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Abstract 

We characterize relatively norm compact sets in the regular ∗C -
algebra of finitely generated Coxeter groups using a geometrically 
defined positive semigroup acting on the algebra. 

1. Introduction 

Let ( )dX ,  be a compact metric space, .0 Xx ∈  In ( ),XC  the continuous 

complex valued functions on X, consider the convex, balanced and closed set 

( ) ( ) ( ) ( ){ }.0,,: 0 =≤−= xfyxdyfxffK  

The Arzela-Ascoli theorem shows that K  is relatively compact. On the 
other hand, this theorem can be thought to compare any relatively compact 
set against this special set. 
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In the non-commutative context, this has been made precise by 
Antonescu and Christensen [1] as follows: 

Let A be a unital, separable ∗C -algebra and S  be the set of its states 

endowed with the ∗w -topology. 

Definition 1. A⊂K  is called a metric set if it is convex, balanced norm 
compact and separates the states of A. 

Lemma 2 [1]. If A⊂K  is a metric set, then 

( ) ( ) ( ) S
K

∈ψϕψ−ϕ=ψϕ
∈

,,sup:, xxd
x

 

defines a metric on ,S  which generates the ∗w -topology. 

Their general non-commutative Arzela-Ascoli Theorem reads as follows: 

Theorem 3 [1]. Let A be a unital ∗C -algebra, A⊂K  be a metric set. 
Then A⊂H  is relatively compact if and only if H  is bounded and for all 

,0>ε  there exists 0>N  such that 

( ) ,0 IdNB C++⊂ ε KH  

where ( ) AB ⊂ε 0  is the ball of radius ε around 0. 

Our aim here is to give an example of some such set K  in the reduced 
∗C -algebra ( )GCA ∗

λ=  of a finitely generated Coxeter group G. 

Let G, S be a Coxeter group and l be the length function associated to the 
generating set S. (For the convenience to the readers in the next two sections,       

we recall some notions and assertions related to the regular ∗C -algebra of 
Coxeter groups.) 

Theorem 4. 

( ) ( ) ( ){ }11: ≤⋅λ≤λλ= flandffK  

is relatively compact in ( ).GC∗
λ  
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The proof of this theorem is given in our last section. 

Since the set K  in ( )GC∗
λ  separates the states, is convex and balanced, 

an application of the theorem of Antonescu and Christensen characterizes 

relatively compact subsets of ( )GC∗
λ  as follows: 

Corollary 1. A set ( )GC∗
λ⊂H  is relatively compact if and only if it is 

bounded and for all ,0>ε  there is an N∈m  such that 

( )( ) ( ),0eBem +δλ+⊂ CKH  

where ( ) ( )GCB ∗
λε ⊂0  is the ball of radius ε and center 0. 

2. Coxeter Group 

Definition 5. A pair ( )SG,  is a Coxeter group if S is a finite generating 

subset of the group G with the following presentation: 

,,2 Sses ∈=  

( ) ( ) ,,,,, tsStsest tsm ≠∈=  

where ( ) { }....,,4,3,2, ∞∈tsm  

A specific tool for working with Coxeter groups is their geometric 
representation. 

Let sSsV α⊕= ∈ R  be an abstract real vector space with basis 

{ }.: Sss ∈α  Define a bilinear form on it: 

( ) ( ) ( )

( )












∞=−

∞≠π−

=

=αα

.,,1

,,,,cos

,,1

,

tsm

tsmtsm

ts

B ts  
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For ,Ss ∈  define a reflection by ( ) .,2 sss B αξα−ξ=ξσ  Then 

,: ss HV ⊕α= R  where ( ){ }0,: =ξαξ= ss BH  is stabilized pointwise 

by sσ  and .sss α−=ασ  

ss σ:  extends multiplicatively to a representation ( )VGlG →σ :  

of the Coxeter group. 

σ:  is faithful and ( )Gσ  is a discrete subgroup of ( ).VGl  

We dualise the representation σ to obtain the adjoint representation 

( ) ( ) ( ( ) ) .,,1 VVfgffg ∈ξ∈ξσ=ξσ ∗−∗  

For ,Ss ∈  let sZ  be the hyperplane { ( ) },0: =α∈= ∗
ss fVfZ  and 

sA  the halfspace { ( ) };0: >α∈= ∗
ss fVfA  define a family of hyperplanes 

in .sGg gZV ∈
∗ = ∪H  Denote sSs AC ∈= ∩  the intersection of the halfspaces, 

its closure { }0\CD =  is called the fundamental chamber usually considered 

as a subset of the union of its translates ,gDU Gg∈= ∪  the Tit’s cone. 

The following facts hold true: 

  (i) C is a simplicial cone, its faces are the sets ,DZs ∩  

 (ii) U is a convex cone, D a fundamental domain for the action of G on 
it, 

(iii) A closed line segment [ ] Uvu ⊂,  meets only finitely many 

members of ,H  

(iv) moreover, for any :Cc ∈  

[ ]{ }( ) ( ),,: glZcgcZcard =∅≠∈ ∩H  

where ( ) { }Ssssgkgl ik ∈== ,:inf 1…  denotes the usual length with 

respect to the generating set S. This construction, due to Tits, was used by 
Bożejko et al. [3], we recall sketching the proof of their theorem. 
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Theorem 6 [3]. For ,0>t  

( )gtl
t eg −ϕ :  

is a positive definite function on G. 

Proof. 

( ) [ ]{ }( )∅≠∈=− ZgchcZcardhgl ∩,:1 H  

( ) ( )∑
∈

χ−χ=
HZ

gh ZZ ,2  

where Cc ∈  is arbitrary and hχ  is the characteristic function of =hN  

[ ]{ }.,: ∅≠∈ ZchcZ ∩H  Hence ( )⋅l  is negative definite and, by a 

theorem of Schoenberg [9] (we only need the part already due to Schur [10]), 
( )⋅−tle  is positive definite, see, e.g., [2, Theorem 7.8].  

3. Regular Representation 

For functions ,:, C→Ghf  their convolution is defined by: 

( ) ( ) ( )∑
∈

−=∗
Gx

yxhxfyhf .1  

For summable ,: C→Gf  we denote ( ) ( ) ( )GlGlf 22: →λ  the associated 

convolution operator ( ) .hfhf ∗=λ  The regular (or reduced) ∗C -algebra 

( )GC∗
λ  is the just the operator norm closure of { ( ) ( )}.: 1 Glff ∈λ  Denote 

for ,gGg δ∈  the point mass one in ,Gg ∈  then ( )gδλ  is just left 

translation by 1−g  on ( )Gl2  and we are just dealing with the integrated 

version of the left regular representation. Since for ( ),GCA ∗
λ∈  there is a 

unique ,2lAf e ∈δ=  we abuse notation to denote ( ).fA λ=  

The Tits cone with its division by the hyperplanes can be seen as a subset 
of a cubical building. This allows to estimate certain convolution operator 
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norms. The first example of such an estimation was given for the free group 
on two generators by Haagerup [6] and accordingly such inequalities are 
called Haagerup inequality. Versions more appropriate for our purpose 
appear in [4, 5, 8, 11]: 

Theorem 7. A Coxeter group is a group of rapid decay: there is 0>C  
and N∈k  such that 

( ) ( ) ( )( ) .1
2
1

22













+≤λ ∑

g

kglgfCf  

A consequence of this theorem is the following lemma due to Haagerup 
[6, 7]. For convenience, we recall their proofs. 

Lemma 8. If GG →ϕ :  is such that ( ) ( )( ) ,1sup ∞<+ϕ k
g glg  then 

for all ( ) ( ),GCf ∗
λ∈λ  

( ) ( ) ( )( ) ( ) .1sup fglgCf k

g
λ+ϕ≤⋅ϕλ  

Here C and k are the constants in the Haagerup inequality. 

Proof. From ( ) ,ff e =δλ  we have ( ) ( )ffgfg λ≤=




∑ 2

2
1

2  

and by the Haagerup inequality: 

( ) ( ) ( ) ( )( )∑ +ϕ≤⋅ϕλ
g

kglgfgCf 222 1  

( ) ( ) ( )( ) .1sup 222∑ +ϕ≤
g

k

g
glgCgf   

Lemma 9. There is a sequence of finitely supported functions ( )mψ  such 

that for ( ) ( ):GCf ∗
λ∈λ  
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• ( ) ( )ffm λ→⋅ψλ  as ∞→n  

• ( ) ( ) .3 ffm λ≤⋅ψλ  

Proof. Since, by Theorem 6, the functions tϕ  are positive definite, they 

define contractive (i.e., norm non-increasing) multipliers on the regular ∗C -
algebra. Let 

( ) ( )


 ≤=ϕ

−

else.,0
,if,

,
ngle gtl

tn  

Then 

( ) ( ) ( ) ( )ffff ttntn ⋅ϕλ−⋅ϕλ≤λ−⋅ϕλ ,,  

( ) ( )fft λ−⋅ϕλ+  

( ) ( )fleC ktl

nl
λ+≤ −

>
1sup  

( ) ( ) .fft λ−⋅ϕλ+  

Since ( ) 01sup →+−
>

ktl
nl le  as ,∞→n  we can extract the mψ  from 

the ., tnϕ   

4. Relatively Compact Sets 

First, we notice that the positive definite functions ( )gtl
t eg −ϕ :  

define a 0C -semigroup of multipliers on ( )GC∗
λ  given by ( ) →∗

λ GCMt :  

( ),GC∗
λ  ( ) ( ).ff t ⋅ϕλλ  

Lemma 10. tMtM :  is a 0C -semigroup of contractions on ( ).GC∗
λ  

Proof. Since tϕ  is positive definite, 

( ) .1=ϕ= eM tt  
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For finitely supported f, everything is elementary and now an 

approximation proves the assertion.  

Lemma 11. The generator D of the semigroup tM  is given by 

( )( ) ( ),flfD ⋅λ−=λ  

( ) { ( ) ( ) ( )}.: GCflfDDom ∗
λ∈⋅λλ=  

Proof. We have 

( ) ( ) ( ),g
gtl

gt e δλ=δ⋅ϕλ −  

hence the assertion is clear for finitely supported ( )∑ δ= g ggff .  

Now as a generator of a 0C -contraction semigroup, the operator D has a 

closed graph. But if 

( )fλ  and ( ) ( ),GCfl ∗
λ∈⋅λ  

then for the finitely supported mψ  as above: 

( ) ( )ffm λ→⋅ψλ  

and 

 ( ) ( ).flflm ⋅λ→⋅⋅ψλ   

Proof of Theorem 4. We shall show that for ,0>ε  there exists a finite 

dimensional bounded set 

( )GC∗
λε ⊂K

~  

such that for all ,K∈f  

( ) .~,dist ε≤εKf  

(This shows that K  is totally bounded.) 
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We have for :K∈f  

( ) ( ) ( )( ) ( ) ( )( )( ) .
0∫ λ=λ−λ=λ−⋅ϕλ
t

stt dsfMDffMff  

Hence 

( ) ( ) ( )fletff sl

ts
t ⋅λ≤λ−⋅ϕλ −

<
sup  

( ) tflt ≤⋅λ≤  

and 

( ) ( ) ( ) ( )fleCff ktl

nl
tnt λ+≤⋅ϕλ−⋅ϕλ −

>
1sup,  

( ) .1sup ktl

nl
leC +≤ −

>
 

Taking first t small and then n large, we have an approximation to ( )fλ  

by certain ( )ftn ⋅ϕλ ,  up to ε uniformly in ( ) .K∈λ f  Further, for this n, 

( ) ( ) ( ) ( )ffff ttnttn ⋅ϕλ+⋅ϕλ−⋅ϕλ≤⋅ϕλ ,,  

( ( ) ) ( )fleC ktl

nl
λ++≤ −

>
11sup  

( ( ) ).11sup ++≤ −

>

ktl

nl
leC  

So these ( )ftn ⋅ϕλ ,  are from a bounded set and all have their support in 

words of length at most n. The functions with support in this finite set give 

rise to a finite dimensional subspace of ( ).GC∗
λ   
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