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Abstract

In this paper, we introduce the notion of a lattice f-derivation for a
lattice and investigate some related properties. Moreover, we study the

fixed set Fixq(L), ker d and the higher order derivation of a lattice
f-derivation for a lattice.

1. Introduction

Let R be a ring. An additive mapping D : R — R is called a derivation
of D(xy) = D(x)y + xD(y) holds for all x, y € R. Several authors [1, 2, 4]

and [6] studied derivations in rings and near rings. Szasz [7] introduced the
concept of derivation for lattices and investigated some of its properties. In
2008, Xin et al. [8] studied derivation of lattice and investigated some of its
properties. In 2011, Harmaitree and Leerawat [3] studied f-derivation of
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lattice and investigated some of its properties. In this paper, we introduced a
new concept called lattice f-derivation on a lattice and then we investigate
some related properties.

2. Preliminaries

First, we shall give some basic definitions and results used throughout
the entire paper. Details and proofs can be found in [3, 5] and [8].
Definition 2.1 [5]. An (algebraic) lattice (L, A, v) is a nonempty set

L with two binary operations “A” and “v” (read “meet” and “join”,
respectively) on L which satisfy the following conditions for all x, y, z € L:

() XAX=X XvX=X

(i) XAYy=YyAX, Xvy=yvX

(i) xA(yaz)=(xay)rz, xv(yviz)=(Xxvy)vz
(iv) x=xA(Xxvy), X=xv(XAy).

Definition 2.2 [5]. A poset (L, <) is a lattice ordered if and only if for
every pair x, y of elements of L both the sup{x, y} and the inf{x, y} exist.

Definition 2.3 [8]. Let (L, A, v) be a lattice. A binary operation “<” is
defined by x <y ifandonlyif x Ay =xand xvy =y.

Lemma 2.4 [8]. Let (L, A, v) be a lattice. Define the binary operation
“<” as Definition 2.3. Then (L, <) isaposetand forany x, y e L, x Ay is

the sup{x, y} and x v y isthe inf{x, y}.

Theorem 2.5 [5]. (i) Let (L, <) be a lattice ordered set. If we define

X Ay =inf{x, y}, x vy =sup{x, y}, then (L, A, v) is an algebraic lattice.

(i) Let (L, A, v) be an algebraic lattice. If we define x <y if and only
if xAy=x (or x<y ifandonlyif xvy=y), then (L, <) is a lattice
ordered set.
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It can be verified that Theorem 2.5 yields a one-to-one relationship
between lattice ordered sets and algebraic lattices. Therefore, we shall use the
term lattice for both concepts.

Theorem 2.6 [5]. (i) Every ordered set is lattice ordered.

(i) In a lattice ordered set (L, <) the following statements are equivalent
forall x, y € L:

(@) x <y; (b) sup{x, y} = y; and (c) inf{x, y} = x.

Definition 2.7 [5]. If a lattice L contains a least (greatest) element with
respect to <, then this uniquely determined element is called the zero element
(one element) denoted by 0 (by 1).

Lemma 2.8. Let L be a lattice. Then x Ay = x ifandonlyif xvy=y
forall x, y € L.

Proof. Let x, y e L and assume x Ay =X Then xvy=(XAy)vy

=y. Conversely, let xvy=y.S0 XAy=XA(XVvYy)=x

Lemma 2.9 [5]. Let L be a lattice. If y <z, then xAy <x Az and

xvy<xvzforall x,y,zel.

Definition 2.10 [5]. A nonempty subset S of a lattice L is called
sublattice of L if S is a lattice with respect to the restriction of A and v of L
onto S.

Definition 2.11 [5]. A lattice L is called modular if forany x, y,z e L

if x<z then xv(yanz)=(Xvy)az

Definition 2.12 [5]. A lattice L is called distributive if either of the
following conditions hold for all x,y,zinL: X A(yvz)=(XAY)Vv(XAzZ)

or Xxv(yaz)=(xvy)a(xvz).
Corollary 2.13 [5]. Every distributive lattice is a modular lattice.

Definition 2.14 [5]. Let f : L — M be a function from a lattice L to a
lattice M.
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(i) f is called a join-homomorphism if f(x v y)= f(x)v f(y) for all
X, ¥y € L.

(ii) f is called a meet-homomorphism if f(x A y)= f(x) A f(y) forall

X, ¥y € L.

(iii) f is called a lattice-homomorphism if f are both a join-
homomaorphism and a meet-homomorphism.

(iv) f is called an order-preserving if x <y implies f(x) < f(y) for all

X, ¥ € L.

Lemma 2.15 [5]. Let f : L —» M be a function from a lattice L to a

lattice M. If f is a join-homomorphism (or a meet-homomorphism or a
lattice-homomorphism), then f is an order-preserving.

Definition 2.16 [5]. An ideal is a nonempty subset | of a lattice L with
the properties:

(if x<yand yel, then xel forallx,yinL,
(i) xvyel forall x,yel.

Definition 2.17 [3]. Let L be a lattice and f : L — L be a function. Then
a function d : L — L is called an f-derivation on L if for any x, y € L,

d(xAy) = (d(x) A f(y))v (F(x) A d(y)).

Proposition 2.18 [3]. Let L be a lattice and d be an f-derivation on L,
where f : L — L is a function. Then the following conditions hold: for any

element x, y € L:
(1) dx < f(x);
(2) dx Ady <d(x A y)<dxv dy.
3. The Lattice f-derivations on Lattices

The following definition introduces a notion of a derivation for lattice:
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Definition 3.1. Let L be a lattice, d:L—>L and f:L —> L be
functions. We call d a lattice f-derivation on L if for any X, y elL,

d(x A y)=(d(Xx) A f(y) v (f(x)ad(y)) and d(x v y) =d(x) v d(y).
Remark. If d is a lattice f-derivation on L, then d is an f-derivation on L.

We often abbreviate d(x) to dx.

Now we give some examples and some properties for the lattice
f-derivation on lattices.

Example 3.2. Consider the lattice as shown in Figure 1:

10
b ()

a ()

o {
Figure 1

Define, respectively, a function d and a function f by

] 0 if x=0,
0 if x=0, .
dx = . f(x)=4a if x=a,b,
a if x=1 a b, .
b if x=1.

Then it is easy to check that d is a lattice f-derivation.
Example 3.3. Consider the lattice as shown in Figure 1.

Define, respectively, a function d and a function f by

0 if x=0, ]
. 0 if x=0,
dx =<b if x=a,b, f(x) = .
. 1 if x=a, bl
a ifx=1

Then it is easy to check that d is an f-derivation on L but it is not a lattice
f-derivation, since a = d(av 1) # dav dl=h.
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Proposition 3.4. Let L be a lattice and d be a lattice f-derivation on L
where f : L — L isafunction. Then d is an order-preserving.

Proof. Suppose that x, y € L such that x <y. Then dy =d(xv y) =
dx v dy, it follows that dx < dy. So d is an order-preserving.

Proposition 3.5. Let L be a lattice and d be a lattice f-derivation on L
where f : L — L isafunction. Then d is a lattice-homomorphism.

Proof. Let X, y € L. Then d(x v y) = dx v dy. Next, we will show that
d(x A y) = dx A dy. By Proposition 2.18(2), we have dx A dy < d(x A y).
On the other hand, we get d(x A y) < dx and d(x A y) < dy since d is an
order-preserving. So d(x A y) < dx A dy. Thus d(x A y) = dx A dy. Hence,
d is a lattice-homomorphism.

Corollary 3.6. Let L be a lattice and d : L — L be a function. Then d is
a lattice-homomorphism if and only if d is a lattice d-derivation on L.

Proof. Suppose that d is a lattice-homomorphism. Then we get d are both
a join-homomorphism and a meet-homomorphism. So d(x v y) = dx v dy

and d(x A y) = (dx A dy) = (dx A dy) v (dx A dy) forall x, y e L. Thus, d
is a lattice d-derivation. Conversely, it is obvious by Proposition 3.5.

Proposition 3.7. Let L be a lattice with the greatest element 1 and d be a
lattice f-derivation on L where f : L — L is a function such that f(1) =1.

Then dx = f(x) A dlforall x e L.

Proof. Let x e L. By Proposition 2.18(1), we have dx < f(x). By
Proposition 3.4, we get dx < d1. So dx < d1 A f(x). Note that

dx =d(x Al)=(dx A f(Q)) v (f(x)Adl)=(dx Al)v (f(x)Adl)
=dx v (f(x)Adl) = f(x)Adl
completing the proof.

The following results are immediate from Proposition 3.7:
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Corollary 3.8. Let L be a lattice with the greatest element 1 and d be a
lattice f-derivation on L where f : L — L is a function such that f(1) = 1.
Then we have, for all x € L:

(1) d1< f(x) ifand only if dx = d;
(2) f(x)<dlifandonlyif dx = f(x);
(3) d1=1ifand only if dx = f(x).

Corollary 3.9. Let L be a lattice with the greatest element 1 and d be a
lattice f-derivation on L where f : L — L is a function. Then d1=1 if and

onlyif f(1)=1 and dx = f(x) forall x e L.

Proposition 3.10. Let L be a lattice and d be a lattice f-derivation on
L where f:L — L is a function. Then dx =dx v (f(x) A dy) for all
X, ¥y € L.

Proof. Let x, y € L. Thenwe have x = (X A y) v X. So
dx =d((x A y)v x)=(d(x A y)vdx)=((dx A f(y)) v (f(x)Ady))vdx
= ((dx A f(y))vdx)v (f(x)Ady)=dxv (f(x)Aady).

Proposition 3.11. Let L be a lattice and d be a lattice f-derivation on L
where f :L — L is an order-preserving. Then dx = d(x v y) A f(x) for
all x, y e L.

Proof. Let x, y € L. By Proposition 2.18(1) and Proposition 3.4, we get
dx < f(x) < f(xvy)and dx <d(xvy). Sodx<d(xvy)a f(x). Thus
dx =d((xvy)ax)=d(xvy)a f(x)v(f(xvy)adx)=(d(xvy)a
f(x))vdx=d(xvy)a f(x).

Proposition 3.12. Let L be a lattice and d be a lattice f-derivation on L
where f : L — L is an order-preserving. Then d(x A y)= f(x) A dy for
all x, yelL.
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Proof. Let x, y € L. From Proposition 3.11, we have dx = d(x v y) A
f(x). By Proposition 3.4, we know that d is a lattice-homomorphism. Then
dxay)=dxady =(d(xvy)a f(x)ady = f(X)A(d(xVvy)ady)=
f(X) A ((dx v dy) A dy) = f(x) A dy.

Proposition 3.13. Let L be a modular lattice and d be a lattice
f-derivation on L where f : L — L is a function. Then dx = f(x) Ad(x v y)

forall x, y € L.

Proof. Let x, y e L. From Proposition 3.10, we have dx = dxv
(f(x) Ady). Since L is a modular lattice and dx < f(x), dx = f(x) A
(dx vdy)= f(x)Ad(xvy).

Proposition 3.14. Let L be a modular lattice and d be a lattice

f-derivation on L where f : L — L is a function. Then d(x A y) = f(x) A dy

forall x, y € L.

Proof. Let x, y € L. From Proposition 3.13, we have dx = f(x) A
dixvy) Then d(xay)=dxady=(f(xX)Ad(xvy)ady=Ff(x)a
(d(xv y)ady)=f(x)A((dx v dy)Ady)= f(x)A dy.

Corollary 3.15. Let L be a distributive lattice and d be a lattice
f-derivation on L where f : L — L is a function. Then dx = f(x) Ad(x v y)

and d(x A y)= f(x)ady forall x, y e L.

Let L be a lattice and d be a lattice f-derivation on L where f : L — L is
a function. Denote Fixq(L) = {x e L|dx = f(x)}.

In the following results, we assume that Fixq(L) is a nonempty proper
subset of L.

Proposition 3.16. Let L be a lattice and d be a lattice f-derivation on L
where f :L — L is a meet-homomorphism. Let x, y € L be such that

y < x If x e Fixg(L), then y € Fixq(L).
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Proof. Let x, yeL be such that y<x. Then dy=d(xAy)=
(@A )V (F)Ady) = (F)A F(y) v (dxady) = f(xay)vd(xay)
= f(y)vdy = f(y).

Theorem 3.17. Let L be a lattice and d be a lattice f-derivation on L
where f : L — L is a lattice-homomorphism. Then Fixq4(L) is a sublattice

of L.

Proof. Let X, y e Fixq(L). Since x, y € Fixq(L), dx = f(x) and dy =
f(y). Since d and f are lattice-homomorphisms and by Proposition 3.5,
f(xAay)=f(X)A f(y)=dxady =d(xAy). So x Ay e Fixq(L). Next,
we will show that x v y € Fixq(L). By Definition 3.1, f(xv y)= f(x)
v f(y)=dxvdy=d(xvy) Thus x vy e Fixqy(L). Hence Fix4(L) is a

sublattice of L.

Theorem 3.18. Let L be a lattice and d be a lattice f-derivation on L
where f : L — L is a lattice-homomorphism. Then Fixy4 (L) is an ideal of L.

Proof. The proof is by Proposition 3.16 and Theorem 3.17.

Let L be a lattice with a least element 0 and d be a lattice f-derivation on
L where f : L — L isa function. Define kerd = {x e L|dx = 0}.

In the following results, we assume that kerd is a nonempty proper
subset of L.

Theorem 3.19. Let L be a lattice with a least element 0 and d be a lattice
f-derivation on L where f : L — L is a function. Then ker d is a sublattice

of L.

Proof. Let x, y € kerd. Then dx = 0 = dy. By Proposition 3.5, we get
d(x A y)=dx Ady =0, it follow that x A y € kerd. By Definition 3.1, we
have d(x v y)=dxvdy=0v0=0. So xv yekerd. Hence kerd is a

sublattice of L.
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Theorem 3.20. Let L be a lattice with a least element 0 and d be a lattice
f-derivation on L where f : L — L is a function. Then kerd is an ideal of
L.

Proof. Let x, y € L such that x <y and y e ker d. By Proposition 3.5,
we get dx =d(x A y)=dx ady =dx A 0=0, it follow that x € kerd. By
Theorem 3.19, we know that kerd is a sublattice of L, and so xv y e
kerd forall x, y € kerd. Hence kerd is an ideal of L.

Definition 3.21. Let L be a lattice and f : L — L be a function. Then a
nonempty subset | of L is said to be an f-invariant if f(I)< I, where
f(l1)={y e L|ly= f(x)for some x e I}.

Theorem 3.22. Let L be a lattice and d be a lattice f-derivation on L
where f :L — L is a function. Let | be an ideal of L such that | is an

f-invariant. Then | is a d-invariant.

Proof. Assume that I is an ideal of L such that | is an f-invariant and let
y € dl. Then there exists x e | such that y = dx. Since I is an f-invariant,

f(x) e 1. By Proposition 2.18(1), we have y = dx < f(x). By Definition
2.16,weget y e l. Thus dl c I.

Let L be a lattice, dy : L - L and d, : L — L be functions. Define a

function d; ody : L — L by dy od, = dq(dyx) forall x e L.

Theorem 3.23. Let L be a lattice, d; and d, be lattice f-derivation on L
where f; : L — L and f, : L — L are functions, respectively. Then d; o d,

is a lattice f; o f,-derivationon L.
Proof. Let x, y € L. Then
dy o da(x A y) = dy(da(x A Y))
= dp((dax A f2(y)) v (f2(x) A d2y))

= dy(dax A fa(y)) v dy(f2(x) A day)
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= (dy(d2x) A fi(2(y))) v (fa(d2x) A dy(F2(y))
v (di(f2(X)) A fi(day)) v (fi(f2(x)) A di(dY))
= [(d1(d2x) A f1(F2(y))) v (f2(f2(x)) A dy(d )]
v (f1(d2x) A di(f2(y))) v (di(F2(x)) A fi(dpY))
> (dy(dox) A f1(F2(y) v (f1(F2(X)) A dy(d2Y))
= (dy o da(x) A fp o Fo(y)) v (1 o f2(X) A dp o da(y)).

On the other hand, we have di(fy(x)) < fi(fa(x)) and di(fa(y)) <
f]_( fz(y)) Then

dy o dp(x Ay) = di(da(x A Y))
= dy((dax A f2(y)) v (f2(x) A day))
= di(dax A fa(y)) v di(f(x) A day)
= (dy(d2x) A dy(Fa(y))) v (dy(dax) A di(f2(y))
< (dy(dax) A dy(f2(y)) v (f1(dax) A di(f2(y))
< (dy(dax) A f1(f2(y)) v (fa(d2x) A dy(F2(y)))
= (dy o dp(x) A fr o fa(y)) v (fy o f2(x) A dp o da(y)).

So dp o da(x A y) = (dp o da(x) A fy o Fa(y)) v (fy o F2(X) A dy o da(y)).
Moreover, we get dj o ds(x v y)=di(da(x v y))=di(dox) v di(doy) =
dy o dy(x) v dq ody(y), thatis, di o d, isa lattice f; o f,-derivation on L.

Theorem 3.24. Let L be a lattice, d; be a lattice f-derivation on L where

fi : L —> L is afunction for i =1, 2,3,..,n, ... Then djodyo---od, is

a lattice fj o fy o---o f,,-derivation on L.

Proof. When n =2. By Theorem 3.23, we get d; od, is a lattice

fy o fy-derivation on L. Let ne N for n>3 and assume that d; o d, o



318 Utsanee Leerawat and Sureeporn Harmaitree

..od, isalattice f, o fy o---o f,-derivation on L. Since d"** is a lattice
fn41 -derivation on L and by Theorem 3.23, djodjyo---odyody,q is a

lattice fy o fy 0.0 f,, o f,,4-derivation on L.

Definition 3.25. Let L be a lattice, x e L and d : L — L be a function.
Denote d"(x)=d od od o---od(x) = d(d(---(d(x)))). A d"(x) is said to
%{_/

n n

be a lattice f-derivation order n of x if d is a lattice f-derivation on L.

Theorem 3.26. Let L be a lattice and d be a lattice f-derivation on L

where f :L — L is an order-preserving. Then d?x = f(d(x)) A d(f(x))
forall x € L.

Proof. Let x € L. Then we have dx < f(x) and d?x = d(dx) < f(dx).
Since f is an order-preserving, f(dx) < f(fx). So d%x < f(dx) < f(f(x)).
Then d?x = d(dx A f(x)) = (d2x A f(F(X))) v (f(dx) A d(f(x))) = d?x
v (f(dx) A d(f(x))). So d%x > f(dx) A d(f(x)). On the other hand, d?x <
f(dx). By Lemma 2.9, d?x A d(f(x)) < f(dx) A d(f(x)). By Proposition
3.4, we know that d is an order-preserving, then d?x < d(f(x)), and so
d2x < f(dx) A d(f(x)). Hence d?x = f(dx) A d(f(x)).

Theorem 3.27. Let L be a lattice and d be a lattice f-derivation on
L, where f:L— L is an order-preserving. Then d"x = f(d""1x) A

d(f(d"2x)) for integer n > 2.

Proof. For n = 2. By Theorem 3.26, we get d’x = f(dx) A d(f(x)).

Let ne N for n>3 and assume that d"x = f(d"x) A d(f(d""2x)).
Then

d"x = d"(dx) = f(d"L(dx)) A d(f(d"2(dx)))

= £(d"(x)) A d(f(d"H(x)).
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Theorem 3.28. Let L be a lattice and d be a lattice f-derivation on L
where f : L — L is an order-preserving such that d(f(x)) = f(dx) for all

x e L. Then d?x = d(f(x)) forall x e L.

Proof. Let x e L. By Theorem 3.26, we have d2x = f(dx) A d(f(x)).
Since d(f(x)) = f(dx), d®x = d(f(x)).

Theorem 3.29. Let L be a lattice and d be a lattice f-derivation on L
where f : L — L is an order-preserving such that d(f(x)) = f(dx) for all

x e L. Then d"x = d""Y(f(x)) for integer n > 2.

Proof. For n = 2. By Theorem 3.28, we get d?x = d(f(x)). Let n e N

for n>3 and assume that d"x = d"1(f(x)). Then d"*1x = d"(dx) =

d"(f(dx)) = d"H(d(F(x)) = d"(F(x)).
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