

A SHORT NOTE OF F-INDISTINGUISHABILITY OPERATORS

Yeoul-Ouk Sung

Department of Applied Mathematics Kongju National University 182 Shinkwandong, Kongju-city, 314-701 Korea

Abstract

In this paper, we give equivalent conditions of an *F*-indistinguishability operator and investigate some related properties.

1. Introduction

The concept of fuzzy sets was proposed by Zadeh [7]. He generalized the idea of the characteristic function of a subset of a set X by defining a fuzzy subset of X as a map X into the unit interval [0, 1];. Several researchers have applied fuzzy sets to various branches of mathematics. The results of fuzzy relations and F-preorders were developed in [1-4, 6] among several others, Murali [1] defined the fuzzy equivalence relation on a set and proved that there exists a correspondence between fuzzy equivalence relations and certain classes of fuzzy subsets. Ounalli and Jaoua [2] defined the fuzzy difunctional relation on a set and studied some properties on such relation.

Seo et al. [4] proved that there exists a relationship between fuzzy © 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 83A05, 93C04, 90B02.

Keywords and phrases: fuzzy equivalence relations, fuzzy difunctional relations, *F*-in distinguishability operators.

Received November 10, 2012

equivalence relations and fuzzy difunctional relations. Valverde [6] proved that any *F*-indistinguishability operator on a set is generated by a family of fuzzy subsets of *X* and explored the links between *F*-indistinguishability operators and a kind of generalized metrics in the unit interval. Ovchinnikov [3] investigated numerical representations of fuzzy transitive relations. In this paper, we give equivalent conditions of an *F*-indistinguishability operator and investigate some related properties.

2. Preliminaries

In this section, we explain some basic definitions and result from [4] for reference purposes. Let X be a set, called the *universe of discourse*. Let [0, 1] be the set of all real numbers α with $0 \le \alpha \le 1$. A scalar is denoted by Greek letters such as α , β , γ , ... and so on, possibly with subscripts. The supremum and infimum of a set $\{\alpha_1, \alpha_2, ..., \alpha_m, ...\}$ of scalar are denoted by $\vee \{\alpha_1, \alpha_2, ..., \alpha_m, ...\}$ and $\wedge \{\alpha_1, \alpha_2, ..., \alpha_m, ...\}$, respectively. A fuzzy binary relation R on the universe X is a function $R: X \times X \to [0, 1]$. For $x, y \in X$, the value $R(x, y) = \alpha$ is called the *grade of membership* of (x, y) in R and means how far x and y are related under R. Without loss of generality, we define all fuzzy relations on a fixed universe X. For a family of relations $R_1, R_2, ..., R_n$, we define the union $\sqcup_i R_i$ and intersection $\sqcap_i R_i$ as follows:

$$(\sqcup_i R_i)(x, y) = \vee_i R_i(x, y),$$

$$(\Box_i R_i)(x, y) = \wedge_i R_i(x, y).$$

As usual, symbols \land and \lor denote operations min and max, respectively, although occasionally, we adhere to the notations min and max.

Definition 2.1. A fuzzy relation R is a *fuzzy difunctional* if and only if it satisfies condition $R \circ R^{-1} \circ R \subseteq R$, which is equivalent to $R \circ R^{-1} \circ R = R$. $R \circ R^{-1} \circ R \supseteq R$ holds for any fuzzy relation R.

Definition 2.2. Let X be a nonempty set and let R be a fuzzy relation on X. R is called a *fuzzy equivalence relation* on X if and only if

- (1) *R* is reflexive, i.e. $R(x, x) = 1, \forall x \in X$.
- (2) R is symmetric, i.e. $R^{-1} = R$.
- (3) R is transitive, i.e. $R \circ R \subseteq R$.

Definition 2.3. A *t*-norm F is a function $F:[0,1]^2 \to [0,1]$ satisfying the following conditions:

- (i) F(x, 1) = x,
- (ii) F(x, y) = F(y, x),
- (iii) $F(x, y) \le F(u, v)$ for all $x \le u, y \le v$,
- (iv) F(x, F(y, z)) = F(F(x, y), z) for all $x, y, z \in [0, 1]$.

Definition 2.4. A *t*-norm *F* is *idempotent* defined by

$$F(x, x) = x$$
 for all $x \in X$.

Definition 2.5. A fuzzy relation *R* on *X* is said to be *F-transitive* if

$$F(R(x, y), R(y, z)) \leq R(x, z)$$

for all x, y, z in X.

Definition 2.6. A map R from $X \times X$ into [0, 1] is termed an F-indistinguishability operator if the following properties hold for any x, y and z in X:

- (1) R(x, x) = 1 (reflexivity),
- (2) R(x, y) = R(y, x) (symmetry),
- (3) $F(R(x, y), R(y, z)) \le R(x, z)$ (F-transitivity).

3. Main Results

In what follows, X stands for a non-empty set and F for a continuous t-norm.

Theorem 3.1. *Let T be a t-norm on I. Then the following are equivalent:*

- (1) $T(x, y) = x \wedge y$ for all $x, y \in I$.
- (2) *T is idempotent*.

Proof. Assume that $T(x, y) = x \land y$ for all x, y in I, and let $x \in I$ be any given. Then $T(x, x) = x \land x = x$, which yields T is idempotent. Conversely, assume that T is idempotent, then we show that $T(x, y) = x \land y$ for all $x, y \in I$. First, since $T(x, y) \le x \land y$, it suffices to show that $x \land y \le T(x, y)$. Now, without loss of generality, we may assume that $x \le y$. Then $x \le y = x$ and $x = T(x, x) \land T(x, y)$. This leads to $x \land y \le T(x, y)$.

Theorem 3.2. Let a t-norm F be idempotent. Then P is an F-indistinguishability operator if and only if P is a fuzzy equivalence relation.

Proof. Assume P is an F-indistinguishability operator. To show that P is an equivalence relation. It suffices to show that P is transitive. We show that P is transitive:

$$(P \circ P)(x, y) = \bigvee_{z \in X} (P(x, z) \land P(z, y))$$
$$= \bigvee_{z \in X} F(P(x, z), P(z, y))$$
$$\leq \bigvee_{z \in X} (P(x, y))$$
$$= P(x, y) \text{ for all } x, y, z \in X.$$

Conversely, assume that *P* is fuzzy equivalence relation. To show that *P* is an *F*-indistinguishability operator it suffices to show that *P* is transitive under *F*. Indeed,

$$F(P(x, y), P(y, z)) = P(x, y) \land P(y, z)$$

$$\leq \lor_{t \in X} (P(x, t) \land P(t, z))$$

$$= (P \circ P)(x, z)$$

$$\leq P(x, z) \text{ for all } x, y, z \in X$$

which yields *P* is transitive under *F*.

Theorem 3.3. Let a t-norm F be idempotent, and let a fuzzy relation R on X be symmetric and transitive under F. If S(x, y) = R(x, y) for all $x \neq y$ in X and S(x, x) = 1 for all x in X, then S is fuzzy diffunctional.

Proof. It suffices to show that S is symmetric and transitive under *. Now, for $x \neq y$ in X, we have S(x, y) = R(x, y) = R(y, x) = S(y, x). This means S is symmetric. To show that S is transitive under S, we have S(x, z) = 1, then the inequality is trivial, hence, without loss of generality, we may assume that S is S(x, z) = S(x, z), which S(x, y) = S(x, z) is S(x, z) = S(x, z), for S(x, y) = S(x, z), which yields S is transitive under S(x, y) = S(x, z) = S(x, z) which yields S is transitive under S(x, y) = S(x, z) = S(x, z) which yields S(x, y) = S(x, z) is transitive under S(x, y) = S(x, z) = S(x, z) which yields S(x, y) = S(x, z) is transitive under S(x, y) = S(x, z).

Theorem 3.4. If R is strict F-indistinguishability operator on X, then R/\sim is a strict F-indistinguishability operator on X/\sim .

Proof. We show that R/\sim is well-defined on X/\sim . For $x, x' \in u$ and $y, y' \in v$, we have

$$R(x, y) = F(R(x, x'), R(x, y))$$

$$= F(R(x', x), R(x, y))$$

$$\leq R(x', y)$$

$$= F(R(x', y), R(y, y'))$$

$$\leq R(x', y').$$

Similarly, we get $R(x', y') \le R(x, y)$. Hence we have R(x, y) = R(x', y'). This implies that the definition of $(R/\sim)(u, v)$ does not depend on the choice of $x \in u$, $y \in v$. Next, we show that R/\sim is strict. For any $u, v \in X/\sim$, let $(R/\sim)(u, v) = 1$ and $(R/\sim)(v, u) = 1$. This means there exist $x, y \in X$ such that $x \in u$ and $y \in v$. This leads to R(x, y) = 1 and R(y, x) = 1. Thus $x \sim y$, hence we have u = v. Therefore, R/\sim is strict. Last, we show that R/\sim is an F-indistinguishability operator on X/\sim . For reflexivity of R/\sim , now let $u \in X/\sim$ be any given, then there exist $x \in X$ such that $x \in u$. Hence we have $(R/\sim)(u, u) = R(x, x) = 1$. Hence R/\sim is reflexive. For symmetry of R/\sim , let $u, v \in X/\sim$. Then there exist $x \in u$ and $y \in v$, hence

$$(R/\sim)(u, v) = R(x, y) = R(y, x) = (R/\sim)(v, u)$$

which yields R/\sim is symmetric. To show that R/\sim is transitive under F, let $u, v, w \in X/\sim$ be any given, then there exist $x, y, z \in X$ such that $x \in u$, $y \in v$ and $z \in w$, since

$$F(R/\sim(u, v), R/\sim(v, w)) = F(R(x, y), R(y, z))$$

$$\leq R(x, z)$$

$$= R/\sim(u, w)$$

which yields R/\sim is transitive under F. This completes the proof.

Theorem 3.5 (cf. Seo et al. [4]). Let a fuzzy relation R be reflexive. Then R is a fuzzy equivalence relation if and only if R is fuzzy diffunctional.

Theorem 3.6. Let a t-norm F be idempotent, and let a fuzzy relation P be reflexive. Then P is fuzzy diffunctional if and only if P is an F-indistinguishability operator on X.

Proof. It follows from Theorem 3.2 and Theorem 3.5.

Theorem 3.7. Let a t-norm F be idempotent. Then R is a fuzzy equivalence relation if and only if R is an F-indistinguishability operator.

Proof. Assume that R is a fuzzy equivalence relation. To show that R is an F-indistinguishability operator, it suffices to show R is F-transitive

$$F(R(x, z), R(z, y)) = R(x, z) \land R(z, y)$$

$$\leq \lor_{z \in X} (R(x, z), R(z, y))$$

$$= (R \circ R)(x, y)$$

$$\leq R(x, y) \text{ for all } x, y, z \in X$$

which yields *R* is *F*-transitive.

Conversely, suppose that R is an F-indistinguishability operator. To show that R is a fuzzy equivalence, it suffices to show R is transitive, we show that R is transitive

$$(R \circ R)(x, y) = \bigvee_{z \in X} (R(x, z) \land R(z, y))$$
$$= \bigvee_{z \in X} F(R(x, z), R(z, y))$$
$$\leq \bigvee_{z \in X} R(x, y)$$
$$= R(x, y) \text{ for all } x, y \in X$$

which yields, $R \circ R \subseteq R$. This completes the proof.

References

- [1] V. Murali, Fuzzy equivalence relations, Fuzzy Sets and Systems 30 (1989), 155-163.
- [2] H. Ounalli and A. Jaoua, On fuzzy difunctional relations, Inform. Sci. 95 (1996), 219-232.
- [3] S. Ovchinnikov, Numerical representation of transitive fuzzy relations, Fuzzy Sets and Systems 126 (2002), 225-232.

- [4] C. H. Seo, K. H. Han, Y. O. Sung and H. C. Eun, On the relationships between fuzzy equivalence relations and fuzzy diffunctional relation, and their properties, Fuzzy Sets and Systems 109 (2000), 459-462.
- [5] Y.-O. Sung and S.-Y. Oh, Equivalent conditions of an *F*-indistinguishability operator, Far East J. Math. Sci. (FJMS) 68(2) (2012), 275-285.
- [6] L. Valverde, On the structure of *F*-indistinguishability operators, Fuzzy Sets and Systems 17 (1985), 313-328.
- [7] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.