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Abstract 

In this paper, a meshless local Petrov-Galerkin (MLPG) method is 
presented to treat the diffusion equation with non-local boundary 
condition on a square domain. General papers use a penalty parameter 
imposed on Dirichlet’s boundary conditions for mixed problems. For 
this method, we use a penalty parameter imposed at Dirichlet’s and 
Neumann’s boundary conditions for mixed problems with non-local 
boundary conditions in each sub-domain. This implementation is 
verified to be efficient, more accurate and truly meshless. 
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1. Introduction 

MLPG method was first discovered by Atluri and Zhu [5] in 1998. This 
method has been described in textbooks [3, 12] and allows for the freedom to 
choose a test function. This method has been applied widely and very 
successfully in recent years. The method is based on local weak forms and 
moving least squares (MLS) approximation, and approaches the true solution 
of the problem. The main advantage of the MLPG method over the widely 
used finite element method and meshless methods is that it does not require a 
“finite element mesh” for the purposes of either interpolation or integration, 
thereby reducing costs. Effective implementations of meshless methods are 
key to success [2, 4-6, 8-11]. 

Finding the numerical solution with non-local boundary conditions is         
of importance in many fields of science and engineering research such as 
chemical diffusion, diffusion equation, thermoelasticity, heat conduction 
processes, heat transfer, control theory, medical schemes, and so on [16]. It is 
most widely used and very important in thermoelasticity. In 1963, Cannon 
[7] first introduced non-local boundary condition problems, and most 
investigations developed various problems as one-dimensional or two-
dimensional, with the Dirichlet’s or the Neumann’s boundary condition, and 
in 2010, Abbasbandy and Shirzadi [1, 2] researched the MPLG method for a 
two-dimensional diffusion equation with the Neumann’s boundary condition 
and non-classical boundary conditions, and a meshless method for a two-
dimensional diffusion equation with an integral condition. The proposed 
method worked very well for the two-dimensional diffusion equations with   
a non-classical boundary condition, because of its simplicity and high 
accuracy. 

The purpose of this article is to develop an efficient, more accurate and 
truly meshless method for solving the following two-dimensional time-
dependent diffusion problem with non-local boundary conditions which had 
been studied by Abbasbandy and Shirzadi [2]. The diffusion equation can be 
written as 
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( ) ( ) ,10,0,,,1, 1 ≤≤≤≤= xTttxhtxu  (5) 

( ) ( ) ( ) ,10,0,,0, 0 ≤≤≤≤µ= xTttxhtxu  (6) 

and the non-local boundary condition 

 ( ) ( )∫Ω ≤≤≤≤=Ω ,10,10,,, yxtmdtyxu  (7) 

where 1010 ,,,, hhggf  and m are given functions, while the functions u  

and µ are unknowns. The non-local boundary condition is variable-separable, 
with spatial dependence given by ( )xh0  and time dependence given by ( ).tµ  

Abbasbandy and Shirzadi [2] used a meshless local Petrov-Galerkin 
(MLPG) method to treat parabolic partial differential equations with the 
Dirichlet’s and Neumann’s conditions with a non-classical boundary. A 
difficulty in implementing the MLPG method to impose essential boundary 
conditions is that the moving least squares (MLS) trial functions do not    
pass through the nodal values. To overcome this difficulty, they used the 
MLPG method only inside the domain, while at boundaries, they used finite 
difference schemes in all boundary conditions. We present techniques for use 
on square domains using classical MLPG and penalty parameters imposed at 
the Dirichlet’s and Neumann’s boundary conditions for mixed problem with 
non-local boundary conditions, such that this implementation can be verified 
to be efficient, more accurate, and truly meshless. 
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It should be noted that the MLPG method has been successfully applied 
to diffusion problems with Dirichlet or Neumann boundary conditions in 
many papers such as [1, 2, 9, 14]. In this paper, we consider problems under 
a non-local boundary condition as in equation (7). Also, we impose the 
Dirichlet’s and Neumann’s boundary conditions, and we impose a non-local 
boundary condition in LWF with the classical MLPG method, making our 
method truly meshless. 

2. The MLS Approximation Scheme 

Using the moving least squares (MLS) approximation scheme, we can 
approximate the trial function for the displacement at each point. Consider a 
subdomain ,xΩ  the neighborhood of a point x and denote as the domain          

of definition of the MLS approximation for the trial function at x, which            
is located in the problem domain .xΩ  To approximate the distribution of 

function u in xΩ  over a number of randomly located nodes ,ix  =i  

,...,,2,1 n  the moving least squares approximation ( )xhu  of u, ,xx Ω∈∀  

can be defined by 

 ( ) ( ) ( ) ,; xxaxPx ∀= Thu  (8) 

where ( ) ( ) ( ) ( )[ ]xxxxP m
T ppp ...,,, 21=  is a complete monomial basis of 

order m; and ( )xa  is a vector containing coefficients ( ),xja  ,...,,2,1 mj =  

which are functions of the space coordinates x. For example, for a two-

dimensional problem, ( ) [ ]yxT ,,1=xP  and ( ) [ ],,,,,,1 22 yxyxyxT =xP  

for linear basis ( )3=m  and quadratic basis ( ),6=m  respectively. 

The coefficient vector ( )xa  is determined by minimizing a weighted 

discrete 2L  norm, defined as 
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where ( )xiw  is the weight function associated with the node i, with ( ) 0>xiw  

for all x in the support of ( ),xiw  ix  denotes the value of x at node i, n is    

the number of nodes in xΩ  for which the weight functions ( ) ,0>xiw  the 

matrices P and W are defined as 
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and [ ].ˆ...,,ˆ,ˆˆ 21 n
T uuu=u  Here it should be noted that ,ˆiu  ,...,,2,1 ni =  in 

(9) are the fictitious nodal values, and not the nodal values of the unknown 

trial function ( )xhu  in general. The stationary of J in (9) with respect to 

( )xa  leads to the following linear relation between ( )xa  and :û  

 ( ) ( ) ( ) ,ûxBxaxA =  (10) 

where the matrices ( )xA  and ( )xB  are defined by 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]....,,, 2211 nn
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The MLS approximation is well defined only when the matrix A in (10) 
is non-singular. It can be seen that this is the case if and only if the rank of P 
equals m. A necessary condition for a well-defined MLS approximation is 
that at least m weight functions are non-zero ( )mn >.,i.e  for each sample 

point Ω∈x  and that the nodes in xΩ  are not arranged in a special pattern 

such as on a straight line. Here, a sample point may be a nodal point under 
consideration or a quadrature point. 
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Solving for ( )xa  from (10) and substituting it into (8) gives a relation 

which may be written as the form of an interpolation function similar to that 
used in FEM as 

 ( ) ( ) ( ) ( )∑
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Usually ( )xiφ  is called the shape function of the MLS approximation 

corresponding to nodal point .iy  From (12) and (14), it may be seen that 

( ) 0=φ xi  when ( ) .0=xiw  In practical applications, ( )xiw  is generally 

chosen such that it is non-zero over the support of nodal points .iy  The 

support of the nodal point iy  is usually taken to be a circle of radius           

,ir  centered at .iy  The fact that ( ) ,0=φ xi  for x not in the support of      

nodal point iy  preserves the local character of the moving least squares 

approximation. 

Let ( )ΩqC  be the space of qth continuously differentiable functions     
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in which ( ) kk ,
11

,
−− = AA  represents the derivative of the inverse of A with 

respect to ,kx  which is given by ,1
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In this paper, the Gaussian weight function is used as 
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where ,ii xxd −=  ic  is a constant controlling the shape of the weight 

function iw  and ir  is the size of the support domain. 

The size of support, ,ir  of the weight function iw  associated with node i 

should be chosen such that ir  should be large enough to have sufficient 

number of nodes covered in the domain of definition of every sample point 
( )mn ≥  to ensure the regularity of A. A very small ir  may result in a 

relatively large numerical error in using Gauss numerical quadrature to 
calculate the entries in the system matrix. On the other hand, ir  should also 

be small enough to maintain the local character of the MLS approximation. 

3. Local Weak Form 

The MLPG method constructs the weak form over local sub-domains 
such as ,sΩ  which is a small region taken for each node in the global 

domain Ω and may be of any geometric shape and size. In this paper, they 
are taken to be of circular shape. Because the weak form is constructed over 
local sub-domains, the formulation is called the “local weak formulation”. 

The local weak form of (1) for ( ) i
s

ii
i yxx Ω∈= ,  can be written as 

follows: 
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where ....,,3,2,1 ni =  By substituting (13) into (20), governing equations 

are transformed into the discretized system, written in the matrix form as 
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There is a problem for MLS at boundary conditions because the trial 
function does not pass through the nodal values, so we impose a penalty 
parameter at the Dirichlet’s and the Neumann’s boundary conditions with 

:1>>α  
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By substituting (13) into (27), governing equations are transformed into 
the discretized system, written in the matrix form as 
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To discrete time variable, the Crank-Nicolson technique is applied to 
(23) which yields 
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From (37), assuming that ,ˆ k
iµ  for Ni ...,,2,1=  and kµ̂  are known,  

our aim is to compute ,ˆ 1+µk
i  for Ni ...,,2,1=  and .ˆ 1+µk  Now we have 

1+N  unknowns so that we need one equation to compute these unknowns, 
which can be obtained from the non-local boundary condition from (7), and 

substituting trial function ( ) ( ) ,ˆ
1

∑
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which written in the matrix form as 
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where S is a matrix, which is described in the following: 
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Equations (37) and (39) can be written in the matrix form as follows: 
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3.2. Time discretization II 

The second scheme, we discretize (29) at time level ,1+k  we obtain: 

 .ˆˆ 111 +++ =µ− kkk HEUD  (45) 
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Subtracting (45) from (33), we obtain: 

( ) 111
1

ˆˆˆˆ
2

ˆˆ +++
+

µ+−++
∆
− kkkk

kk

t EUDUUFUUK  

,12
1

++
−= kk

HC  (46) 

11 ˆˆ
2

++ µ∆+




 ∆−∆+ kk ttt EUDFK  

.ˆ
2

12
1

kkk tt UFKHC 




 ∆−+














−∆= ++

 (47) 

So we need one equation same the first scheme, that can be obtained from the 
non-local boundary condition from (7): 
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which written in the matrix form as 

 ,ˆ 11 ++ = kk mUS  (49) 

where S is a matrix, which is described in the following: 

 [ ] ( )∫Ω Ωφ== ., dSS jjj xS  (50) 

Equations (47) and (49) can be written in the matrix form as follows: 
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4. Numerical Experiments 

Two schemes are presented in this section. The numerical solutions in 

the first scheme uses a time step of 2
1+k  with regular and irregular nodes 

and the second scheme uses a time step of 1+k  with regular nodes. The 
results are presented in Tables 1, 2 and 3, respectively. For both schemes,  
we use the quadratic basis in the MLS approximations. The relative error is 
reported in the tables, defined as follows: 
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= n
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n
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ii

R
u

uu
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.max ii µ−µ=µ ∞  

For both schemes with non-local boundary conditions, we consider      
(1)-(7) with the following conditions: 

( ) ( ),exp, yxyxf +=  

( ) ( ),2exp,0 tytyg +=  

( ) ( ),21exp,1 tytyg ++=  
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( ) ( ),21exp,1 txtxh ++=  

( ) ( ),exp0 xxh =  

( ) ( ) ( ) ( )( ),11exp22exp2exp +−= ttm  

for which the exact solution is 

( ) ( ) ( ) ( ).2exp,2exp,, tttyxtyxu =µ++=  

Table 1 compares the results obtained for u and µ, between imposing at 
Dirichlet’s boundary condition and imposing at Dirichlet’s and Neumann’s 
boundary conditions, at several time levels with 1.0=∆t  on regular nodes in 

Figure 1 ( )nodes441=N  from time step .2
1+k  

Table 2 compares the results obtained for u and µ, between imposing at 
Dirichlet’s boundary condition and imposing at Dirichlet’s and Neumann’s 
boundary conditions at several time levels, with 1.0=∆t  on irregular nodes 

in Figure 2 ( )nodes121=N  from time step .2
1+k  

Table 3 compares the results obtained for u and µ, between imposing at 
Dirichlet’s boundary condition and imposing at Dirichlet’s and Neumann’s 
boundary condition at several time levels with 1.0=∆t  on regular nodes 
from time step .1+k  

In each case above ,1=T  the relative errors have increased slightly 

because of the accumulated error in each time step. For ,1>T  the results 

will have the same manner as .1=T  
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Figure 1. Regular nodes in the interval [ ] [ ].1,01,0 ×  

 

Figure 2. Irregular nodes in the interval [ ] [ ].1,01,0 ×  
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Table 1. Relative error for diffusion problem with non-local BC imposed         
at Dirichlet’s boundary conditions, compared with imposing at Dirichlet’s 

and Neumann’s boundary conditions time step 2
1+k  with regular nodes 

[ ]2121×  

Imposing on Dirichlet’s BC Imposing on both types of BC 
t 1

0 10−×r  110−∞ ×µ  3
0 10−×r  210−∞ ×µ  

0.1 1.3320 5.2 11.2128 6.9 
0.2 1.0053 3.4 4.0078 1.4 
0.3 1.1706 6.3 9.1762 1.0 
0.4 1.0509 6.0 5.1589 8.7 
0.5 1.1300 8.8 8.2067 3.6 
0.6 1.0695 9.4 5.7409 11.5 
0.7 1.1121 12.7 7.6579 7.0 
0.8 1.0797 14.4 6.0962 15.6 
0.9 1.1031 18.6 7.3275 12.0 
1 1.0854 21.9 6.3234 21.8 

Table 2. Relative error for diffusion problem with non-local BC imposed         
at Dirichlet’s boundary conditions, compared with imposing at Dirichlet’s 

and Neumann’s boundary conditions time step 2
1+k  with irregular nodes 

[ ]1111×  

Imposing on Dirichlet’s BC Imposing on both types of BC 
t 1

0 10−×r  110−∞ ×µ  2
0 10−×r  110−∞ ×µ  

0.1 1.3259 7.9 5.3081 0.8 
0.2 0.7438 5.1 1.7463 0.2 
0.3 1.0063 8.5 4.3908 1.1 
0.4 0.8422 8.8 2.3207 0.4 
0.5 0.9411 12.1 3.9321 1.4 
0.6 0.8665 13.5 2.6106 0.8 
0.7 0.9200 17.7 3.6561 1.9 
0.8 0.8776 20.4 2.7891 1.4 
0.9 0.9099 26.1 3.4811 2.7 
1 0.8841 30.7 2.9063 2.3 
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Table 3. Relative error for diffusion problem with non-local BC imposed at 
Dirichlet’s boundary conditions, compared with imposing at Dirichlet’s and 
Neumann’s boundary conditions time step 1+k  with regular nodes [ ]2121×  

Imposing on Dirichlet’s BC Imposing on both types of BC 
t 1

0 10−×r  110−∞ ×µ  4
0 10−×r  310−∞ ×µ  

0.1 1.3014 5.5 2.9624 2.2 

0.2 1.0434 3.5 1.9259 1.4 

0.3 1.1575 6.6 2.3226 2.5 

0.4 1.0826 6.2 2.1223 2.5 

0.5 1.1320 9.2 2.2270 3.5 

0.6 1.0943 9.8 2.1583 3.9 

0.7 1.1212 13.3 2.2009 5.1 

0.8 1.1000 15.0 2.1712 6.0 

0.9 1.1157 19.5 2.1906 7.6 

1 1.1032 22.8 2.1769 9.1 

5. Conclusions 

In this paper, an MLPG method was proposed for the study of two-
dimensional diffusion equations for mixed problems with non-local boundary 
conditions. Two schemes were proposed: the first scheme uses a time step      

of 2
1+k  and the second scheme uses a time step of .1+k  Both 

implementations were proposed to impose the Dirichlet’s and Neumann’s 
boundary conditions on square domains. The numerical results show that the 
second scheme produces a higher accuracy than imposing at only Dirichlet’s 
boundary condition for mixed problem with regular nodes. The non-local 
integral boundary condition was discretized using Simpson’s composite 
numerical integration rule and the resulting discretized equation was 
approximated using MLS approximations. Our proposed implementation has 
higher accuracy and is truly meshless. Implementing our proposed methods 
is a further research opportunity for interested researchers. 
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