

THE LATTICE f-DERIVATIONS OF LATTICES

Utsanee Leerawat^{†,*} and Sureeporn Harmaitree[‡]

†Department of Mathematics Kasetsart University Bangkok, Thailand

e-mail: fsciutl@ku.ac.th

‡Triamudomsuksa Pattanakarn Nonthaburi School

Nonthaburi, Thailand

e-mail: shrtdenui@hotmail.com

Abstract

In this paper, we introduce the notion of a lattice f-derivation for a lattice and investigate some related properties. Moreover, we study the fixed set $Fix_d(L)$, ker d and the higher order derivation of a lattice f-derivation for a lattice.

1. Introduction

Let R be a ring. An additive mapping $D: R \to R$ is called a *derivation* of D(xy) = D(x)y + xD(y) holds for all $x, y \in R$. Several authors [1, 2, 4] and [6] studied derivations in rings and near rings. Szasz [7] introduced the concept of derivation for lattices and investigated some of its properties. In 2008, Xin et al. [8] studied derivation of lattice and investigated some of its properties. In 2011, Harmaitree and Leerawat [3] studied f-derivation of 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 06B35, 06B99.

Keywords and phrases: f-derivations, lattices.

*Corresponding author

Received May 1, 2012

lattice and investigated some of its properties. In this paper, we introduced a new concept called *lattice f-derivation* on a lattice and then we investigate some related properties.

2. Preliminaries

First, we shall give some basic definitions and results used throughout the entire paper. Details and proofs can be found in [3, 5] and [8].

Definition 2.1 [5]. An (algebraic) lattice (L, \wedge, \vee) is a nonempty set L with two binary operations " \wedge " and " \vee " (read "meet" and "join", respectively) on L which satisfy the following conditions for all $x, y, z \in L$:

- (i) $x \wedge x = x$, $x \vee x = x$;
- (ii) $x \wedge y = y \wedge x$, $x \vee y = y \vee x$;
- (iii) $x \wedge (y \wedge z) = (x \wedge y) \wedge z$, $x \vee (y \vee z) = (x \vee y) \vee z$;
- (iv) $x = x \land (x \lor y), \quad x = x \lor (x \land y).$

Definition 2.2 [5]. A poset (L, \leq) is a *lattice ordered* if and only if for every pair x, y of elements of L both the $\sup\{x, y\}$ and the $\inf\{x, y\}$ exist.

Definition 2.3 [8]. Let (L, \wedge, \vee) be a lattice. A binary operation " \leq " is defined by $x \leq y$ if and only if $x \wedge y = x$ and $x \vee y = y$.

Lemma 2.4 [8]. Let (L, \wedge, \vee) be a lattice. Define the binary operation " \leq " as Definition 2.3. Then (L, \leq) is a poset and for any $x, y \in L$, $x \wedge y$ is the $\sup\{x, y\}$ and $x \vee y$ is the $\inf\{x, y\}$.

Theorem 2.5 [5]. (i) Let (L, \leq) be a lattice ordered set. If we define $x \wedge y = \inf\{x, y\}, x \vee y = \sup\{x, y\}, then <math>(L, \wedge, \vee)$ is an algebraic lattice.

(ii) Let (L, \wedge, \vee) be an algebraic lattice. If we define $x \leq y$ if and only if $x \wedge y = x$ (or $x \leq y$ if and only if $x \vee y = y$), then (L, \leq) is a lattice ordered set.

It can be verified that Theorem 2.5 yields a one-to-one relationship between lattice ordered sets and algebraic lattices. Therefore, we shall use the term lattice for both concepts.

Theorem 2.6 [5]. (i) Every ordered set is lattice ordered.

(ii) In a lattice ordered set (L, \leq) the following statements are equivalent for all $x, y \in L$:

(a)
$$x \le y$$
; (b) $\sup\{x, y\} = y$; and (c) $\inf\{x, y\} = x$.

Definition 2.7 [5]. If a lattice L contains a least (greatest) element with respect to \leq , then this uniquely determined element is called the *zero element* (*one element*) denoted by 0 (by 1).

Lemma 2.8. Let L be a lattice. Then $x \wedge y = x$ if and only if $x \vee y = y$ for all $x, y \in L$.

Proof. Let $x, y \in L$ and assume $x \wedge y = x$. Then $x \vee y = (x \wedge y) \vee y = y$. Conversely, let $x \vee y = y$. So $x \wedge y = x \wedge (x \vee y) = x$.

Lemma 2.9 [5]. Let L be a lattice. If $y \le z$, then $x \wedge y \le x \wedge z$ and $x \vee y \le x \vee z$ for all $x, y, z \in L$.

Definition 2.10 [5]. A nonempty subset S of a lattice L is called *sublattice* of L if S is a lattice with respect to the restriction of \wedge and \vee of L onto S.

Definition 2.11 [5]. A lattice *L* is called *modular* if for any $x, y, z \in L$ if $x \le z$, then $x \lor (y \land z) = (x \lor y) \land z$.

Definition 2.12 [5]. A lattice *L* is called *distributive* if either of the following conditions hold for all x, y, z in L: $x \land (y \lor z) = (x \land y) \lor (x \land z)$ or $x \lor (y \land z) = (x \lor y) \land (x \lor z)$.

Corollary 2.13 [5]. *Every distributive lattice is a modular lattice.*

Definition 2.14 [5]. Let $f: L \to M$ be a function from a lattice L to a lattice M.

- (i) f is called a *join-homomorphism* if $f(x \vee y) = f(x) \vee f(y)$ for all $x, y \in L$.
- (ii) f is called a *meet-homomorphism* if $f(x \wedge y) = f(x) \wedge f(y)$ for all $x, y \in L$.
- (iii) f is called a *lattice-homomorphism* if f are both a join-homomorphism and a meet-homomorphism.
- (iv) f is called an *order-preserving* if $x \le y$ implies $f(x) \le f(y)$ for all $x, y \in L$.
- **Lemma 2.15** [5]. Let $f: L \to M$ be a function from a lattice L to a lattice M. If f is a join-homomorphism (or a meet-homomorphism or a lattice-homomorphism), then f is an order-preserving.
- **Definition 2.16** [5]. An ideal is a nonempty subset I of a lattice L with the properties:
 - (i) if $x \le y$ and $y \in I$, then $x \in I$ for all x, y in L,
 - (ii) $x \lor y \in I$ for all $x, y \in I$.
- **Definition 2.17** [3]. Let L be a lattice and $f: L \to L$ be a function. Then a function $d: L \to L$ is called an *f-derivation* on L if for any $x, y \in L$, $d(x \wedge y) = (d(x) \wedge f(y)) \vee (f(x) \wedge d(y))$.
- **Proposition 2.18** [3]. Let L be a lattice and d be an f-derivation on L, where $f: L \to L$ is a function. Then the following conditions hold: for any element $x, y \in L$:
 - (1) $dx \leq f(x)$;
 - (2) $dx \wedge dy \leq d(x \wedge y) \leq dx \vee dy$.

3. The Lattice f-derivations on Lattices

The following definition introduces a notion of a derivation for lattice:

Definition 3.1. Let L be a lattice, $d: L \to L$ and $f: L \to L$ be functions. We call d a *lattice f-derivation* on L if for any $x, y \in L$, $d(x \land y) = (d(x) \land f(y)) \lor (f(x) \land d(y))$ and $d(x \lor y) = d(x) \lor d(y)$.

Remark. If d is a lattice f-derivation on L, then d is an f-derivation on L.

We often abbreviate d(x) to dx.

Now we give some examples and some properties for the lattice *f*-derivation on lattices.

Example 3.2. Consider the lattice as shown in Figure 1:

Figure 1

Define, respectively, a function d and a function f by

$$dx = \begin{cases} 0 & \text{if } x = 0, \\ a & \text{if } x = 1, a, b, \end{cases} \qquad f(x) = \begin{cases} 0 & \text{if } x = 0, \\ a & \text{if } x = a, b, \\ b & \text{if } x = 1. \end{cases}$$

Then it is easy to check that *d* is a lattice *f*-derivation.

Example 3.3. Consider the lattice as shown in Figure 1.

Define, respectively, a function d and a function f by

$$dx = \begin{cases} 0 & \text{if } x = 0, \\ b & \text{if } x = a, b, \\ a & \text{if } x = 1, \end{cases} \qquad f(x) = \begin{cases} 0 & \text{if } x = 0, \\ 1 & \text{if } x = a, b, 1. \end{cases}$$

Then it is easy to check that d is an f-derivation on L but it is not a lattice f-derivation, since $a = d(a \lor 1) \ne da \lor d1 = b$.

Proposition 3.4. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then d is an order-preserving.

Proof. Suppose that $x, y \in L$ such that $x \le y$. Then $dy = d(x \lor y) = dx \lor dy$, it follows that $dx \le dy$. So d is an order-preserving.

Proposition 3.5. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then d is a lattice-homomorphism.

Proof. Let $x, y \in L$. Then $d(x \vee y) = dx \vee dy$. Next, we will show that $d(x \wedge y) = dx \wedge dy$. By Proposition 2.18(2), we have $dx \wedge dy \leq d(x \wedge y)$. On the other hand, we get $d(x \wedge y) \leq dx$ and $d(x \wedge y) \leq dy$ since d is an order-preserving. So $d(x \wedge y) \leq dx \wedge dy$. Thus $d(x \wedge y) = dx \wedge dy$. Hence, d is a lattice-homomorphism.

Corollary 3.6. Let L be a lattice and $d: L \to L$ be a function. Then d is a lattice-homomorphism if and only if d is a lattice d-derivation on L.

Proof. Suppose that d is a lattice-homomorphism. Then we get d are both a join-homomorphism and a meet-homomorphism. So $d(x \vee y) = dx \vee dy$ and $d(x \wedge y) = (dx \wedge dy) = (dx \wedge dy) \vee (dx \wedge dy)$ for all $x, y \in L$. Thus, d is a lattice d-derivation. Conversely, it is obvious by Proposition 3.5.

Proposition 3.7. Let L be a lattice with the greatest element 1 and d be a lattice f-derivation on L where $f: L \to L$ is a function such that f(1) = 1. Then $dx = f(x) \wedge d1$ for all $x \in L$.

Proof. Let $x \in L$. By Proposition 2.18(1), we have $dx \le f(x)$. By Proposition 3.4, we get $dx \le d1$. So $dx \le d1 \land f(x)$. Note that

$$dx = d(x \wedge 1) = (dx \wedge f(1)) \vee (f(x) \wedge d1) = (dx \wedge 1) \vee (f(x) \wedge d1)$$
$$= dx \vee (f(x) \wedge d1) = f(x) \wedge d1,$$

completing the proof.

The following results are immediate from Proposition 3.7:

Corollary 3.8. Let L be a lattice with the greatest element 1 and d be a lattice f-derivation on L where $f: L \to L$ is a function such that f(1) = 1. Then we have, for all $x \in L$:

- (1) $d1 \le f(x)$ if and only if dx = d1;
- (2) $f(x) \le d1$ if and only if dx = f(x);
- (3) d1 = 1 if and only if dx = f(x).

Corollary 3.9. Let L be a lattice with the greatest element 1 and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then d1 = 1 if and only if f(1) = 1 and dx = f(x) for all $x \in L$.

Proposition 3.10. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then $dx = dx \lor (f(x) \land dy)$ for all $x, y \in L$.

Proof. Let $x, y \in L$. Then we have $x = (x \wedge y) \vee x$. So

$$dx = d((x \land y) \lor x) = (d(x \land y) \lor dx) = ((dx \land f(y)) \lor (f(x) \land dy)) \lor dx$$
$$= ((dx \land f(y)) \lor dx) \lor (f(x) \land dy) = dx \lor (f(x) \land dy).$$

Proposition 3.11. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is an order-preserving. Then $dx = d(x \lor y) \land f(x)$ for all $x, y \in L$.

Proof. Let $x, y \in L$. By Proposition 2.18(1) and Proposition 3.4, we get $dx \le f(x) \le f(x \lor y)$ and $dx \le d(x \lor y)$. So $dx \le d(x \lor y) \land f(x)$. Thus $dx = d((x \lor y) \land x) = (d(x \lor y) \land f(x)) \lor (f(x \lor y) \land dx) = (d(x \lor y) \land f(x)) \lor dx = d(x \lor y) \land f(x)$.

Proposition 3.12. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is an order-preserving. Then $d(x \land y) = f(x) \land dy$ for all $x, y \in L$.

Proof. Let $x, y \in L$. From Proposition 3.11, we have $dx = d(x \vee y) \wedge f(x)$. By Proposition 3.4, we know that d is a lattice-homomorphism. Then $d(x \wedge y) = dx \wedge dy = (d(x \vee y) \wedge f(x)) \wedge dy = f(x) \wedge (d(x \vee y) \wedge dy) = f(x) \wedge ((dx \vee dy) \wedge dy) = f(x) \wedge dy$.

Proposition 3.13. Let L be a modular lattice and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then $dx = f(x) \land d(x \lor y)$ for all $x, y \in L$.

Proof. Let $x, y \in L$. From Proposition 3.10, we have $dx = dx \lor (f(x) \land dy)$. Since L is a modular lattice and $dx \le f(x)$, $dx = f(x) \land (dx \lor dy) = f(x) \land d(x \lor y)$.

Proposition 3.14. Let L be a modular lattice and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then $d(x \wedge y) = f(x) \wedge dy$ for all $x, y \in L$.

Proof. Let $x, y \in L$. From Proposition 3.13, we have $dx = f(x) \wedge d(x \vee y)$. Then $d(x \wedge y) = dx \wedge dy = (f(x) \wedge d(x \vee y)) \wedge dy = f(x) \wedge (d(x \vee y) \wedge dy) = f(x) \wedge ((dx \vee dy) \wedge dy) = f(x) \wedge dy$.

Corollary 3.15. Let L be a distributive lattice and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then $dx = f(x) \land d(x \lor y)$ and $d(x \land y) = f(x) \land dy$ for all $x, y \in L$.

Let *L* be a lattice and *d* be a lattice *f*-derivation on *L* where $f: L \to L$ is a function. Denote $Fix_d(L) = \{x \in L | dx = f(x)\}.$

In the following results, we assume that $Fix_d(L)$ is a nonempty proper subset of L.

Proposition 3.16. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is a meet-homomorphism. Let $x, y \in L$ be such that $y \le x$. If $x \in Fix_d(L)$, then $y \in Fix_d(L)$.

Proof. Let $x, y \in L$ be such that $y \le x$. Then $dy = d(x \land y) = (dx \land f(y)) \lor (f(x) \land dy) = (f(x) \land f(y)) \lor (dx \land dy) = f(x \land y) \lor d(x \land y) = f(y) \lor dy = f(y)$.

Theorem 3.17. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is a lattice-homomorphism. Then $Fix_d(L)$ is a sublattice of L.

Proof. Let $x, y \in Fix_d(L)$. Since $x, y \in Fix_d(L)$, dx = f(x) and dy = f(y). Since d and f are lattice-homomorphisms and by Proposition 3.5, $f(x \wedge y) = f(x) \wedge f(y) = dx \wedge dy = d(x \wedge y)$. So $x \wedge y \in Fix_d(L)$. Next, we will show that $x \vee y \in Fix_d(L)$. By Definition 3.1, $f(x \vee y) = f(x) \vee f(y) = dx \vee dy = d(x \vee y)$. Thus $x \vee y \in Fix_d(L)$. Hence $Fix_d(L)$ is a sublattice of L.

Theorem 3.18. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is a lattice-homomorphism. Then $Fix_d(L)$ is an ideal of L.

Proof. The proof is by Proposition 3.16 and Theorem 3.17.

Let *L* be a lattice with a least element 0 and *d* be a lattice *f*-derivation on *L* where $f: L \to L$ is a function. Define $\ker d = \{x \in L | dx = 0\}$.

In the following results, we assume that $\ker d$ is a nonempty proper subset of L.

Theorem 3.19. Let L be a lattice with a least element 0 and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then ker d is a sublattice of L.

Proof. Let $x, y \in \ker d$. Then dx = 0 = dy. By Proposition 3.5, we get $d(x \wedge y) = dx \wedge dy = 0$, it follow that $x \wedge y \in \ker d$. By Definition 3.1, we have $d(x \vee y) = dx \vee dy = 0 \vee 0 = 0$. So $x \vee y \in \ker d$. Hence $\ker d$ is a sublattice of L.

Theorem 3.20. Let L be a lattice with a least element 0 and d be a lattice f-derivation on L where $f: L \to L$ is a function. Then ker d is an ideal of L.

Proof. Let $x, y \in L$ such that $x \le y$ and $y \in \ker d$. By Proposition 3.5, we get $dx = d(x \land y) = dx \land dy = dx \land 0 = 0$, it follow that $x \in \ker d$. By Theorem 3.19, we know that $\ker d$ is a sublattice of L, and so $x \lor y \in \ker d$ for all $x, y \in \ker d$. Hence $\ker d$ is an ideal of L.

Definition 3.21. Let L be a lattice and $f: L \to L$ be a function. Then a nonempty subset I of L is said to be an f-invariant if $f(I) \subseteq I$, where $f(I) = \{y \in L \mid y = f(x) \text{ for some } x \in I\}$.

Theorem 3.22. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is a function. Let I be an ideal of L such that I is an f-invariant. Then I is a d-invariant.

Proof. Assume that I is an ideal of L such that I is an f-invariant and let $y \in dI$. Then there exists $x \in I$ such that y = dx. Since I is an f-invariant, $f(x) \in I$. By Proposition 2.18(1), we have $y = dx \le f(x)$. By Definition 2.16, we get $y \in I$. Thus $dI \subseteq I$.

Let L be a lattice, $d_1: L \to L$ and $d_2: L \to L$ be functions. Define a function $d_1 \circ d_2: L \to L$ by $d_1 \circ d_2 = d_1(d_2x)$ for all $x \in L$.

Theorem 3.23. Let L be a lattice, d_1 and d_2 be lattice f-derivation on L where $f_1: L \to L$ and $f_2: L \to L$ are functions, respectively. Then $d_1 \circ d_2$ is a lattice $f_1 \circ f_2$ -derivation on L.

Proof. Let $x, y \in L$. Then

$$d_1 \circ d_2(x \wedge y) = d_1(d_2(x \wedge y))$$

$$= d_1((d_2x \wedge f_2(y)) \vee (f_2(x) \wedge d_2y))$$

$$= d_1(d_2x \wedge f_2(y)) \vee d_1(f_2(x) \wedge d_2y)$$

$$= (d_{1}(d_{2}x) \wedge f_{1}(f_{2}(y))) \vee (f_{1}(d_{2}x) \wedge d_{1}(f_{2}(y)))$$

$$\vee (d_{1}(f_{2}(x)) \wedge f_{1}(d_{2}y)) \vee (f_{1}(f_{2}(x)) \wedge d_{1}(d_{2}y))$$

$$= [(d_{1}(d_{2}x) \wedge f_{1}(f_{2}(y))) \vee (f_{1}(f_{2}(x)) \wedge d_{1}(d_{2}y))]$$

$$\vee (f_{1}(d_{2}x) \wedge d_{1}(f_{2}(y))) \vee (d_{1}(f_{2}(x)) \wedge f_{1}(d_{2}y))$$

$$\geq (d_{1}(d_{2}x) \wedge f_{1}(f_{2}(y))) \vee (f_{1}(f_{2}(x)) \wedge d_{1}(d_{2}y))$$

$$= (d_{1} \circ d_{2}(x) \wedge f_{1} \circ f_{2}(y)) \vee (f_{1} \circ f_{2}(x) \wedge d_{1} \circ d_{2}(y)).$$

On the other hand, we have $d_1(f_2(x)) \le f_1(f_2(x))$ and $d_1(f_2(y)) \le f_1(f_2(y))$. Then

$$\begin{aligned} d_1 \circ d_2(x \wedge y) &= d_1(d_2(x \wedge y)) \\ &= d_1((d_2x \wedge f_2(y)) \vee (f_2(x) \wedge d_2y)) \\ &= d_1(d_2x \wedge f_2(y)) \vee d_1(f_2(x) \wedge d_2y) \\ &= (d_1(d_2x) \wedge d_1(f_2(y))) \vee (d_1(d_2x) \wedge d_1(f_2(y))) \\ &\leq (d_1(d_2x) \wedge d_1(f_2(y))) \vee (f_1(d_2x) \wedge d_1(f_2(y))) \\ &\leq (d_1(d_2x) \wedge f_1(f_2(y))) \vee (f_1(d_2x) \wedge d_1(f_2(y))) \\ &= (d_1 \circ d_2(x) \wedge f_1 \circ f_2(y)) \vee (f_1 \circ f_2(x) \wedge d_1 \circ d_2(y)). \end{aligned}$$

So $d_1 \circ d_2(x \wedge y) = (d_1 \circ d_2(x) \wedge f_1 \circ f_2(y)) \vee (f_1 \circ f_2(x) \wedge d_1 \circ d_2(y)).$ Moreover, we get $d_1 \circ d_2(x \vee y) = d_1(d_2(x \vee y)) = d_1(d_2x) \vee d_1(d_2y) = d_1 \circ d_2(x) \vee d_1 \circ d_2(y),$ that is, $d_1 \circ d_2$ is a lattice $f_1 \circ f_2$ -derivation on $f_2(x) \circ d_1 \circ d_2(y)$.

Theorem 3.24. Let L be a lattice, d_i be a lattice f-derivation on L where $f_i: L \to L$ is a function for i = 1, 2, 3, ..., n, ... Then $d_1 \circ d_2 \circ \cdots \circ d_n$ is a lattice $f_1 \circ f_2 \circ \cdots \circ f_n$ -derivation on L.

Proof. When n=2. By Theorem 3.23, we get $d_1 \circ d_2$ is a lattice $f_1 \circ f_2$ -derivation on L. Let $n \in N$ for $n \ge 3$ and assume that $d_1 \circ d_2 \circ d_3 \circ d_4 \circ d_5 \circ d$

 $\cdots \circ d_n$ is a lattice $f_1 \circ f_2 \circ \cdots \circ f_n$ -derivation on L. Since d^{n+1} is a lattice f_{n+1} -derivation on L and by Theorem 3.23, $d_1 \circ d_2 \circ \cdots \circ d_n \circ d_{n+1}$ is a lattice $f_1 \circ f_2 \circ \cdots \circ f_n \circ f_{n+1}$ -derivation on L.

Definition 3.25. Let L be a lattice, $x \in L$ and $d: L \to L$ be a function. Denote $d^n(x) = \underbrace{d \circ d \circ d \circ \cdots \circ d}_{n}(x) = \underbrace{d(d(\cdots(d(x))))}_{n}$. A $d^n(x)$ is said to

be a *lattice f-derivation order n* of x if d is a lattice f-derivation on L.

Theorem 3.26. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is an order-preserving. Then $d^2x = f(d(x)) \wedge d(f(x))$ for all $x \in L$.

Proof. Let $x \in L$. Then we have $dx \le f(x)$ and $d^2x = d(dx) \le f(dx)$. Since f is an order-preserving, $f(dx) \le f(fx)$. So $d^2x \le f(dx) \le f(f(x))$. Then $d^2x = d(dx \land f(x)) = (d^2x \land f(f(x))) \lor (f(dx) \land d(f(x))) = d^2x$ $\lor (f(dx) \land d(f(x)))$. So $d^2x \ge f(dx) \land d(f(x))$. On the other hand, $d^2x \le f(dx)$. By Lemma 2.9, $d^2x \land d(f(x)) \le f(dx) \land d(f(x))$. By Proposition 3.4, we know that d is an order-preserving, then $d^2x \le d(f(x))$, and so $d^2x \le f(dx) \land d(f(x))$. Hence $d^2x = f(dx) \land d(f(x))$.

Theorem 3.27. Let L be a lattice and d be a lattice f-derivation on L, where $f: L \to L$ is an order-preserving. Then $d^n x = f(d^{n-1}x) \land d(f(d^{n-2}x))$ for integer $n \ge 2$.

Proof. For n = 2. By Theorem 3.26, we get $d^2x = f(dx) \wedge d(f(x))$. Let $n \in N$ for $n \ge 3$ and assume that $d^nx = f(d^{n-1}x) \wedge d(f(d^{n-2}x))$. Then

$$d^{n+1}x = d^n(dx) = f(d^{n-1}(dx)) \wedge d(f(d^{n-2}(dx)))$$

= $f(d^n(x)) \wedge d(f(d^{n-1}(x))).$

Theorem 3.28. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is an order-preserving such that d(f(x)) = f(dx) for all $x \in L$. Then $d^2x = d(f(x))$ for all $x \in L$.

Proof. Let $x \in L$. By Theorem 3.26, we have $d^2x = f(dx) \wedge d(f(x))$. Since d(f(x)) = f(dx), $d^2x = d(f(x))$.

Theorem 3.29. Let L be a lattice and d be a lattice f-derivation on L where $f: L \to L$ is an order-preserving such that d(f(x)) = f(dx) for all $x \in L$. Then $d^n x = d^{n-1}(f(x))$ for integer $n \ge 2$.

Proof. For n = 2. By Theorem 3.28, we get $d^2x = d(f(x))$. Let $n \in N$ for $n \ge 3$ and assume that $d^nx = d^{n-1}(f(x))$. Then $d^{n+1}x = d^n(dx) = d^{n-1}(f(dx)) = d^{n-1}(d(f(x))) = d^n(f(x))$.

Acknowledgement

The authors are greatly indebted to the referee for several useful suggestions and valuable comments which led to the improvement of the exposition.

References

- [1] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Mathematics Hungarica 53(3-4) (1989), 339-346.
- [2] H. E. Bell and G. N. Mason, On derivations in near rings, North Holland Mathematical Studies 137 (1987), 31-35.
- [3] S. Harmaitree and U. Leerawat, On *f*-derivations in lattices, Far East J. Math. Sci. (FJMS) 51(1) (2011), 27-40.
- [4] K. Kaya, Prime rings with derivations, Hacettepe Bull. Natural Sci. Eng. 16-17 (1988), 63-71.
- [5] R. Lidl and G. Pilz, Applied Abstract Algebra, Springer-Verlag, Inc., New York, U.S.A., 1984.

- [6] E. C. Posner, Derivations in prime rings, Proceeding of the American Mathematical Society 8 (1957), 1093-1100.
- [7] G. Szasz, Derivations of lattice, Acta Scientiarum Mathematicarum 37 (1975), 149-154.
- [8] L. X. Xin, T. Y. Li and J. H. Lu, On derivations of lattice, Inform. Sci. 178 (2008), 307-316.