\lambda \in U$. Since T has the SVEP at λ_0 , and $B f(\lambda)$ is analytic, we have $B f(\lambda) = 0$ for all $\lambda \in U$. It follows from injectivity of B that $f \equiv 0$ on U. Thus, S has the SVEP at λ_0 and hence $\lambda_0 \notin \mathcal{D}(S)$. Conversely, let $\lambda_0 \notin \mathcal{D}(S)$ and let $g: V \to X$ be an analytic function defined on an open neighborhood V of λ_0 such that

$$(\lambda I - T)g(\lambda) = 0$$
 for all $\lambda \in V$.

Then $0 = A(\lambda I - T)g(\lambda) = (\lambda I - S)Ag(\lambda)$ for all $\lambda \in V$. Since S has the SVEP at λ_0 , and $Ag(\lambda)$ is analytic, $Ag(\lambda) = 0$ for all $\lambda = V$. It follows from injectivity of A that $f \equiv 0$ on V. Thus, T has the SVEP at λ_0 and hence $\lambda_0 \notin \mathcal{D}(T)$.

The case that $S, T \in L(X)$ satisfy the operator equations

$$TST = T^2$$
 and $STS = S^2$

has been first studied in [20], and more recently it has been investigated by some other authors, [2, 19]. In this case, T, S, ST and TS share many spectral properties and local spectral properties as decomposability, property (β), Dunford's property (C) and SVEP [4-6]. If S, $T \in L(X)$ satisfy the operator

equations $TST = T^2$, $STS = S^2$, and $0 \notin \sigma(T) \cap \sigma(S)$, then clearly T = I = S. For this reason, we shall assume that T and S are not invertible.

Theorem 2.2. Let $T, S \in L(X)$ be such that $TST = T^2$ and $STS = S^2$. Then any one of T, S, TS and ST has the SVEP at λ_0 implies they all have the SVEP at λ_0 .

Proof. It suffices to show that if T has the SVEP at λ_0 , then S, TS and ST are have the SVEP at λ_0 . Suppose that T has the SVEP at λ_0 . At first, we claim that ST has the SVEP at λ_0 . Let $f: U \to X$ be an analytic function defined on an open neighborhood U of λ_0 such that

$$(\lambda I - ST) f(\lambda) = 0 \text{ for all } \lambda \in U.$$
 (1)

Then $0 = T(\lambda I - ST) f(\lambda) = (\lambda I - T) T f(\lambda)$ for all $\lambda \in U$. The SVEP of T at λ_0 entails that $T f(\lambda) = 0$ for all $\lambda \in U$, and hence $ST f(\lambda) = 0$ for all $\lambda \in U$. In equation (1), we deduce $f(\lambda) = 0$ for all $0 \neq \lambda \in U$. By the continuity of f, $f(\lambda) = 0$ for all $\lambda \in U$. Hence, ST has the SVEP at λ_0 .

We have to show that TS has the SVEP at λ_0 . Let $g: V \to X$ be an analytic function defined on an open neighborhood V of λ_0 such that

$$(\lambda I - TS)g(\lambda) = 0 \text{ for all } \lambda \in V.$$
 (2)

Then $0 = S(\lambda I - TS) f(\lambda) = (\lambda I - ST) Sg(\lambda)$ for all $\lambda \in V$. It follows from the SVEP of ST at λ_0 that $Sg(\lambda) = 0$ for all $\lambda \in V$, and hence $TSg(\lambda) = 0$ for all $\lambda \in U$. In equation (2), we deduce $g(\lambda) = 0$ for all $0 \neq \lambda \in V$. By the continuity of g, $g(\lambda) = 0$ for all $\lambda \in V$, and so $g(\lambda) = 0$ for all $\lambda \in V$. Hence, TS has the SVEP at λ_0 .

Finally, we have to show that S has the SVEP at λ_0 . Let $h: O \to X$ be an analytic function defined on an open neighborhood O of λ_0 such that

$$(\lambda I - S)h(\lambda) = 0 \text{ for all } \lambda \in O.$$
 (3)

Then $0 = S(\lambda I - S)h(\lambda) = (\lambda I - ST)Sh(\lambda)$ for all $\lambda \in O$. It follows from the SVEP of ST at λ_0 that $Sh(\lambda) = 0$ for all $\lambda \in O$. In equation (1), we deduce $h(\lambda) = 0$ for all $0 \neq \lambda \in O$. By the continuity of h, $h(\lambda) = 0$ for all $\lambda \in O$. Hence S has the SVEP at λ_0 .

Corollary 2.3. Let $T, S \in L(X)$ be such that $TST = T^2$ and $STS = S^2$. Then the following assertions are equivalent:

- (a) T has the SVEP.
- (b) TS has the SVEP.
- (c) ST has the SVEP.
- (d) S has the SVEP.

Theorem 2.4. Let $T, S \in L(X)$. Then ST does not have the SVEP at 0 if and only if there exists non-zero $Sx_0 \in Ker(T)$ such that $Sx_0 \in X_{ST}(\phi)$.

Proof. Suppose that there exists non-zero $Sx_0 \in Ker(T)$ such that $Sx_0 \in X_{ST}(\phi)$. We may assume that $||Sx_0|| = 1$. It is clear that $Sx_0 \in K(ST)$. By definition of K(ST), there exists a sequence (a_n) in X and c > 0 so that

$$a_0 = Sx_0$$
, $STa_n = a_{n-1}$ and $||a_n|| \le c^n$ for all $n \ge 1$.

Obviously, $STa_0 = STSx_0 = 0$. Let $U := \{\lambda \in \mathbb{C} : |\lambda| < c^{-1}\}$. Then for every $\lambda \in U$,

$$\|\lambda^{n+1}a_n\| \le c^n |\lambda|^{n+1} \to 0 \text{ as } n \to \infty,$$

it follows that

$$(\lambda I - ST) \left(\sum_{k=0}^{n} \lambda^k a_k \right) = \lambda^{n+1} a_n \to 0 \text{ as } n \to \infty.$$

So $f(\lambda) := \sum_{n=0}^{\infty} \lambda^n a_n$ defines an analytic function on U that satisfies $(\lambda I - ST) f(\lambda) = 0$ for all $\lambda \in U$. Since $f(0) = Sx_0 \neq 0$, it follows that ST does not have the SVEP at 0.

In order to prove opposite inclusion, suppose that for every non-zero $Sx \in Ker(T)$, we have $\sigma_{ST}(Sx) \neq \emptyset$. By Proposition 3.1 of [5], for every non-zero $Sx \in Ker(T)$, we have $\sigma_{TS}(x) \neq \emptyset$. At first, we have to show that TS has the SVEP at 0. Let $f: V \to X$ be an analytic function in a neighborhood V of 0 such that $(\lambda I - TS) f(\lambda) = 0$ for every $\lambda \in V$. By Lemma 1.2.14 of [16],

$$\sigma_{TS}(f(\lambda)) = \sigma_{TS}(0) = \emptyset$$
 for all $\lambda \in V$.

Since f is analytic, there exists a sequence $(a_n) \subseteq X$ such that $f(\lambda) = \sum_{n=0}^{\infty} \lambda^n a_n$. We claim that $a_n = 0$ for all $n \ge 0$. Clearly, $TSa_0 = TSf(0) = 0$, so $Sa_0 \in KerT$. Moreover, from the equalities $\sigma_{TS}(f(\lambda)) = \sigma_{TS}(0) = \emptyset$ for every $\lambda \in V$, we obtain $\sigma_{TS}(f(0)) = \sigma_{TS}(a_0) = \emptyset$, and therefore by assumption we conclude that $a_0 = 0$. For every non-zero $\lambda \in V$, we obtain

$$0 = (\lambda I - TS) f(\lambda) = (\lambda I - TS) \left(\sum_{n=1}^{\infty} \lambda^n a_n \right) = \lambda (\lambda I - TS) \left(\sum_{n=0}^{\infty} \lambda^n a_{n+1} \right)$$

and therefore

$$(\lambda I - TS) \left(\sum_{n=0}^{\infty} \lambda^n a_{n+1} \right) = 0$$
 for every non-zero $\lambda \in V$.

Since $\lambda I - TS$ is continuous, thus we have

$$(\lambda I - TS) \left(\sum_{n=0}^{\infty} \lambda^n a_{n+1} \right) = 0$$
 for every non-zero $\lambda \in V$.

At this point, by using the same argument as in the first part of the proof, it is possible to show that $a_1 = 0$, and by iterating this procedure we conclude that $a_2 = a_3 = \cdots = 0$. This shows that $f \equiv 0$ on V and therefore TS has the SVEP at 0. Finally, we have to show that ST has the SVEP at 0.

Let $g:W\to X$ be an analytic function on a neighborhood W of 0 such that

$$(\lambda I - ST)g(\lambda) = 0 \text{ for every } \lambda \in W.$$
 (1)

Then $(\lambda I - TS)Tg(\lambda) = T(\lambda I - ST)g(\lambda) = 0$, $\lambda \in W$. Now since TS has the SVEP at 0, we have $Tg(\lambda) = 0$ for all $\lambda \in W$, and hence $STg(\lambda) = 0$ for every $\lambda \in W$. In equation (1), we deduce that $g(\lambda) = 0$ for all $0 \neq \lambda \in W$. By the continuity of g, $g(\lambda) = 0$ for all $\lambda \in W$. Hence, ST has the SVEP at 0.

References

- [1] P. Aiena, M. L. Colasante and M. González, Operators which have a closed quasinilpotent part, Proc. Amer. Math. Soc. 130 (2002), 2701-2710.
- [2] P. Aiena and M. González, On the Dunford property (*C*) for bounded linear operators *RS* and *SR*, Integral Equations Operator Theory 70 (2011), 561-568.
- [3] W. G. Bade, P. C. Curtis and K. B. Laursen, Divisible subspaces and problems of automatic continuity, Stud. Math. 68 (1980), 159-186.
- [4] B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126(4) (1998), 1055-1061.
- [5] C. Benhida and E. H. Zerouali, Local spectral theory of linear operators *RS* and *SR*, Integral Equations Operator Theory 54 (2006), 1-8.
- [6] Lin Chen, Yan Zikun and Ruan Yingbin, Common operator properties of operators *RS* and *SR* and *p*-hyponormal operators, Integral Equations Operator Theory 43 (2002), 313-325.
- [7] I. Colojoarvă and C. Foiás, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- [8] N. Dunford, Spectral theory II. Resolution of the identity, Pacific J. Math. 2 (1952), 559-614.

- [9] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354.
- [10] N. Dunford and J. T. Schwartz, Linear Operators, Part III, Wiley-Interscience, New York, 1971.
- [11] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
- [12] B. E. Johnson and A. M. Sinclair, Continuity of linear operators commuting with linear operators II, Trans. Amer. Math. Soc. 146 (1969), 533-540.
- [13] K. B. Laursen, Algebraic spectral subspaces and automatic continuity, Czechoslovak Math. J. 38(113) (1988), 157-172.
- [14] K. B. Laursen and M. M. Neumann, Decomposable operators and automatic continuity, J. Operator Theory 15 (1986), 33-51.
- [15] K. B. Laursen and M. M. Neumann, Automatic continuity of intertwining linear operators on Banach spaces, Rendiconti Del circolo Matematico di Palermo, Serie II, Tomo XL (1991), 325-341.
- [16] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
- [17] K. B. Laursen and P. Vrbová, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math J. 39 (114) (1989), 730-739.
- [18] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
- [19] C. Schmoeger, On the operators equations $ABA = A^2$ and $BAB = B^2$, Publ. de L'Inst. Math. (NS) 78(92) (2006), 127-133.
- [20] I. Vidav, On idempotent operators in Hilbert space, Publ. de L'Inst. Math. (NS) 48(18) (1964), 157-163.