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Abstract 

Sensibility and uncertainty analyses are essential for the study of 
mathematically modeled systems because they provide elements that 
help us match model and experimental results. In the case of complex 
systems, where a huge number of variables are involved, performing 
these analyses is extremely expensive. High Dimensional Model 
Representations (HDMR) are tools that help to improve mathematical 
modeling of physical systems in which many variables are involved. 
HDMR tools allow, in a fairly simple way, to discover the input 
variables that have great influence on the output and those with 
minimal influence. Making an analysis on the impact that each of the 
input variables has over the output by means of HDMR requires a 
much lower number of samples compared with traditional methods 
such as the Monte Carlo method. In addition, a correct result 
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interpretation of complex systems becomes more complicated with 
traditional methods other than the HDMR method. This work is a 
compilation of what has been published related with HDMR 
sensibility and uncertainty analyses and it aims to be an incentive for 
applying these techniques in a wide range of applications. 

1. Introduction 

Sensibility analysis allows us to identify the effect of each of the input 
variables over the output of a system. The effect of each one of these 
variables is taken into account when they act in an independent way and the 
effects of these when they act in a combined way. Uncertainty analysis 
indicates the amount of uncertainty produced by each of the input variables 
over the total uncertainty of the output. The information provided in this kind 
of analysis indicates in which variable it is necessary to keep working in 
order to improve the quality of the model predictions [32]. In other words, 
uncertainty analysis gives one an idea of the model reliability and allows one 
to identify the input variables that could generate uncertainty over the output 
when their values are not precisely known. 

Helton et al. [13] summarized what is necessary to do in order to carry 
out the sensibility analysis and the uncertainty analysis, in five steps:           
(i) Define the distributions nDDD ...,,, 21  that characterize the uncertainty 

of each one of the elements nxxx ...,,, 21  of the input x, this is the most 

important step for sensibility and uncertainty analyses based on sampling. 
These distributions are commonly defined based on an expertly revised 
process which could imply the most expensive part of the analysis.              

(ii) Generation of a number s of samples ( ) ( ) ( )sxxx ...,,, 21  of x according to 

the chosen distributions ....,,, 21 nDDD  There are many sampling strategies, 

random sampling, importance sampling, Latin hypercube [34] and so forth. 
This last kind of sampling is usually used in systems that demand a 
significant computational load because its stratification properties allow one 
to obtain enough information with only a small size sample. When numerous 
samples are required, the importance sampling can be used, even though   
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this kind of sampling complicates sensibility analysis because the sample 
elements do not have the same weight [13]. (iii) Obtain the system results of 
each sample ( )[ ],, ii xyx  ....,,2,1 Si =  This is frequently computationally 

intensive. (iv) Obtain the uncertainty analysis results, which are usually 
means, standard deviations, density functions, accumulative distribution 
functions, and box plots. The means and standard deviations alone have the 
disadvantage of losing significant amount of information. (v) Do sensibility 
analysis. The results will give the input x effects in the output y being 

( ).xy f=  

The work of [13] summarizes different sensibility analysis methods       
like: scatter plots, correlation, regression analysis, partial correlation, rank 
transformations, and non-parametric regression, among others, it even 
mentions the variance decomposition method, which is the basis of the 
HDMR sensibility analysis. They mentioned that there are a number of 
overwhelming calculations needed to obtain the component functions in an 
HDMR expansion. This inconvenience is reduced by using the orthogonal 
polynomials, explained in Section 3. As mentioned before, the sensibility 
analysis with HDMR has the advantage of requiring a reduced number of 
samples and easily interprets results even when the system contains high 
number of variables. 

Carrying out sensibility and uncertainty analyses in models where great 
quantities of variables are involved (more than 20) is very expensive, 
computationally speaking. The Monte Carlo method for sensibility analysis 
[12] is very inconvenient in these cases, because it requires many samples 
and therefore a great quantity of model runs. Besides, when many variables 
are involved, there are many difficulties when results are being interpreted 
and presented [37]. The use of the HDMR expansions for sensibility and 
uncertainty analyses is relatively new and its development began since the 
first HDMR publications [1-3, 15-18, 28]. Using HDMR expansions to do 
sensibility analysis has proved to be a precise method when working        
with computationally intensive models, according to recent investigations           
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[4, 35-37]. This analysis provides valid results even for highly non-linear 
functions where the input variables interaction is important [35]. 

Section 2 is an overview of the HDMR expansions and the two variants: 
Cut-HDMR and RS-HDMR, it also describes the way in which its 
component functions are obtained; Section 3 presents the simplification of 
RS-HDMR expansions by using orthonormal polynomials and, finally, in 
Section 4, uncertainty and sensibility analyses with HDMR are explained. It 
is intended that with the provided elements in this work, the reader will 
understand how to carry out a sensibility analysis with HDMR, by using 
orthonormal polynomials and be able to develop ones’ software system. 

2. High Dimensional Model Representations 

There are systems in different areas of science that have a large number 
of input variables, each of these variables affects the output behavior 
differently. One of the most frequent targets is to identify relationships 
between the inputs and the outputs of a physical system. A finite sampling of 
input variables is used to find a function which can predict the output values 
having been given a starting point and input parameters. Construction of a 
full space to analyze the model input-output relationships without any a 
priori physical assumption on the nature of these relationships would be   
NP-complete with computational complexity scaling exponentially [2]. The 
computational load grows exponentially as the number of system variables 
increases, so working with n-variable systems, where 10n  has a  

problem called the course of dimensionality. High Dimensional Model 
Representations (HDMR) is a mathematical technique introduced to improve 
the efficiency of deducing high dimensional input-output systems behavior 
[16]. It consists in expanding a multidimensional function in a set of 
hierarchically correlated functions that separate the influence of variables 
acting independently, two by two, and so on [2, 15, 16, 20]. This expansion 
is a generalization of Sobol’s proposal [29], see equation (1): 
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( ) ( ) ( )∑ ∑
= ≤<≤

++=
n

i nji
jiijii xxfxfff

1 1
0 ,x  

( ) ( ),...,,,,,
1

2112∑
≤<<≤

+++
nkji

nnkjiijk xxxfxxxf  (1) 

where 0f  represents the average value of ( )xf  over the entire domain Ω of 

x, and .nR⊂Ω  The domain Ω of x is bounded according to the bounds of 
the input variables ....,,, 21 nxxx  

The first order cooperativity function ( ) ( )ii xfl 1=  represents the input 

variables ix  effect acting independently from the others. In general, the ix  

variables which act independently over the output ( )xf  perform in a non-

linear way. When there is no interaction between the input variables of a 
system, only 0f  and the component functions ( )ii xf  are necessary in order 

to represent it. 

The second order cooperativity functions ( ) ( )jiij xxfl ,2=  describe the 

effect over the output function ( )xf  when the input variables ix  and jx  act 

together. The terms of higher cooperativity order reflect the effects of an 
increasing number of variables all acting together to influence the output 
function ( ).xf  The last term represents all the input variables acting together 

to influence the output ( ).xf  

There is a fundamental HDMR ansatz that says that “for physical 
systems, the order of cooperativity amongst the input variables upon the 
output does not significantly increase as the number of inputs goes up” [2]. 
In practice, there does not seem to exist a high order of cooperativity 
between input variables, so the significant terms of HDMR expansions are 
expected to satisfy the relationship: n1  [2]. 

The experience has shown that the second order of cooperativity       
HDMR expression, as expressed in equation (2), frequently provides a 
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satisfactory description of ( )xf  for many physical system models where 

multidimensional functions are involved [2]: 

 ( ) ( ) ( ).,
1 1

0 ∑ ∑
= ≤<≤

++≈
n

i nji
jiijii xxfxfff x  (2) 

This is a conjecture verified with many physical phenomena to which this 
technique has been applied, i.e., the theoretical results have been compared 
with HDMR expansions of cooperativity 2=l  [3, 7, 8, 15, 20, 21, 27, 28]. 

“An important point is that HDMR is designed for treating suitable 
physical problems and it is not claimed to be practical for arbitrary n-
dimensional functions” [2]. 

There are two fundamental applications of the HDMR tools: 

The representation of a system using a model called FEOM (Fully 
Equivalent Operational Model) which is an expansion of functions of low 
cooperativity order, usually up to second order, as in equation (2). When a 
mathematical model of the system cannot be constructed, FEOM plays the 
role of a mathematical model. Where the execution of the mathematical 
model is too time consuming; FEOM saves a significant amount of time in 
obtaining the outputs [18]. 

The identification of variables which have more influence on the output 
of a model is achieved through sensibility and uncertainty analyses. 

There is a variety of areas where HDMR techniques are useful, they have 
specific applications in chemical kinetics [10, 28, 30-32], in radiation 
transport [27] in discovery and properties of materials [21, 23, 26] and in 
statistical analysis [4, 5, 14, 18, 32, 35-37]. It has also been applied to 
biology [5, 6]. 

There are two types of HDMR expansions commonly used: 

Cut-HDMR - Depends on the value of ( )xf  on a specific reference 

point .x̂  It is used when an ordered sample of the output ( )xf  at selected 

points ( )ix  can be done. 
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RS-HDMR - Depends on the average value of ( )xf  over the whole 

domain Ω. It is used when the sampling is randomly done. The component 
functions are determined by obtaining averages in a group of sample points 
selected at random over the Ω domain. 

The component functions ( ) ( ) ...,,,,0 jiijii xxfxff  are tabular. To obtain 

an output for a specific input, an interpolation must be done. The HDMR 
expansion choice depends on the type and amount of input data available. 
Cut-HDMR is used for ordered points of x, and RS-HDMR for randomly 
generated. When the number of input variables is large, it is more practical to 
work with the RS-HDMR expansion, although an ordered sampling can be 
done. 

2.1. Obtaining the component functions through Cut-HDMR 

A Cut-HDMR expansion can be built when it is possible to use an 
ordered sampling of the output ( )xf  in selected points of x that are 

distributed in a regular grid, for example, in the case of laboratory data with 
controlled values of x. 

For the Cut-HDMR, it is necessary to first establish a reference point 
( )nxxx ...,,, 21=x  selected inside the domain Ω. The Cut-HDMR component 

functions ( ) ( ) ...,,, jiijii xxfxf  are defined along some cut lines, plans,     

sub-volumes, and so forth, across the reference point x  in the Ω domain, 
hence the name is Cut-HDMR [15]. The optimal component functions in 
Cut-HDMR have the structure given by [2]: 

( ),0 xff =  (3) 

( ) ( ) ,, 0fxfxf i
iii −= x  (4) 

 ( ) ( ) ( ) ( ) ,,,, 0fxfxfxxfxxf jjii
ij

jijiij −−−= x  (5) 

… 
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where: 

( ) ( ),...,,,,...,,, 111 niii
i

i xxxxxx +−=x  

( ) ( )....,,,,...,,,,...,,,, 11111 njjjiii
ij

ji xxxxxxxxxx +−+−=x  

The last component function, ( ),...,,, 21...12 nn xxxf  is determined by the 

difference ( )xf  minus the rest of the component functions in equation (1). 

To find the approximated value of ( )xf  at any point ,Ω∈x  it is 

necessary to interpolate values with component function data tables. 

Since ( ) ( ) ...,,, jiijii xxfxf  are unknown, one way to approximate these 

component functions is building a table containing some samples of their 
actual values and then use interpolation to obtain other values. Then the 
value of an ( )ii xf  for a given ix  is obtained by an interpolation in one 

dimension, in a similar way, the ( )jiij xxf ,  for a given pair ( )ji xx ,  is an 

interpolation in two dimensions and so on. 

To construct the component function tables, the original function ( )xf  

must be evaluated in repeated occasions fixing some variables and varying 
others. For example, each component function ( )ii xf  represents the 

contribution to the total output of one variable. If the number of input 
variables is n, then the table for each ( )ii xf  is obtained by fixing the 1−n  

values of the other variables to the value of the reference point x  and 
varying only ix  with s different values, as it is shown in Table 1. The 

contribution of ix  to the output is then ( ) ( ) ., 0fxfxf i
iii −= x  
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Table 1. Tabular function ( )ii xf  

( )k
ix  ( ( ) )k

ii xf  

( )1
ix  ( ( ) ) 0

1 , fxf i
i −x  

( )2
ix  ( ( ) ) 0

2 , fxf i
i −x

...  

( )s
ix  ( ( ) ) 0, fxf is

i −x

For the 1=l  component functions, there are n different tables. Tables 
for ( )jiij xxf ,  are of 21 ss ×  size, where 1s  is the number of values that 

variable ix  can have, and 2s  is the number of values that variable jx  can 

have. The values of ( )jiij xxf ,  are obtained by evaluating the function in 

( )ij
ji xxf x,,  and from the tabular functions ji ff ,  previously obtained. 

For cooperativity order ,2=l  one can build ( )!2!2
!

2 −
=








n
nn

 different 

tables, one for each pair of variables. If each input variable takes the same 
amount of different values s, in other words, if ,21 sss ==  then the 

required number of evaluations of ( )xf  to construct the tables of all the 

component functions ( ) ( ) …,,, jiijii xxfxf  is 

( ) ( ) ( ) ,!3
21

2
11 32 nssnnnsnnns ++−−+−++  

where n is the number of input variables [9]. It may be noted that the number 
of function evaluations ( )xf  is of polynomial complexity with respect to the 

number of samples n, but it is exponential with regard to the number of 
variables n, i.e., the computational cost grows exponentially with the number 
of function variables. The computational cost is the number of experiments 
required to construct the approximate function. However, based on the 
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fundamental conjecture of the HDMR expansions, it is sufficient to 
approximate the function ( )xf  using an order of cooperativity ,2=l  or in 

rare cases of order ,3=l  thus significantly reducing the number of 

evaluations ( ).xf  This reduces the elaboration of tabular functions from 

exponential complexity to polynomial complexity. In this case, the 
computational cost grows quadratically. The number of samples required to 

build the tables ( )jiij xxf ,  is ( ),22nsO  where n is the number of function 

variables and s is the number of samples of each variable [9]. 

According to the HDMR fundamental ansatz, there are only tables for 
variables acting independently, two by two or at most three acting on the 
output, thus savings on sampling for large values of n are significant 

compared with traditional sampling .ns  Finally, the problem of evaluating 
the function ( )xf  at any arbitrary point x, comes down to constructing 

tables for component functions with cooperativity order ,1=l  2=l  (or 
3=l  in rare cases) and interpolating in 1, 2 (or 3) dimensions. 

2.2. Obtaining the component functions through RS-HDMR 

The RS-HDMR component functions are mutually orthogonal, i.e., the 
inner product between any two of them is zero, and they are determined      
by obtaining the averages on a set of points randomly sampled over the 
domain Ω. 

It is necessary to normalize the variables ix  so that 10 ≤≤ ix  for 

....,,2,1 ni =  The output function ( )xf  is defined in the unit hypercube 

( ){ }....,,2,1,10...,,, 21 nixxxxK in
n =≤≤|=  

The RS-HDMR component functions are defined as follows: 

( ) ,0 ∫= nk
dff xx  (6) 

( ) ( )∫ − −= 1 0,nk
ii

iii fdxfxf xx  with (a), (7) 
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( ) ( ) ( ) ( )∫ − −−−= 2 0,,, nk jjii
ijij

jijiij fxfxfdxxfxxf xx  with (b), (8) 

... 

where: 

(a) ,∏
≠

=
ik

k
i dxdx  

(b) .
,

∏
≠

=
jik

k
ij dxdx  

In a similar way to the Cut-HDMR, the last component function, 
( ),...,,, 21...12 nn xxxf  is determined by the difference ( )xf  minus the rest 

of the component functions. 

It should be noticed that in the RS-HDMR, the domain Ω is a unit 
hypercube, and 0f  is actually the average value of ( )xf  over the entire 

domain, while in the Cut-HDMR, 0f  is the value of ( )xf  in only one 

reference point .x  

The name RS-HDMR comes from random sampling. The evaluation of 
multidimensional integrals in the RS-HDMR expansion can be done by the 
Monte Carlo method for integration by random sampling [19, 25]. 

Random points in an n-dimensional space Nxxx ...,,, 21  are necessary 

to calculate the integral of a multidimensional function, where the N samples 
are uniformly distributed. The basic theorem of the Monte Carlo integration 
over an n-dimensional space is: 

 ( ) ( ) ( ) ,1...,,,
1

21∫ ∫ ∑ 










⋅≈⋅=

=
V V

N

s
sn fNVfdvdvxxxf xx  (9) 

where V is the n-dimensional space volume. 

To build the data tables for the component functions of RS-HDMR, it is 
necessary to evaluate the integrals: 
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( ) ( ) ( )∫ ∫ ∫− −n n nk k k
iji dxfdxfdxf 1 2 .,,, …xxx  

For example, N samples of a vector of dimension n, ( ) =sx  

( ( ) ( ) ( ) ),...,,, 21
s

n
ss xxx  ( )Ns ...,,2,1=  in the n-dimension hypercube space 

nK  are randomly and uniformly generated. 

0f  is the average value of ( )xf  for all samples ( ),sx  keeping in mind 

that one is working within a unit hypercube ( ),1=V  we can express (3) 

using (9): 

 ( ) ( ( ) )∫ ∑
=

≈= nk

N

s

sfNdxff
1

0 .1 xx  (10) 

As usual, the integrals of the Monte Carlo method converge very fast;     
a relatively small value of N gives a very good result. Very often, the 
approximation of the integral by the Monte Carlo method does not 
significantly depend on the dimension n of the vector x. This is very useful 
when working with multidimensional systems, i.e., models with a large 
number of input variables [17]. However, the direct determination of all 
component functions of RS-HDMR expansion involves integrating each 

( ) ( ) …,, iji dxfdxf xx  with N samples for each integral, this means that       

it requires a lot of random samples. For example, for functions with 

cooperativity order ,1=l  it is necessary to make N samples of ( )iixf x,  in 

the points ( )( ) ( ( ) ( ) ( ) ( ) ( ) )s
n

s
ii

s
i

sssi
i xxxxxxx ...,,,,...,,,, 1121 +−=x  for different grid 

fixed values of ix  [29], in this way, we can express (4) using (9) as follows: 

( ) ( ) (( )( ) ) ( ( ) ).1,1
1

1 1
0∫ ∑ ∑−

= =
−≈−= nk

N

s

N

s

ssi
i

i
ii fNxfNfdfxf xxxx  (11) 

When n is large, it is not worth spending the time to obtain the RS-
HDMR component functions because the sampling effort is very high. To 



A Survey on Sensibility and Uncertainty Analyses … 429 

construct a tabular function, we need to define 1N  fixed values, for each ix  

it is required a set of samples large enough to obtain a good accuracy. Let 

2N  be the size of this set. Suppose there are 1N  fixed values for each 

variable and that there are n variables. The number of samples that are 
needed is then .21 nxNxN ⋅⋅⋅⋅  The number of random samples required 

grows exponentially with the RS-HDMR component functions cooperativity 
order: l. One way to reduce the large sampling effort is to approximate the 
component functions with orthonormal polynomials. The use of orthonormal 

polynomials can provide savings of around 310  in the sampling effort to 
represent a multivariable function compared with using a direct sampling 
technique [17]. 

3. Representation of RS-HDMR through Orthonormal Polynomials 

When direct determination of the RS-HDMR component functions is 
done by sampling the output function ( )xf  in a regular net to evaluate          

the integrals with the Monte Carlo approach, the sampling effort would    
become prohibitively expensive. The approximation of the component 
functions to an analytic function greatly reduces the sampling effort. Li et al. 
[17] proposed the approximation of component functions to an analytic 
function represented by orthonormal polynomials. A component function 
( )ixf  can be approximated to a sum of k different functions of the same 

variable ix  called basis functions, each multiplied by a constant coefficient 

,i
rα  as follows: 

 ( ) ( ),
1
∑
=

ϕα≈
k

r
ir

i
rii xxf  (12) 

and in the case of two variable functions: 

 ( ) ( ) ( )∑∑
=

′

=
ϕϕβ≈

l

p

l

q
jqip

ij
pqjiij xxxxf

1 1
,,  (13) 
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where k, l and l′  represent the polynomial expansion order. With (12) and 
(13), equation (1) can be expressed as [17]: 

( ) ( ) ( )∑∑ ∑ ∑∑
= = ≤<≤ =

′

=
+ϕβ+ϕα+≈

n

i

k

r nji

l

p

l

q
jipq

ij
pqir

i
r xxxff

1 1 1 1 1
0 .,x  (14) 

The constant coefficients i
rα  and ij

pqβ  are determined by a minimization 

process and the Monte Carlo integration [15]. Each set of coefficients 

{ }...,, ij
pq

i
r βα∈ε  for the basis functions with the same variables can be 

obtained by solving the linear equation: 

 ,bAy =  (15) 

where A is a non-singular matrix of constants, y is the vector of coefficients 
for the basis functions associated with the same variables and b is a vector 
whose elements are integrals on the product of ( )xf  with the basis functions. 

The matrix A and vector b terms are obtained with the technique 

described by [17]. They determined the constant coefficients i
rα  by: 

 ( ) ( ) ( ( ) ) ( ( ) ).1

1
∫ ∑

=
ϕ≈ϕ=α nk

N

s

s
ir

s
ir

i
r xfNdxxf xx  (16) 

When we evaluate the polynomial ( )xrϕ  in the value ix  of the sample 

“s”, we obtain ( ( ) )s
ir xϕ  of equation (16). With a sample of size N, 

cooperativity order 1=l  component functions: ( )ii xf  were obtained. 

Using orthonormal polynomials, the required number of uniformly 
distributed samples is N instead of nxNxN ⋅⋅⋅⋅ 21  required for RS-HDMR 

as explained at the end of Subsection 2.2. Although N still needs to be large 
enough to obtain good accuracy, [17] showed that this number is not very 
high. The main advantage of this method is the independency of n and N, 
which are normally non-low numbers. 
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The accuracy of an approximation using orthonormal polynomials 
depends on the polynomial order used. In many cases, the polynomials of 
first, second and third order: ( ),1 xϕ  ( ),2 xϕ  ( )x3ϕ  are enough to obtain 

adequate accuracy [17, 18, 30, 35, 36]. In equation (16), rϕ  are the 

components of the orthonormal basis obtained. The basis shown in    
equations (17), (18) and (19) was obtained following the Gram-Schmidt 
orthonormalization process [9] up to order 3: 

( ) ( ),1231 −=ϕ xx  (17) 

( ) ,6
156 2

2 




 +−=ϕ xxx  (18) 

 ( ) .20
1

5
3

2
3720 23

3 




 ++−=ϕ xxxx  (19) 

The accuracy of the resulting HDMR functions depends on the size       
of the sample N, since the Monte Carlo integration error decreases 

approximately in N1  [19]. The number of samples N that provides the 

desired accuracy for a specific application must be found experimentally 
(variation of N until obtained the desired accuracy). 

Li et al. [17] used equation (20) to obtain the cooperativity order 2=l  
component functions ( )jiij xxf ,  with the same orthonormal basis ( ),1 xϕ  

( ) ( )xx 32 , ϕϕ  in equations (17), (18) and (19): 

( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ( ) )∫ ∑
=

ϕϕ≈ϕϕ=β nk

N

s

s
jq

s
ip

s
jqip

ij
pq xxfNdxxxf

1
.1 xx  (20) 

Using a third order polynomial expansion, the number of coefficients 
ij
pqβ  which are necessary to calculate for an n input variable system is 

( ) 2132 −nn  and the number of calculated i
rα  is 3n. 

The system’s model is a tabular function, then to find the value of 
function ( )xf  at any given point ( ),...,,, 21 nxxx  it is necessary to 
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interpolate. However, with the component function approximation using 
orthonormal polynomials, the fully equivalent operational model is given by 
equation (14). 

So, to get the value of the function ( )xf  at any point, it is not necessary 

to interpolate, but only to evaluate equation (14) at a given point 
( )....,,, 21 nxxx  

4. Uncertainty and Sensibility Analyses by HDMR Expansions 

4.1. Variance decomposition in the HDMR expansions and its relation 
with uncertainty analysis 

In the HDMR approach, 2
iσ  is the contribution to the total variance 2

fσ  

of the acting single variables ix  and 2
ijσ  is the contribution to 2

fσ  of the 

correlated variables ., ji xx  Also, 2
iσ  is independent from 2

ijσ  [18]. Using 

the definition of variance and expressing ( )xf  as the expansion of equation 

(1): 

[ ( ) ] ( )[ ]∫ ∫ −=−=σ n nk kf dxffdxff 2
0

22 xx  

( ) ( )∫ ∑ ∑ 












++=

= ≤<≤
nk

n

i nji
jiijii dxxxfxf ,,

2

1 1
 

where f  is the mean of ( )xf  over the whole domain Ω. 

The HDMR component functions are mutually orthogonal, in other 
words, any two component functions satisfy: 

( ) ( ) ,0...,,,...,,, 21212121 == sskkll xxjjjjjjiiiiii xxxfxxxf  

{ } { }....,,,...,,, 2121 kl jjjiiis ∪∈  
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So, if any of the liii xxx ...,,, 21  or the ljjj xxx ...,,, 21  is equal to the 

corresponding x of the reference vector ,x  then the product is zero [2]. 

Because of the HDMR component functions orthogonality, the products 
among them are zero, and then we have only the following terms (keeping in 

mind that nK  is a unit hypercube): 
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The total variance 2
fσ  of ( )xf  caused by all the input variables can be 

decomposed into the sum of contributions of each of the input variables 
because component functions are independent and each one provides unique 
information about how it affects the relationship between the input variables 
to the output properties: 
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The property (21) given by [18] is valid over the entire domain and is 
very useful for global sensibility and uncertainty analyses, since component 
functions variance can be interpreted directly as the importance of the input 
variables involved. Balakrishnan et al. [4] conducted a study which showed 
that uncertainty analysis results obtained with the Monte Carlo method were 
practically the same as the results obtained with HDMR uncertainty analysis, 
however, while with the Monte Carlo method 1000 samples were used, for 
the HDMR method, only 45 FEOM results were used. Li et al. [18] 
demonstrated that with HDMR, a few hundred random samples are enough to 
provide reliable uncertainty assessments over the input region. 
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Using HDMR has two advantages: first: it requires a much smaller 

number of samples ( ),sx  and second, once we have the ( ( ) )sf x  one can 

build FEOM and get results faster which are very similar to the results 
obtained from the complete model [11, 24, 27, 28]. 

Using equation (21), one can determine which model variables are the 
most important and how they interact with each other. Analyzing the total 

variance 2
fσ  components magnitudes: ...,,, 22

iji σσ  one can find how     

much each of the input variables uncertainties influences the total output 
uncertainty, since each variable uncertainty is directly proportional to its 
variance. 

The next section shows the usefulness of the property in equation (21) 
for the sensibility analysis of multidimensional functions. 

4.2. Global sensibility analysis with HDMR 

Sensibility analysis provides information of the effect of each variable in 
the model over its output, both when they act independently and when two or 
more act together. In other words, this analysis can identify which set of 
input variables affects the model outputs most. 

The identification of key variables through a sensibility analysis, in a 
system modeled by a multidimensional function, allows us to eliminate the 
variables that are not important; considering them as system parameters. 
When those variables, whose variance is minimal, are considered as 
parameters, the number of variables involved in the model is reduced   
without reducing its quality [18]. This is very useful, since it decreases the 
computational load and sampling effort, ix  can be fixed and thus reducing 

the dimensionality of the model. 

Another purpose of doing sensibility analysis is the validation of the 
model, i.e., to determine if its predictions are reasonable and if they 
correspond to the observed data. This indicates which variables are necessary 
to continue working to improve quality of the model predictions. 
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When we have small models, in most cases, it is possible to determine 
the influence of each of the variables in the results with an analysis of        
the model equations. However, when many variables are involved, these 
relationships are not so obvious. In these cases, performing a sensibility 
analysis is very useful. A global sensibility analysis explores the interactions 
between variables in the entire space of input variables, while the local 
sensibility analysis can only be applied when the uncertainties of the input 
space are small, as in the case where the input parameters are well known or 
when the model is not highly non-linear. When the uncertainties of the input 
space are large, the sensibilities obtained with local analysis are often not 
representative of all input space regions [35]. 

The global sensibility analysis methods usually treat the model as a black 
box; wide areas are explored within the space of input variables. But          
this approach has the disadvantage of requiring a large number of model 
runs, particularly, when the effects of these variables acting together                   
are investigated. HDMR tools can efficiently perform global sensibility 
analysis for multidimensional models overcoming the complexity and the 
computational cost. 

If we get …,, 22
iji σσ  with HDMR approach, then it is also possible to 

determine the kind of cooperativity that exists between input variables. If the 

second order variances: 2
ijσ  are negligible, the cooperativity order l of 

system is 1, on the contrary, if there are terms 2
ijσ  of considerable size, then 

the cooperativity order l is 2. In addition, one can set a threshold to eliminate 
component function whose contribution to output is negligible [36] and 
therefore is not important to include it in the HDMR expansion. 

Li et al. [18] found that the effect of variables acting independently is 
much higher than the variables’ effect with cooperativity order 2=l  and 
this has been confirmed in a considerable amount of research where HDMR 
has been applied: [4, 18, 30, 35, 36], among others. It has been observed that 
the contribution to the total variance of the partial variances with 1=l  is 
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much higher than that of the partial variances with 2=l  contributions, this 

is: ∑ ∑σσ 22
iji  and so on, i.e., ∑ ∑ ∑σσσ .222

ijkiji  

Therefore, based on the fundamental conjecture of the HDMR 

expansions [2], we will analyze only the 2
iσ  and ,2

ijσ  in other words, we will 

assume a cooperativity order 2=l  to find the key model variables. 

The Monte Carlo method is a good way to evaluate the integrals 

( )∫ iii dxxf 2  and ( )∫ ∫ ,,2
jijiij dxdxxxf  which are used to obtain each 

variance 2
iσ  and 2

ijσ  [18]. If N samples are randomly generated from an 

input vector of dimension n, then using the Monte Carlo method for 
calculating the 0f  component function (equation (10)), the total variance can 

be expressed as in equation (22): 
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When ,∞→N  accurate values of 0f  and fσ  are obtained. However, 

frequently 0f  and fσ  converge quite rapidly and a modest value of N can 

give very good results [18]. The effort to build the component function tables 
grows exponentially with the number of variables, so it is better to use 
orthonormal polynomials when calculating them. 

An important finding of [18] is the fact that all input variables’ variances 
obtained from different sized samples are basically the same. This provides 
the possibility of reducing the sampling effort without impairing the quality 
of results. 

Sensibility analysis with HDMR has also proven to be useful even when 
the input variables cannot be determined very accurately due to nature of the 
studied system, i.e., when there are significant uncertainties [5]. 

4.3. Sensibility analysis by orthonormal polynomials 

Determining the constant coefficients i
kα  and ij

pqβ  according to 
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equations (16) and (20) of Section 3, 2
iσ  and 2

ijσ  can be obtained using the 

orthonormal property of the basis formed by ( ),ik xϕ  with 3,2,1=k  as 

follows [18]: 
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similarly: 
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Only one reasonably sized set of random samples of ( )xf  is necessary 

to determine 0f  and all the coefficients …,, ij
pq

i
k βα  for the expansion 

( ) ( ) ...,,,, jiijii xxfxf  therefore only one set of random samples is needed to 

determine 22 , if σσ  and 2
ijσ  [18]. 

The system output total variance 2
fσ  is obtained with equation (21). The 

total variance is approximated using ,2=l  as in [18, 35]: 
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The first order variances ∑
=
σ

n

i
i

1

2  measure the contributions of the 

variables ix  to the output function total variance, and the second order 

variances ∑
≤<≤

σ
nji

ij
1

2  measure how the output function is affected by the 

interaction between the variables ix  and .jx  

Once the total variance 2
fσ  and the partial variances ,2

iσ  2
ijσ  are 

obtained, the sensibility indexes iS  and ijS  can be obtained normalizing the 

partial variances with the total variance as follows [14, 35]: 
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By equation (25), the sum of all sensibility indexes is not exactly one; 
however, this amount is very close to unity. This small discrepancy is due to 

the Monte Carlo error in the calculation of i
rα  and ij

pqβ  (equations (16) and 

(20)) [35]: 
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The Monte Carlo error can be reduced by increasing the sample size N. 
The relevance of each input variable for the model output can be determined 
classifying the variables according to their sensibility index: from highest to 
lowest. In summary, the first order sensibility index iS  measures the effect of 
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a single input variable ix  over the output and the second order sensibility 

index ijS  measures the effect of the interaction between variables ix  and jx  

over the output. 

5. Conclusions 

Sensibility and uncertainty analyses help us identify where the efforts 
have to be focused in order to improve a model’s quality and they are very 
useful when working with models where a large number of variables are 
involved, however, performing analyses such as these in multidimensional 
systems is extremely expensive and therefore the result may not be viable 
because of two significant aspects: (i) the interpretation of results is too 
complicated and (ii) obtaining results from the numerous samples that are 
required is computationally intensive. 

When the HDMR expansions are used for sensibility and uncertainty 
analyses, the number of samples needed is much lower than the one required 
by other methods and the results’ interpretation is simple even in models 
with many variables. With the results of these analyses, the number of 
involved variables can be reduced and the process for obtaining the system 
outputs can be accelerated. 

On the other hand, once we have the HDMR component functions, an 
FEOM (fully equivalent operational model) can be built and produce faster 
results very close to those obtained with the complete model of the system. 
The reliability assessment of the mathematical-computational model of a 
physical system, which is normally done through the uncertainty and 
sensibility analyses, can be accomplished with the HDMR tools when 
working with systems in which the number of variables involved prohibit 
using other methods of analyses, the foregoing is helpful for researchers who 
work with multidimensional models in any area of engineering or physics. 
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