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Abstract 

In this paper, we introduce the notion of a lattice f-derivation for a 
lattice and investigate some related properties. Moreover, we study the 
fixed set ( ),LFixd  ker d and the higher order derivation of a lattice    

f-derivation for a lattice. 

1. Introduction 

Let R be a ring. An additive mapping RRD →:  is called a derivation 
of ( ) ( ) ( )yxDyxDxyD +=  holds for all ., Ryx ∈  Several authors [1, 2, 4] 

and [6] studied derivations in rings and near rings. Szasz [7] introduced the 
concept of derivation for lattices and investigated some of its properties. In 
2008, Xin et al. [8] studied derivation of lattice and investigated some of its 
properties. In 2011, Harmaitree and Leerawat [3] studied f-derivation of 
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lattice and investigated some of its properties. In this paper, we introduced a 
new concept called lattice f-derivation on a lattice and then we investigate 
some related properties. 

2. Preliminaries 

First, we shall give some basic definitions and results used throughout 
the entire paper. Details and proofs can be found in [3, 5] and [8]. 

Definition 2.1 [5]. An (algebraic) lattice ( )∨∧,,L  is a nonempty set              

L with two binary operations “∧” and “∨” (read “meet” and “join”, 
respectively) on L which satisfy the following conditions for all :,, Lzyx ∈  

  (i) ;, xxxxxx =∨=∧  

 (ii) ;, xyyxxyyx ∨=∨∧=∧  

(iii) ( ) ( ) ( ) ( ) ;, zyxzyxzyxzyx ∨∨=∨∨∧∧=∧∧  

(iv) ( ) ( )., yxxxyxxx ∧∨=∨∧=  

Definition 2.2 [5]. A poset ( )≤,L  is a lattice ordered if and only if for 

every pair x, y of elements of L both the { }yx,sup  and the { }yx,inf  exist. 

Definition 2.3 [8]. Let ( )∨∧,,L  be a lattice. A binary operation “≤” is 

defined by yx ≤  if and only if xyx =∧  and .yyx =∨  

Lemma 2.4 [8]. Let ( )∨∧,,L  be a lattice. Define the binary operation 

“≤” as Definition 2.3. Then ( )≤,L  is a poset and for any ,, Lyx ∈  yx ∧  is 

the { }yx,sup  and yx ∨  is the { }.,inf yx  

Theorem 2.5 [5]. (i) Let ( )≤,L  be a lattice ordered set. If we define 

{ } { },,sup,,inf yxyxyxyx =∨=∧  then ( )∨∧,,L  is an algebraic lattice. 

(ii) Let ( )∨∧,,L  be an algebraic lattice. If we define yx ≤  if and only 

if xyx =∧  (or  yx ≤  if and only if ),yyx =∨  then ( )≤,L  is a lattice 

ordered set. 
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It can be verified that Theorem 2.5 yields a one-to-one relationship 
between lattice ordered sets and algebraic lattices. Therefore, we shall use the 
term lattice for both concepts. 

Theorem 2.6 [5]. (i) Every ordered set is lattice ordered. 

(ii) In a lattice ordered set ( )≤,L  the following statements are equivalent 

for all :, Lyx ∈  

(a) ;yx ≤  (b) { } ;,sup yyx =  and (c) { } .,inf xyx =  

Definition 2.7 [5]. If a lattice L contains a least (greatest) element with 
respect to ≤, then this uniquely determined element is called the zero element 
(one element) denoted by 0 (by 1). 

Lemma 2.8. Let L be a lattice. Then xyx =∧  if and only if yyx =∨  

for all ., Lyx ∈  

Proof. Let Lyx ∈,  and assume .xyx =∧  Then ( ) yyxyx ∨∧=∨  

.y=  Conversely, let .yyx =∨  So ( ) .xyxxyx =∨∧=∧  

Lemma 2.9 [5]. Let L be a lattice. If ,zy ≤  then zxyx ∧≤∧  and 

zxyx ∨≤∨  for all .,, Lzyx ∈  

Definition 2.10 [5]. A nonempty subset S of a lattice L is called 
sublattice of L if S is a lattice with respect to the restriction of ∧ and ∨ of L 
onto S. 

Definition 2.11 [5]. A lattice L is called modular if for any Lzyx ∈,,  

if ,zx ≤  then ( ) ( ) .zyxzyx ∧∨=∧∨  

Definition 2.12 [5]. A lattice L is called distributive if either of the 
following conditions hold for all x, y, z in L: ( ) ( ) ( )zxyxzyx ∧∨∧=∨∧  

or ( ) ( ) ( ).zxyxzyx ∨∧∨=∧∨  

Corollary 2.13 [5]. Every distributive lattice is a modular lattice. 

Definition 2.14 [5]. Let MLf →:  be a function from a lattice L to a 

lattice M. 
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  (i) f is called a join-homomorphism if ( ) ( ) ( )yfxfyxf ∨=∨  for all 

., Lyx ∈  

 (ii) f is called a meet-homomorphism if ( ) ( ) ( )yfxfyxf ∧=∧  for all 

., Lyx ∈  

(iii) f is called a lattice-homomorphism if f are both a join-
homomorphism and a meet-homomorphism. 

(iv) f is called an order-preserving if yx ≤  implies ( ) ( )yfxf ≤  for all 

., Lyx ∈  

Lemma 2.15 [5]. Let MLf →:  be a function from a lattice L to a 

lattice M. If f is a join-homomorphism (or a meet-homomorphism or a 
lattice-homomorphism), then f is an order-preserving. 

Definition 2.16 [5]. An ideal is a nonempty subset I of a lattice L with 
the properties: 

 (i) if yx ≤  and ,Iy ∈  then Ix ∈  for all x, y in L, 

(ii) Iyx ∈∨  for all ., Iyx ∈  

Definition 2.17 [3]. Let L be a lattice and LLf →:  be a function. Then 

a function LLd →:  is called an f-derivation on L if for any ,, Lyx ∈  

( ) ( ) ( )( ) ( ) ( )( ).ydxfyfxdyxd ∧∨∧=∧  

Proposition 2.18 [3]. Let L be a lattice and d be an f-derivation on L, 
where LLf →:  is a function. Then the following conditions hold: for any 

element :, Lyx ∈  

(1) ( );xfdx ≤  

(2) ( ) .dydxyxddydx ∨≤∧≤∧  

3. The Lattice f-derivations on Lattices 

The following definition introduces a notion of a derivation for lattice: 
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Definition 3.1. Let L be a lattice, LLd →:  and LLf →:  be 

functions. We call d a lattice f-derivation on L if for any ,, Lyx ∈  

( ) ( ) ( )( ) ( ) ( )( )ydxfyfxdyxd ∧∨∧=∧  and ( ) ( ) ( ).ydxdyxd ∨=∨  

Remark. If d is a lattice f-derivation on L, then d is an f-derivation on L. 

We often abbreviate ( )xd  to dx. 

Now we give some examples and some properties for the lattice              
f-derivation on lattices. 

Example 3.2. Consider the lattice as shown in Figure 1: 

 
Figure 1 

Define, respectively, a function d and a function f by 

( )
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Then it is easy to check that d is a lattice f-derivation. 

Example 3.3. Consider the lattice as shown in Figure 1. 

Define, respectively, a function d and a function f by 
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Then it is easy to check that d is an f-derivation on L but it is not a lattice         
f-derivation, since ( ) .11 bddaada =∨≠∨=  
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Proposition 3.4. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is a function. Then d is an order-preserving. 

Proof. Suppose that Lyx ∈,  such that .yx ≤  Then ( ) =∨= yxddy  

,dydx ∨  it follows that .dydx ≤  So d is an order-preserving. 

Proposition 3.5. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is a function. Then d is a lattice-homomorphism. 

Proof. Let ., Lyx ∈  Then ( ) .dydxyxd ∨=∨  Next, we will show that 

( ) .dydxyxd ∧=∧  By Proposition 2.18(2), we have ( ).yxddydx ∧≤∧  

On the other hand, we get ( ) dxyxd ≤∧  and ( ) dyyxd ≤∧  since d is an 

order-preserving. So ( ) .dydxyxd ∧≤∧  Thus ( ) .dydxyxd ∧=∧  Hence, 

d is a lattice-homomorphism. 

Corollary 3.6. Let L be a lattice and LLd →:  be a function. Then d is 
a lattice-homomorphism if and only if d is a lattice d-derivation on L. 

Proof. Suppose that d is a lattice-homomorphism. Then we get d are both 
a join-homomorphism and a meet-homomorphism. So ( ) dydxyxd ∨=∨  

and ( ) ( ) ( ) ( )dydxdydxdydxyxd ∧∨∧=∧=∧  for all ., Lyx ∈  Thus, d 

is a lattice d-derivation. Conversely, it is obvious by Proposition 3.5. 

Proposition 3.7. Let L be a lattice with the greatest element 1 and d be a 
lattice f-derivation on L where LLf →:  is a function such that ( ) .11 =f  

Then ( ) 1dxfdx ∧=  for all .Lx ∈  

Proof. Let .Lx ∈  By Proposition 2.18(1), we have ( ).xfdx ≤  By 

Proposition 3.4, we get .1ddx ≤  So ( ).1 xfddx ∧≤  Note that 

( ) ( )( ) ( )( ) ( ) ( )( )11111 dxfdxdxffdxxddx ∧∨∧=∧∨∧=∧=  

( )( ) ( ) ,11 dxfdxfdx ∧=∧∨=  

completing the proof. 

The following results are immediate from Proposition 3.7: 
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Corollary 3.8. Let L be a lattice with the greatest element 1 and d be a 
lattice f-derivation on L where LLf →:  is a function such that ( ) .11 =f  

Then we have, for all :Lx ∈  

(1) ( )xfd ≤1  if and only if ;1ddx =  

(2) ( ) 1dxf ≤  if and only if ( );xfdx =  

(3) 11 =d  if and only if ( ).xfdx =  

Corollary 3.9. Let L be a lattice with the greatest element 1 and d be a 
lattice f-derivation on L where LLf →:  is a function. Then 11 =d  if and 

only if ( ) 11 =f  and ( )xfdx =  for all .Lx ∈  

Proposition 3.10. Let L be a lattice and d be a lattice f-derivation on           
L where LLf →:  is a function. Then ( )( )dyxfdxdx ∧∨=  for all 

., Lyx ∈  

Proof. Let ., Lyx ∈  Then we have ( ) .xyxx ∨∧=  So 

( )( ) ( )( ) ( )( ) ( )( )( ) dxdyxfyfdxdxyxdxyxddx ∨∧∨∧=∨∧=∨∧=  

( )( )( ) ( )( ) ( )( ).dyxfdxdyxfdxyfdx ∧∨=∧∨∨∧=  

Proposition 3.11. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is an order-preserving. Then ( ) ( )xfyxddx ∧∨=  for 

all ., Lyx ∈  

Proof. Let ., Lyx ∈  By Proposition 2.18(1) and Proposition 3.4, we get 

( ) ( )yxfxfdx ∨≤≤  and ( ).yxddx ∨≤  So ( ) ( ).xfyxddx ∧∨≤  Thus 

( )( ) ( ) ( )( ) ( )( ) ( )( ∧∨=∧∨∨∧∨=∧∨= yxddxyxfxfyxdxyxddx  

( )) ( ) ( ).xfyxddxxf ∧∨=∨  

Proposition 3.12. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is an order-preserving. Then ( ) ( ) dyxfyxd ∧=∧  for 

all ., Lyx ∈  
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Proof. Let ., Lyx ∈  From Proposition 3.11, we have ( ) ∧∨= yxddx  

( ).xf  By Proposition 3.4, we know that d is a lattice-homomorphism. Then 

( ) ( ) ( )( ) ( ) ( )( ) =∧∨∧=∧∧∨=∧=∧ dyyxdxfdyxfyxddydxyxd  

( ) ( )( ) ( ) .dyxfdydydxxf ∧=∧∨∧  

Proposition 3.13. Let L be a modular lattice and d be a lattice                     
f-derivation on L where LLf →:  is a function. Then ( ) ( )yxdxfdx ∨∧=  

for all ., Lyx ∈  

Proof. Let ., Lyx ∈  From Proposition 3.10, we have ∨= dxdx  

( )( ).dyxf ∧  Since L is a modular lattice and ( ),xfdx ≤  ( ) ∧= xfdx  

( ) ( ) ( ).yxdxfdydx ∨∧=∨  

Proposition 3.14. Let L be a modular lattice and d be a lattice                    
f-derivation on L where LLf →:  is a function. Then ( ) ( ) dyxfyxd ∧=∧  

for all ., Lyx ∈  

Proof. Let ., Lyx ∈  From Proposition 3.13, we have ( ) ∧= xfdx  

( ).yxd ∨  Then ( ) ( ) ( )( ) ( ) ∧=∧∨∧=∧=∧ xfdyyxdxfdydxyxd  

( )( ) ( ) ( )( ) ( ) .dyxfdydydxxfdyyxd ∧=∧∨∧=∧∨  

Corollary 3.15. Let L be a distributive lattice and d be a lattice                    
f-derivation on L where LLf →:  is a function. Then ( ) ( )yxdxfdx ∨∧=  

and ( ) ( ) dyxfyxd ∧=∧  for all ., Lyx ∈  

Let L be a lattice and d be a lattice f-derivation on L where LLf →:  is 

a function. Denote ( ) ( ){ }.xfdxLxLFixd =|∈=  

In the following results, we assume that ( )LFixd  is a nonempty proper 

subset of L. 

Proposition 3.16. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is a meet-homomorphism. Let Lyx ∈,  be such that 

.xy ≤  If ( ),LFixx d∈  then ( ).LFixy d∈  
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Proof. Let Lyx ∈,  be such that .xy ≤  Then ( ) =∧= yxddy  

( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )yxdyxfdydxyfxfdyxfyfdx ∧∨∧=∧∨∧=∧∨∧  

( ) ( ).yfdyyf =∨=  

Theorem 3.17. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is a lattice-homomorphism. Then ( )LFixd  is a sublattice 

of L. 

Proof. Let ( )., LFixyx d∈  Since ( ),, LFixyx d∈  ( )xfdx =  and =dy  

( ).yf  Since d and f are lattice-homomorphisms and by Proposition 3.5, 

( ) ( ) ( ) ( ).yxddydxyfxfyxf ∧=∧=∧=∧  So ( ).LFixyx d∈∧  Next, 

we will show that ( ).LFixyx d∈∨  By Definition 3.1, ( ) ( )xfyxf =∨  

( ) ( ).yxddydxyf ∨=∨=∨  Thus ( ).LFixyx d∈∨  Hence ( )LFixd  is a 

sublattice of L. 

Theorem 3.18. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is a lattice-homomorphism. Then ( )LFixd  is an ideal of L. 

Proof. The proof is by Proposition 3.16 and Theorem 3.17. 

Let L be a lattice with a least element 0 and d be a lattice f-derivation on 
L where LLf →:  is a function. Define { }.0ker =|∈= dxLxd  

In the following results, we assume that dker  is a nonempty proper 
subset of L. 

Theorem 3.19. Let L be a lattice with a least element 0 and d be a lattice 
f-derivation on L where LLf →:  is a function. Then dker  is a sublattice 

of L. 

Proof. Let .ker, dyx ∈  Then .0 dydx ==  By Proposition 3.5, we get 

( ) ,0=∧=∧ dydxyxd  it follow that .ker dyx ∈∧  By Definition 3.1, we 

have ( ) .000 =∨=∨=∨ dydxyxd  So .ker dyx ∈∨  Hence dker  is a 

sublattice of L. 
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Theorem 3.20. Let L be a lattice with a least element 0 and d be a lattice 
f-derivation on L where LLf →:  is a function. Then dker  is an ideal of 

L. 

Proof. Let Lyx ∈,  such that yx ≤  and .ker dy ∈  By Proposition 3.5, 

we get ( ) ,00 =∧=∧=∧= dxdydxyxddx  it follow that .ker dx ∈  By 

Theorem 3.19, we know that dker  is a sublattice of L, and so ∈∨ yx  

dker  for all .ker, dyx ∈  Hence dker  is an ideal of L. 

Definition 3.21. Let L be a lattice and LLf →:  be a function. Then a 

nonempty subset I of L is said to be an f-invariant if ( ) ,IIf ⊆  where 

( ) ( ){ }.somefor IxxfyLyIf ∈=|∈=  

Theorem 3.22. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is a function. Let I be an ideal of L such that I is an               

f-invariant. Then I is a d-invariant. 

Proof. Assume that I is an ideal of L such that I is an f-invariant and let 
.dIy ∈  Then there exists Ix ∈  such that .dxy =  Since I is an f-invariant, 

( ) .Ixf ∈  By Proposition 2.18(1), we have ( ).xfdxy ≤=  By Definition 

2.16, we get .Iy ∈  Thus .IdI ⊆  

Let L be a lattice, LLd →:1  and LLd →:2  be functions. Define a 

function LLdd →:21  by ( )xdddd 2121 =  for all .Lx ∈  

Theorem 3.23. Let L be a lattice, 1d  and 2d  be lattice f-derivation on L 

where LLf →:1  and LLf →:2  are functions, respectively. Then 21 dd  

is a lattice 21 ff -derivation on L. 

Proof. Let ., Lyx ∈  Then 

( ) ( )( )yxddyxdd ∧=∧ 2121  

( )( ) ( )( )( )ydxfyfxdd 22221 ∧∨∧=  

( )( ) ( )( )ydxfdyfxdd 221221 ∧∨∧=  
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( ) ( )( )( ) ( ) ( )( )( )yfdxdfyffxdd 21212121 ∧∨∧=  

( )( ) ( )( ) ( )( ) ( )( )yddxffydfxfd 21212121 ∧∨∧∨  

( ) ( )( )( ) ( )( ) ( )( )[ ]yddxffyffxdd 21212121 ∧∨∧=  

( ) ( )( )( ) ( )( ) ( )( )ydfxfdyfdxdf 21212121 ∧∨∧∨  

( ) ( )( )( ) ( )( ) ( )( )yddxffyffxdd 21212121 ∧∨∧≥  

( ) ( )( ) ( ) ( )( ).21212121 yddxffyffxdd ∧∨∧=  

On the other hand, we have ( )( ) ( )( )xffxfd 2121 ≤  and ( )( ) ≤yfd 21  

( )( ).21 yff  Then 

( ) ( )( )yxddyxdd ∧=∧ 2121  

( )( ) ( )( )( )ydxfyfxdd 22221 ∧∨∧=  

( )( ) ( )( )ydxfdyfxdd 221221 ∧∨∧=  

( ) ( )( )( ) ( ) ( )( )( )yfdxddyfdxdd 21212121 ∧∨∧=  

( ) ( )( )( ) ( ) ( )( )( )yfdxdfyfdxdd 21212121 ∧∨∧≤  

( ) ( )( )( ) ( ) ( )( )( )yfdxdfyffxdd 21212121 ∧∨∧≤  

( ) ( )( ) ( ) ( )( ).21212121 yddxffyffxdd ∧∨∧=  

So ( ) ( ) ( )( ) ( ) ( )( ).2121212121 yddxffyffxddyxdd ∧∨∧=∧  

Moreover, we get ( ) ( )( ) ( ) ( ) =∨=∨=∨ yddxddyxddyxdd 21212121  

( ) ( ),2121 yddxdd ∨  that is, 21 dd  is a lattice 21 ff -derivation on L. 

Theorem 3.24. Let L be a lattice, id  be a lattice f-derivation on L where 

LLfi →:  is a function for ....,...,,3,2,1 ni =  Then nddd 21  is 

a lattice nfff 21 -derivation on L. 

Proof. When .2=n  By Theorem 3.23, we get 21 dd  is a lattice 

21 ff -derivation on L. Let Nn ∈  for 3≥n  and assume that 21 dd  
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nd  is a lattice nfff 21 -derivation on L. Since 1+nd  is a lattice 

1+nf -derivation on L and by Theorem 3.23, 121 +nn dddd  is a 

lattice 121 +nn ffff -derivation on L. 

Definition 3.25. Let L be a lattice, Lx ∈  and LLd →:  be a function. 

Denote ( ) ( ) ( ( ( ( )))).xdddxddddxd
nn

n ==  A ( )xd n  is said to 

be a lattice f-derivation order n of x if d is a lattice f-derivation on L. 

Theorem 3.26. Let L be a lattice and d be a lattice f-derivation on L 

where LLf →:  is an order-preserving. Then ( )( ) ( )( )xfdxdfxd ∧=2  

for all .Lx ∈  

Proof. Let .Lx ∈  Then we have ( )xfdx ≤  and ( ) ( ).2 dxfdxdxd ≤=  

Since f is an order-preserving, ( ) ( ).fxfdxf ≤  So ( ) ( )( ).2 xffdxfxd ≤≤  

Then ( )( ) ( ( )( )) ( ) ( )( )( ) xdxfddxfxffxdxfdxdxd 222 =∧∨∧=∧=  

( ) ( )( )( ).xfddxf ∧∨  So ( ) ( )( ).2 xfddxfxd ∧≥  On the other hand, ≤xd 2  

( ).dxf  By Lemma 2.9, ( )( ) ( ) ( )( ).2 xfddxfxfdxd ∧≤∧  By Proposition 

3.4, we know that d is an order-preserving, then ( )( ),2 xfdxd ≤  and so 

( ) ( )( ).2 xfddxfxd ∧≤  Hence ( ) ( )( ).2 xfddxfxd ∧=  

Theorem 3.27. Let L be a lattice and d be a lattice f-derivation on              

L, where LLf →:  is an order-preserving. Then ( ) ∧= − xdfxd nn 1  

( ( ))xdfd n 2−  for integer .2≥n  

Proof. For .2=n  By Theorem 3.26, we get ( ) ( )( ).2 xfddxfxd ∧=  

Let Nn ∈  for 3≥n  and assume that ( ) ( ( )).21 xdfdxdfxd nnn −− ∧=  

Then 

( ) ( ( )) ( ( ( )))dxdfddxdfdxdxd nnnn 211 −−+ ∧==  

 ( ( )) ( ( ( ))).1 xdfdxdf nn −∧=  
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Theorem 3.28. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is an order-preserving such that ( )( ) ( )dxfxfd =  for all 

.Lx ∈  Then ( )( )xfdxd =2  for all .Lx ∈  

Proof. Let .Lx ∈  By Theorem 3.26, we have ( ) ( )( ).2 xfddxfxd ∧=  

Since ( )( ) ( ) ( )( )., 2 xfdxddxfxfd ==  

Theorem 3.29. Let L be a lattice and d be a lattice f-derivation on L 
where LLf →:  is an order-preserving such that ( )( ) ( )dxfxfd =  for all 

.Lx ∈  Then ( )( )xfdxd nn 1−=  for integer .2≥n  

Proof. For .2=n  By Theorem 3.28, we get ( )( ).2 xfdxd =  Let Nn ∈  

for 3≥n  and assume that ( )( ).1 xfdxd nn −=  Then ( ) ==+ dxdxd nn 1  

( )( ) ( ( )( )) ( )( ).11 xfdxfdddxfd nnn == −−  
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